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Abstract

Visually guided agents are introduced, that evolve their sensor orientations and sensorimotor
coupling in a simulated evolution. The work builds on neurobiological results from various
aspects of insect navigation and the architecture of the “Vehicles” of Braitenberg (1984).
Flies have specialized visuomotor programs for tasks like compensating for deviations from
the course, tracking, and landing, which involve the analysis of visual motion information.
We use genetic algorithms to evolve the obstacle avoidance behavior. The sensor orientations
and the transmission weights between sensor input and motor output evolve with the sensors
and motors acting in a closed loop of perception and action. The influence of the crossover
and mutation probabilities on the outcome of the simulations, specifically the maximum
fitness and the convergence of the population are tested.

This document is available as /pub/mpi-memos/ via anonymous ftp from ftp.mpik-tueb.mpg.de or from the
World Wide Web, http://www.mpik-tueb.mpg.de/projects/TechReport/list.html.



1 Introduction

In this work autonomous agents are introduced
which navigate through a virtual world. Genetic
algorithms are applied to evolve their visually
guided control mechanisms and generate a senso-
rimotor coupling which enables them to survive
in the environment. In particular, the behavioral
module for obstacle avoidance is studied. For the
task a visuomotor program is generated with the
sensors and effectors acting in a closed loop of
perception and action, thus effecting a permanent
sensorimotor interaction.

In information processing the architecture of au-
tonomous systems is decomposed into a chain of
functional modules such as perception, informa-
tion processing in a central unit and the execution
and output of information. In other approaches
the architecture is decomposed into task-achieving
modules, which, in combination, produce the com-
plex, “emergent” behavior of biological (Tinber-
gen, 1953) and artificial systems (Brooks, 1986;
Flynn & Brooks, 1989). Starting from the assump-
tion that perception and action — sensor input
and motor control — did not develop independently
from each other, but are a coupled system — they
have to be investigated in a closed loop. Braiten-
berg demonstrated with his “Vehicles” that even
with simple architectures, it is possible to conceive
of autonomous agents that can exhibit complex
emergent behavior.

By studying the behavior of insects and the un-
derlying neural mechanisms (for review see Egel-
haaf & Borst, 1993), the architecture of biologi-
cal navigation systems has been investigated. For
our agent, the most important biological insight is
that insects navigate mostly by evaluating visual
motion information by means of neurons tuned to
specific motion patterns (matched filters). The
spatial localization of the receptive fields of these
neurons is optimized with respect to certain be-
havioral tasks.

Franceschini and his colleagues demonstrate that
the principle of motion vision can be used for
navigational tasks in simulated and real agents
(Franceschini, Pichon & Blanes, 1992). Cliff, Hus-
bands and Harvey (1994) show the efficacy of using
genetic algorithms to evolve concurrently the vi-
sual morphology along with the control networks.
Here, we attempt to combine these approaches
by evolving a competence for obstacle avoidance
through simultaneous adaptation of sensor param-
eters and the sensorimotor coupling.

In the section 2, results from the research on

the visual system of flies are reviewed and in
section 3 the architectures of two types of au-
tonomous agents are described. In section 4 the
genetic algorithms used here are introduced, fol-
lowed by the results of the simulations.

2 Perception of motion and
visuomotor control in flies

The resolution of the compound eyes of flies is
much coarser than that of human eyes and thus the
perception of shape is more difficult. Hence, for
visual orientation the detection of motion plays a
more prominent role. While the insect is navigat-
ing through a stationary environment the images
on the retinae are continuously changing. This im-
age flow depends on both the trajectory through
the world and the structure of the environment. In
a stationary environment the rotational flow field
contains information about the egomotion only,
whereas translational fields contain both informa-
tion about the structure of the environment and
information about the movement of the observer.
Objects nearby cause a larger image flow than ob-
jects further away (Longuet-Higgins & Prazdny,
1980).

As a model for motion perception in insects, Re-
ichardt & Hassenstein proposed a correlation de-
tector (Hassenstein & Reichardt, 1956; Reichardt,
1961) which correlates temporal modulation of
image intensities in two neighboring ommatidia.
Here we use a version of the correlation-type move-
ment detector, where the visual signals first are
temporally highpass filtered, making the motion
detector independent of background illumination.
From the investigation of the behavior of flies
under controlled experimental conditions (Gotz,
1964; Reichardt, 1979) as well as with freely fly-
ing flies (e. g. Wehrhahn, Poggio, Biilthoff, 1982;
Wagner, 1985), different visuomotor subsystems
for course control and object fixation have been
described. This behavior corresponds to anatom-
ical structures that are located in the visual area
of the fly’s brain. The so—called tangential cells
(Hausen, 1982) (in the lobular plate — a section of
the visual system) are known to play a prominent
role in the detection of egomotion and thus are
essential for the visuomotor control that compen-
sates for deviations from the intended course. One
example is shown in Fig. 1 (Hengstenberg, Krapp,
Hengstenberg (in press)). These cells have large
receptive fields, which together cover most of the
visual field.

A second system detects image expansion sig-
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tion —9°.
(Hengstenberg et al. (in press)).

nalling approaching objects or obstacles in the
heading direction. Motion in small parts of the
visual field which result from movements of small
objects are detected by a third class of cells; it
is used for the tracking of other flies (Egelhaaf &
Borst, 1993). Position and extension of the recep-
tive fields of these neurons in the visual system of
the fly and also the specialization to certain mo-
tion patterns are essential for the course control of

the fly.

3 The autonomous agents

In order to build an artificial agent that navigates
using strategies as they are known in flies (see sec-
tion 2), the idea is to evolve the matched filters
and the sensorimotor coupling for certain behav-
ioral tasks. In flies, each filter consists of a field
of motion detectors with specialized orientations
(Fig. 1). In this work we start with an agent that
has only four visual sensors and two motors. Two
sensors form a movement detector and the outputs
of the two detectors are coupled via transmission
weights to the two motors. The autonomous agent
gathers information about its egomotion and the
environment by evaluating the motion signals from
the detectors. The orientations of the visual sen-
sors determine which part of the motion field is
used to navigate through the unknown environ-
ment.

They are thus a particularly simple case of
matched filters for the course control. Genetic al-

Tangential cell VS8, responding maximal to rotations around the azis with azimuth 45° and eleva-
The measured flow vectors are indicated by a circle, the vectors in between result from interpolation
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Figure 2: The agent has four sensors, the orientations
of which is given by the angles azimuth ® and inclina-
tion ©. The outputs of these detectors dr and dgr are
connected to the motors M and Mg via the sensori-
motor coupling.

gorithms are used to evolve the sensor orientations
and the coupling weights between sensors and mo-
tors for different types of behaviors.

The input to each sensor is computed by “ray trac-
ing” (Foley et al., 1987) where the intensities of
single points — at the intersection of the line of
sight with the visible surfaces — are averaged over
a given number of sampling points. The orien-
tations of the optical axes of the two sensors on
one hemisphere of the visual field are evolved by
the genetic algorithm. The other pair of sensors
is positioned bilaterally symmetric on the other

hemisphere. The time constants of the lowpass



filters of the correlation motion detector are fixed
(tLp1 = 2.0s, 7 pa = 5.0s). The matrix

W = < wrr WLR ) (1)
WRL WRR

contains the transmission weights for the sensori-
motor coupling of the outputs dy and dg of the
two motion—detectors with the two motors My,
and Mp. The velocity of the system is propor-
tional to the force of the two motors, each motor
producing a basic velocity vy which is modulated
by the visual information:

(B)nw() o

The velocity V in the heading direction and the
anglular velocity are:
1 . VL — VR

V= §(vL + vR) and p= — - (3)
where ¢ = 10cm is the distance between the
wheels. The system has two degrees of freedom:
rotation around the vertical axis and translation in
the heading direction. In the simulations the nu-
merical accuracy is set to 10~ simulating a small
amount of noise.

3.1 Agent of type 1:

Here the angular aperture of each sensor is 10° az-
imuth x 10° elevation. We average the intensity
of 10 x 10 sampling points to compute the visual
input to each sensor. The basic velocity of the two
motors is constant at vg = 10cm/s.

The agent moves through a tunnel which has a si-
nusoidal pattern (A = 1m) mapped onto the walls,
the floor and the ceiling. The width and height of
the tunnel are 6m, the length is 100m. The eleva-
tion of the agent in the tunnel is kept constant at
3m. During evolution the system has to avoid two
walls in the tunnel and maintain a safe distance of
15cm while navigating around the obstacles. The
two walls are at = 15.0m, 0.0m < y < 3.0m and
z = 35.0m, —3.0m < y < 0.0m.

3.2 Agent of type 2:

For the agent of type 2 bilateral symmetry is as-
sumed for the orientation of the motion detectors
— as for agent of type 1 — and in addition for the
transmission weights from the detector outputs to
the motors. The angular aperture — being the
same for all four sensors — is evolved. In order
to keep the simulation time small, horizontal line
sensors are used. The number of sampling points
varies with the angular aperture of the sensors, the

sampling base is kept constant at 1°. In addition
the constant basic velocity vg of the two motors is
a parameter optimized during evolution.

We run two blocks of simulations: in block 1 a si-
nusoidal pattern with the wavelength A = 2m is
mapped onto the walls, ceiling and floor. Here the
tunnel is 110m long and closed by a wall at both
ends, the width and height is 4m. Four additional
walls are placed at z = 9m, 50m;0.0m < y < 2.0m
and z = 19m, 80m; —2.0m < y < 0.0m. The agent
maintains a constant height of 2m.

In block 2 a random—dot pattern is used and walls
are placed at z = 9m, 50m;0.0m < y < 2.0m and
z = 25m,80m; —2.0m < y < 0.0m. The tunnel is
open at the end. The agents have to maintain a
save distance of 10 cm from the walls.

4 Simulated evolution

4.1 The genetic algorithm

In a simulated evolution — using genetic algorithms
— the autonomous agents adapt to the environ-
ment by generating an obstacle avoidance behav-
ior. The orientation of two sensors and the trans-
mission weights for the sensorimotor coupling are
evolved. These parameters are encoded as a Gray-
coded bitstring. Starting with a random initial
population of bitstrings, each new generation is
obtained by the following procedure:

1. Raw fitnesses are scaled linearly such that av-
erage fitness f is unchanged and maximal fit-
ness is scaled to nf for some constant n > 1

(Goldberg, 1989). The coefficient n is set to:
n = min{n., no} 4)

where n. 1s a constant value and

ng = M (5)
f - fmin

For the case n. > ng, scaling causes negative
fitness values if n. 1s used. Therefore ng 1s
applied instead. Here the scaling still leaves
the average fitness f unchanged but leads to
a scaled fuin = 0.0 — preventing negative fit-
ness values — and a scaled fiax = nof.

2. The number of offspring of each individual,
Nj;, is obtained by a random procedure such
that the expectation of N; is proportional
to the scaled fitness (“roulette-wheel” selec-
tion). In terms of the raw fitness, we have

L N-1 fi—f
Fi)=—(1+(n—-1)———), (6
() = 1+ (-nL—). 0)
where N is the total population size. The

factor



(N — 1)/N is needed since only (N — 1) in-
dividuals of the new generation are obtained
by this scheme.

3. The selected parents exchange their genetic
material by one—point crossover. In addition
point-mutation is used to introduce new ge-
netic material into the population.

4. The individual with maximal fitness is trans-
ferred to the next generation automatically
(“elitist—strategy”; Davis, 1991).

| C44My  CyyMy CoMy  CoMyy
e 0.7 0.7 - -
Pm 0.01 - 0.01 0.1

Table 1: Probabilities for mutation p,, and crossover
Pec tuned by hand.

4.2 Probabilities for mutation and
crossover

The optimal parameter settings for the mutation
and crossover probabilities are not yet fully under-
stood. The genetic algorithms of Holland (1975)
use crossover as the primary operator with muta-
tion being of secondary importance. In general,
mutation has a high exploratory power indepen-
dent of the diversity of the population (Spears,
1993). The power of crossover lies in the construc-
tion and preservation of individuals of high fitness.
The exploratory power of crossover is limited as
the population loses diversity and the individu-
als become more and more similar. According to
Spears (1993) the choice of the genetic operators
depends on whether the whole population should
gain a high fitness — here using crossover is of ad-
vantage — or one optimal individual is to be found,
in which case use of mutation is sufficient to obtain
comparable and better results. In order to test the
optimization behavior of the genetic algorithm for
different crossover and mutation probabilities (p.
and pp, ), we selected four conditions (see Table 1)
in our first block of simulations.

43 GA1

For the agent of type 1 the angles azimuth ® and
inclination © — describing the sensor orientations
— are encoded with 4 bits each, in the range from
5° to 175° with a stepwidth of 11.3°. The weights
of the sensorimotor coupling can take the eight
real values [£0.5,40.1,40.05,40.01]; they are en-
coded with 3 bits each. The length of the resulting

bitstring is thus 4 x 4bits + 4 x 3bits = 28bits.
The raw fitness f is set to zero if the agent bumps
into a wall within 400 time steps. Individuals
which survive the 400 time steps in the tunnel
without colliding with the walls, receive the fit-
ness:

2(t = 400)

f Pmax (7)
Here z is the component of the position on the cen-
ter axis. Additionally, in order to keep the change
in rotations in a limited range, the maximal angu-
lar velocity generated on the path ¢p.x is used. A

population size of 100 and n, = 1.2 are used.

44 GA 2

The angles ® and © of the agents of type 2 are
again encoded with 4 bits each. The angular aper-
ture is encoded with 3 bits in the range of 10.0° to
27.5° with a stepwidth of 2.5°. The transmission
weights of the sensorimotor coupling can take real
values in the range of [-0.38,0.38] and the basic
velocity ranges from 5cm/s to 10cm/s in steps of
0.2 cm/s. The transmission weights and vg are en-
coded with 8 bits each. The length of the resulting
bitstring is thus 4 x 4bits + 1 x 3bits 4 3 x 8bits =
43bits.

The crossover and mutation probabilities are set
according to the condition C44 My . Individuals
which bump into a wall do not receive zero fitness
as in GA 1. This is in order to support individuals
that collide with a wall at a later time step. Col-
lision here is punished by dividing the fitness they
received at the point of collision by a factor of 2.
A populationsize of 50 and n. = 2.0 are used.

4.4.1 Simulation block 1

The fitness function for the agent of type 2 in the
simulation of block 1 is:

f=ksztpae (8)

with & = 1/2 if the agent bumps into a wall and
k = 1if not. s is the length of the path the agent
covers, and &4, the maximum value on the center
axis of the tunnel the agent reached.

4.4.2 Simulation block 2

Here the fitness function 1is:

F=k> |Azi|2ma 9)

where |Az;| is the distance on the center axis the
agent covers in 10 steps. |Az;| is computed every
10 steps and z,,4; is again the maximum value on
the center axis of the tunnel the agent reached.
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signals modulating the motor output. Fven with different starting positions the agent travels through the tunnel in
98% of the trials successfully. Only in the extreme starting position y = 1.0m the agent bumps into the walls.
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Figure 5: Distribution of the orientations of the sen-
sors for the best individual of each trial. The sensors
forming a detector are connected by a line. The inten-
sity of the sensors code the frequency of their occur-
rence, with darker greyvalues being more frequently.

5 Simulations

5.1 Agent of type 1

In Fig. 3 the fitness Finax of the best individual
and the average fitness F' of the population for
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intersection of the sensor rays with the walls of the tunnel. Noise of £10% is added to the input signals of the
visual sensors and to the motor output. Sinusoidal pattern is mapped onto the walls ceiling and floor (A = 2).

every generation, both averaged over 8 trials are
shown. As a high proportion of the individuals
bump into the wall and get zero fitness, the av-
erage fitness is much smaller than the maximum
fitness for all four conditions. The maximal fit-
ness after 100 generations averaged over 8 trials
(see Fig. 3) is not significantly different between
the different mutation and crossover probabilities.
The average fitness F' of the population is highest
using only crossover followed by the C'y4 M4 con-
dition. The best individuals are obtained with the
C44+ My condition.

One might expect that searching randomly for the
optimal solution is faster than applying a genetic
algorithm to this problem. Evaluating the fitness
of 10,000 randomly chosen individuals only 0.68%
travel through the tunnel without colliding with
walls. The maximal fitness that is found with this
technique is F=1310. This indicates that every
150th individual has a fairly well fitness when us-
ing the random search technique. With genetic
algorithms a much higher fitness up to F=9331 is
found.

The orientations of the sensors show a high vari-
ability (Fig. 5). Most of the agents evolve one
sensor of each detector oriented in the heading di-
rection, thus perceiving obstacles and the other

sensor oriented towards the floor or ceiling of the
tunnel or opposite to the heading direction. As
long as there is no obstacle, correlating the two
lowpass filtered sensor inputs leads to a symmet-
ric detector output. With an obstacle detected in
the front sensors an avoiding behavior is executed.
The simulations are carried out with parameters
for the mutation and crossover probabilities as de-
scribed in Table 1. The motion detectors of the
agent in Fig. 6 are oriented diagonal on the view
sphere. One of the two sensors forming a detector
on one hemisphere is oriented in the heading direc-
tion, the other backwards with an angular distance
of 170°. The temporal change in the rotation an-
gle here is ¢ = 0.2(dr + dg)/c deg/s. The velocity
in the heading direction is V' = vg. Without obsta-
cles the detector outputs are of equal magnitude,
and due to the symmetric sensorimotor coupling
the agent follows a straight line. A difference in
the output of the movement detectors occurs if (i)
the agent is not aligned to the center axis of the
tunnel which leads to small turning reactions, (ii)
obstacles appear in the field of view of the front
sensor or (iii) the back sensor, with (ii) and (iii)
causing large turning reactions in opposite direc-
tions. These three parts of the behavior enable
the agent to avoid obstacles, starting with a large



turning reaction if the obstacle appears in the front
sensor (ii) and aligning itself back to the center line
of the tunnel (i) which is supported by (iii), when
the obstacle appears in the back sensor.

This architecture enables the system to general-
ize the behavior to unknown environments. Here
instead of two, four walls with different distances
are used. They are placed at « = 15.0m, 55.0m,
0.0m < y < 3.0m and z = 40.0m, 85.0m, —3.0m <
y < 0.0m. In order to test how robust this agent
is, noise of +£10% was added to the visual input
and to the signals modulating the motor output.
Under this condition even with different starting
positions (y = —1.0,—0.5,0.0,0.5cm) the obsta-
cles are avoided in 93% of the trials successfully
(Fig. 6). Only in the extreme starting position
y = 1.0cm the agent bumps into the walls.

0

90

180

180 90 0

0.051 0.051
0.372 0.372

Figure 8: The orientations of the two sensors forming
a motion detector (the other two sensors are oriented
symmetrically on the other hemisphere) and sensori-
motor coupling for agent of type 2 resulting from the
semulation of block 1.

5.2 Agent of type 2

5.2.1 Simulation block 1

The agent of type 2 evolved in the simulation of
block 1 (see Fig. 8) with the optical axes of its sen-
sor orientations at 27.5° and 38.8° azimuth and
118.3° and 129.7° inclination. The evolved an-
gular aperture of the sensors is with 27.5° much
larger than for agent 1. The basic velocity of
the motors is vo = 6.2cm/s. The resulting an-
gluar velocity is ¢ = —0.43(dr + dgr)/c deg/s
and the velocity in the heading direction V =
vo+0.16(dr —dR) cm/s. With this architecture the
sensors of an agent moving on the center axis re-
ceive visual input mainly from the floor and from
a small part of the side walls. If the agent ap-
proaches an obstacle, response is smaller for the

noise added to
Condition | sensor input motor output
sl +1% -
sb +5% -
s10 +10% -
ml - +1%
mb - +5%
ml0 - +10%
slml +1% +1%
sbmb +5% +5%
s10m10 +10% +10%

Table 2: Conditions for noise testing.

motion detector nearer to the obstacle. As the pre-
ferred direction of the motion detectors is almost
vertical and the sinusoidal pattern is oriented ver-
tically the walls and horizontally on the floor, the
change of intensity in the sensors and thus the per-
ceived motion decreases as the agent approaches
an obstacle. The transmission weights for the con-
tralateral connections are stronger than for the ip-
silateral connections, hence the reduction of the
detector output has a stronger effect on the veloc-
ity of the motor on the contralateral side and the
agent turns away from the obstacle. The agents
are tested in two different tunnels. Tunnel 1 is the
original environment the agent evolved in, tunnel 2
differs in the number and position of the obstacles.
Here we use 8 walls which are placed according to
Fig. 7 (bottom). The test—trials are run with ad-
ditional noise on sensor input and motor output.
Table 2 describes the different noise conditions.
The agent has to survive 5000 time steps in the
tunnel without bumping into a wall in order to
show a successful behavior. With no additional
noise the agent travels both tunnels in 100% of
the time successfully. Adding more and more noise
leads to a gradual reduction of performance. For
tunnel 1 with £1% noise, up to 70%—68% of the
trials are successful, with 5% 5853 % and with
a high noise of 10% still 46%—-38% do not bump
into a wall during 5000 time steps. For the tun-
nel 2 the performance is reduced to 44%-31% for
the different conditions. In Fig. 7 examples of a
successful travel through the tunnel 1 and tunnel 2
with 10% noise on sensor input and motor output
are shown.

5.2.2 Simulation block 2

Here the agent evolves two sensors with the
same inclination and overlapping receptive fields
(Fig. 10). The optical axes are at 28° and 17°
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Figure 9: Percentage of trials the individual of Fig. 8
travels tunnel 1 and tunnel 2 successfully. Noise ac-
cording to table 2 is added.

azimuth and 106° inclination. The angular aper-
ture of one sensor is 15°. Covering the region be-
tween 9.5° and 35.5°. The basic velocity evolved
to vg = 6.4cm/s resulting in an angular velocity
¢ = —0.19(dr + dgr)/c deg/s and the velocity in
the heading direction V' = v940.05(d —dRr) cm/s.
Here the preferred direction of the motion detec-
tors is horizontal and thus with a vertical sinu-
soidal pattern on the walls the response of the mo-
tion detector is larger on the side where the obsta-
cle is detected. Again the transmission weights for
the contralateral connections are stronger than for
the ipsilateral. Here the detected motion has op-
posite sign compared to the agent of block 1 and
thus the velocity of the motor on the side con-
tralateral to the obstacle is reduced and a turning
movement away from the obstacle results. Test—
trials with additional noise do not show a stable

behavior. This might be due to the fact that a
rotation of the agent caused by noise has a much
higher influence on a motion detector system that
has a preferred horizontal direction than on on a
detector system oriented vertically, as rotations
around the vertical axis cause horizontal image
flow but leave vertical image flow unchanged. This
has to be investigated in further experiments.

6 Summary and future work

Autonomous agents adapted to the tasks of ob-
stacle avoidance behavior during a simulated evo-
lution using genetic algorithms. The agents de-
velop the viewing direction of their sensors and
the sensorimotor—coupling in a closed loop and
are thus able to compensate for deviations caused
by external disturbances and to avoid obstacles
in different environments. The influence of the
crossover and mutation probabilities on the out-
come of the simulations, concerning the maximum
fitness and the convergence of the population was
tested. In this experimental setup the average fit-
ness of the population is highest if only crossover
is used. Comparing the average maximal fitnesses
obtained after 100 generations the use of crossover
and/or mutation leads to comparable optimization
results.

In future work we will evolve agents navigating in
more complex environments. We plan to increase
the number of movement detectors and use an ar-
ray of sensors forming a 360° field of view. The
agent will evaluate the motion detected in this field
of view with filters that respond maximal to cer-
tain motion patterns — e.g. rotation around the
vertical axis and translation in the direction of
heading. Those filters are derived from the tan-



gential neurons (see sect. 2) found in the visual
system of the fly’s brain. In addition the agents
will receive more degrees of freedom making 3D
flight manoeuvers possible.

7 References

[1] V. Braitenberg. Vehicles — experiments in
synthetic psychology. The MIT Press, Cam-
bridge, MA, 1984.

R. A. Brooks. A robust layered control
system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2: 14-23,
1986.

L. Davis (ed.). Handbook of genetic algo-
rithms. Van Nostrand Reinhold, New York,
1991.

M. Egelhaaf, A. Borst. Motion computation
and visual orientation in flies. Comparative
Biochemical Physiology, 104 A/4: 659-673,
1993.

A. M. Flynn, R. A. Brooks. Battling Reality.
MIT Al Memo 1148, 1989.

J. D. Foley, A. van Dam, S. K. Feiner,
J. F. Hughes. Computer Graphics — prin-
ciples and practice, Addison-Wesley, 1987.

S. Forrest. Genetic Algorithms: Principles
of natural selection applied to computation.

Science, 261: 872-878, 1993.

N. Franceschini,
J. M. Pichon, C. Blanes. From insect vision
to robot vision. Philosophical Transactions
of the Royal Society of London B 337: 283—
294, 1992.

K. G. Gotz. Optomotorische Untersuchung
des visuellen Systems einiger Augenmutanten
der Fruchtfliege Drosophila. Kybernetik, 2:
77-92, 1964.

D. E. Goldberg.  Genetic algorithms in
search, optimization, and machine learning.

Addison Wesley, Reading, Mass, 1989.

I. Harvey, P. Husbands, D. Cliff. Seeing the
light: Artificial evolution, real vision. Proc-
cedingsof the 3rd International Conference on
Simulation of Adaptive Behavior, 392-401,
1994.

B. Hassenstein, W. Reichardt. Systemthe-
oretische Analyse der Zeit-, Reihenfolgen-
und Vorzeichenauswertung bei der Bewe-
gungsperzeption des Riusselkafers Chloro-
phanus. Zeitschrift fur Naturforschung, 11b:
513-524, 1956.

K. Hausen. Motion sensitive interneurons in
the optomotor system of the fly. I. The hor-
izontal cells: structure and signal. Biological

Cybernetics. 45: 143-156, 1982.

R. Hengstenberg, H. Krapp, B. Hengsten-
berg. Visual sensation of self-motions in the
blowfly Calliphora. 1In: Biocybernetics of

[2]

10

Vision: Integrative and Cognitive Processes
(ed.) C. Taddei-Ferretti (in press).

[15] J. H. Holland. Adaptation in natural and ar-
tificial systems. The University of Michigan
Press, Ann Arbor, 1975.

[16] H. C. Longuet—Higgins, K. Prazdny. The in-
terpretation of a moving retinal image. Pro-
ceedings of the Royal Society of London B
208: 385-397, 1980.

[17] H. Miihlenbein. Evolution in time and space
— the parallel genetic algorithm. Foundations
of Genetic Algorithms, Morgan Kaufmann,
San Mateo, CA, 1: 316 -337, 1991.

[18] W. Reichardt. Autocorrelation, a principle
for the evaluation of sensory information by
the central nervous system. In Sensory Com-
munication: 303-317, ed: W. A. Rosenblith,
The MIT Press and John Wiley and Sons,
New York, 1961.

[19] W. Reichardt. Functional characterization of
neural interactions through an analysis of be-
havior. In The neurosciences, fourth study
program: 81-104, ed: F. O. Schmitt, The
MIT Press, London, 1979.

[20] W. M. Spears. Crossover or Mutation?
Foundations of Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 2:221-238, 1993.

[21] N. Tinbergen. Instinktlehre — vergleichende
Erforschung angeborenen Verhaltens. Parey
Verlag, Berlin, Hamburg, 1953.

[22] H. Wagner. Flight performance and visual
control of flight of the freeflying housfly
(Musca domestica L.), TII. Interactions be-
tween angular movement induced by wide—
and smallfield stimuli. Philosophical Trans-
actions of the Royal Society of London, B
312: 581-595, 1986.

[23] C. Wehrhahn, T. Poggio, H. Biilthoff. Track-
ing and chasing in houseflies (Musca). Bio-

logical Cybernetics, 45: 123-130, 1982.



