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Abstract

Images formed by a human face change with viewpoint. A new technique 1s described for
synthesizing images of faces from new viewpoints, when only a single 2D 1image 1s available.
A novel 2D image of a face can be computed without knowledge about the 3D structure
of the head. The technique draws on a single generic 3D model of a human head and on
prior knowledge of faces based on example images of other faces seen in different poses. The
example images are used to “learn” a pose-invariant shape and texture description of a new
face. The 3D model is used to solve the correspondence problem between images showing
faces in different poses. Examples of synthetic “rotations” over 24° based on a training set
of 100 faces are shown.
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1 Introduction

Given only a driver’s license photograph of a
person’s face, can one infer how the face might
look like from a different viewpoint? The three-
dimensional structure of an object determines how
the image of the object changes with a change in
viewpoint. With viewpoint changes, some pre-
viously visible regions of the object become oc-
cluded, while other previously invisible regions be-
come visible. Additionally, the arrangement or
configuration of object regions that are visible in
both views may change. Accordingly, to synthe-
size a novel view of an object, two problems must
be addressed and resolved. First, the visible re-
gions that the new view shares with the previous
view must be redrawn at their new positions. Sec-
ond, regions not previously visible from the view
of the example image must be generated or syn-
thesized. It is obvious that this latter problem is
unsolvable without prior assumptions. For human
faces, which share a common structure, such prior
knowledge can be obtained through extensive ex-
perience with other faces.

The most direct and general solution for the syn-
thesis of novel views of a face from a single example
image 1s the recovery the three-dimensional struc-
ture of the face. This three-dimensional model
can be rotated artificially and would give the cor-
rect image for the all points visible in the example
image (i.e. the one from which the model was
obtained). However, without additional assump-
tions, the minimal number of images necessary to
reconstruct a face using localized features is three
(Huang and Lee, 1989), and even the assumption
that a face is bilaterally symmetric reduces this
number only to two (Rothwell et al., 1993; Vet-
ter and Poggio, 1994). While shape from shad-
ing algorithms have been applied in previous work
to recover the surface structure of a face (Horn,
1987), the inhomogeneous reflectance properties
of faces make surface integration over the whole
face imprecise and questionable. Additionally, the
fact that the face regions visible from a single im-
age are insufficient to obtain the three-dimensional
structure makes clear, that the task of synthesiz-
ing new views to a given single image of a face,
cannot be solved without prior assumptions about
the structure and appearance of faces in general.
Models that have been proposed previously to
generalize faces from images can be subdivided
into two groups: those drawing on the three-
dimensional head structure and those consider-
ing only view- or image-dependent face models.
In general, the knowledge about faces, which has

been incorporated into flexible three-dimensional
head models, consists of hand-constructed repre-
sentations of the physical properties of the muscles
and the skin of a face (Terzopoulos and Waters,
1993; Thalmann and Thalmann, 1995). To adjust
such a model to a particular face, two or more
images were used (Akimoto et al., 1993; Aizawa
et al., 1989). For present purposes, it is difficult
to assess the usefulness of this approach, since gen-
eralization performance to new views from a single
image only has never been reported.

In recent years, two-dimensional image-based face
models have been applied for the synthesis of rigid
and nonrigid face transitions (Craw and Cameron,
1991; Poggio and Brunelli, 1992; Beymer et al.,
1993; Cootes et al., 1995). These models ex-
ploit prior knowledge from example images of
prototypical faces and work by building flexible
image-based representations (active shape models)
of known objects by a linear combination of la-
beled examples. These representations are ap-
plied for the task of image search and recogni-
tion (Cootes et al., 1995) or synthesis (Craw and
Cameron, 1991). The underlying coding of an
image of a new object or face is based on linear
combinations of the two-dimensional shape of ex-
amples of prototypical images. A similar method
has been used to synthesize new images of a face
with a different expression or a changed viewpoint
(Beymer et al., 1993) making use of only a sin-
gle given image. The power of this technique is
that it uses an automated labeling algorithm that
computes the correspondence between every pixel
in the two images, rather than for only a hand-
selected subset of feature points. The same tech-
nique has been applied recently to the problem of
face recognition across viewpoint change with the
aim of generating additional new views given an
example face image (Beymer and Poggio, 1995).
In spite of the power of this technique, its most
serious limitation is its reliance on the solution of
the correspondence problem across view changes.
Over large changes in viewpoint, this is still highly
problematic due to the frequency with which oc-
clusions and occluding contours occur. To over-
come this difficulty in the present work, we draw
on the concept of linear object classes, which we
have introduced recently in the context of object
representations (Vetter and Poggio, 1996). The
application of the linear object class approach to
this problem mediates the requirement of image
correspondence across large view changes for suc-
cess in novel view synthesis.



Figure 1: Two examples of face images (top row) mapped onto a reference face (center) using pizelwise cor-
respondence established through an optical flow algorithm are shown (lower row). This separates the 2D-shape
information captured in the correspondence field from the texture information captured in the texture mapped onto

the reference face (lower row).

Overview of the Approach

In the present paper, the linear object class ap-
proach is improved and combined with a single
three-dimensional model of a human head for gen-
erating new views of a face. By using these tech-
niques in tandem, the limitations inherent in each
approach (used alone) can be overcome. Specif-
ically, the present technique is based on the lin-
ear object class method described in (Vetter and
Poggio, 1996), but is more powerful because the
addition of the 3D model allows a much better
utilization of the example images. The 3D-model
also allows the transfer of features particular to an
individual face from the given example view into
new synthetic views. This latter point is an impor-
tant addition to the linear class approach, because
it now allows for individual identifying features
like moles and blemishes that are present in “non-
standard” locations on a given individual face, to
be transferred onto synthesized novel views of the
face. This is true even when these blemishes, etc.,
are unrepresented in the “general experience” that
the linear class model has acquired from example
faces. On the other hand, the primary limitation
of a single 3D head model is the well-known diffi-
culty of representing the variability of head shapes
in general, a problem that the linear class model,
with its exemplar-based knowledge of faces will al-
low us to solve.

Another way of looking at the combination of
these approaches returns us to the two-fold prob-
lem we described at the beginning of this paper.
The synthesis of novel views from a single exem-
plar image requires the ability to redraw the re-
gions shared by the two views, and also the abil-
ity to generate the regions of the novel face that
are invisible in the exemplar view. The 3D head
model allows us to solve the former, and linear
object class approach the allows us to solve the
latter.
Linear Object Classes

A linear object class is defined as a 3D object class
for which the 3D shape can be represented as a lin-
ear combination of a sufficiently small number of
prototypical objects. Objects that meet this crite-
rion have the following important property. New
orthographic views according to uniform affine 3D
transformation can be generated for any object
of the class. Specifically, rigid transformations in
3D, can be generated exactly if the corresponding
transformed views are known for the set of proto-
types. Thus, if the training set consists of frontal
and rotated views of a set of prototype faces, any
rotated view of a new face can be generated from a
single frontal view — provided that the linear class
assumption holds.

The key to this approach i1s a representation of
an object or face view in terms of a shape vec-



tor and a texture vector (see also (Cootes et al.,
1995; Jones and Poggio, 1995; Beymer and Pog-
gio, 1995)). The separation of 2D-shape and tex-
ture information in images of human faces requires
correspondence to be established for all feature
points. At its extreme, correspondence must be
established for every pixel, between the given face
image and a reference image. As noted previ-
ously, while this is an extremely difficult problem
when large view changes are involved, the linear
object class assumption requires correspondence
only within a given viewpoint — specifically, the
correspondence between a single view of an in-
dividual face and a single reference face imaged
from the same view. Separately for each orien-
tation, all example face images have to be set in
correspondence to the reference face in the same
pose, correspondence between different poses is
not needed. This can be done off-line manually
(Craw and Cameron, 1991; Cootes et al., 1995)
or automatically (Beymer et al., 1993; Jones and
Poggio, 1995; Beymer and Poggio, 1995; Vetter
and Poggio, 1996). Once the correspondence prob-
lem within views is solved, the resultant data can
be separated into a shape and texture vector. The
shape vector codes the 2D-shape of a face image
as deformation or correspondence field to a refer-
ence face (Beymer et al., 1993; Jones and Poggio,
1995; Beymer and Poggio, 1995; Vetter and Pog-
gio, 1996), which later also serves as the origin of
a linear vector space. Likewise the texture of the
exemplar face is coded in a vector of image inten-
sities being mapped onto corresponding positions
in the reference face image (see also figure 1 lower
row).

The Three-dimensional Head Model

The linear class approach works well for features
shared by all faces (e.g. eyebrows, nose, mouth
or the ears). But, it has limited representational
possibilities for features particular to a individual
face (e.g. a mole on the cheek). For this reason, a
single 3D model of a human head is added to the
linear class approach. Face textures mapped onto
the 3D model can be transformed into any image
showing the model in a new pose. The final “ro-
tated” version of a given face image (i.e. including
moles, etc.) can be generated by applying to this
new image of the 3D model the shape transfor-
mation given through the linear object class ap-
proach. This is described in more detail shortly.

The paper is organized as follows. First, the al-
gorithm for generating new images of a face from
a single example image is described. The tech-
nical details of the implementation used to real-

ize the algorithm on grey level images of human
faces are described in the Appendiz. Under Re-
sults a comparison of different implementations
of the generalization algorithm are shown. Two
variations of the combined approach are compared
with a method based purely on the linear object
class as described previously (Vetter and Poggio,
1996). First, the linear class approach is applied
to the parts of a face separately. The individual
parts in the two reference face images were sepa-
rated using the 3D-model. Second, the 3D-model
was used additionally to establish pixelwise corre-
spondence between the two reference faces images
in the two different orientations. This correspon-
dence field allows texture mapping across the view
point change. Finally, the main features and pos-
sible future extensions of the technique are dis-
cussed.

2  Approach and Algorithm

In this section an algorithm is developed that al-
lows for the synthesis of novel views of a face from
from a single example view of the face. For brevity,
in the present paper we describe the application of
the algorithm to the synthesis of a “frontal” view
(i.e., defined in this paper as the novel view) from
an example “rotated” view (i.e., defined in this
paper as the view 24° from frontal). Tt should be
noted, however, that the algorithm is not at all
restricted to a particular orientation of faces.

The algorithm can be subdivided into three
parts (for an overview see figure 3).

e First, the texture and shape information in
an image of a face are separated.

e Second, two separate modules, one for tex-
ture and one for shape, compute the tex-
ture and shape representations of a given “ro-
tated” view of a face (in terms of the ap-
propriate view of the reference face). These
modules are then used to compute the shape
and texture estimates for the new “frontal”
view of that face.

e Finally the new texture and shape for a
“frontal” view are combined and warped to
the “frontal” image of the face.

Separation of texture and shape in images of faces:
The central part of the approach is a representa-
tion of face images that consists of a separate tex-
ture vector and 2D-shape vector, each one with
components referring to the same feature points
— in this case pixels. Assuming pixelwise corre-
spondence to a reference face in the same pose,



a given example image can be represented as fol-
lows: 1ts 2D-shape will be coded as the deforma-
tion field of n selected feature points —in the limit
of each pixel — to the reference image. So the
shape of a face image is represented by a vector
s = (z1,y1, %9, oo, T, Yn) T € N7, that is by the
x,y distance or displacement of each feature with
respect to the corresponding feature in the refer-
ence face. The texture is coded as a difference map
between the image intensities of the exemplar face
and its corresponding intensities in the reference
face. Thus, the mapping is defined by the corre-
spondence field. Such a normalized texture can
be written as a vector T = (i, ....i,)T € R, that
contains the image intensity differences i of the
n pixels of the image. All images of the training
set are mapped onto the reference face of the cor-
responding orientation. This is done separately
for each rotated orientation. For real images of
faces the pixelwise correspondences necessary for
this mappings where computed automatically us-
ing a gradient based optical technique which was
already used successfully previously on face images
(Beymer et al., 1993; Vetter and Poggio, 1996).
The technical details for this technique can be
found in appendix B.

Linear shape model of faces: The shape model of
human faces used in the algorithm is based on the
linear object class idea (the necessary and suffi-
cient conditions are given in (Vetter and Poggio,
1996) ) and is built on a training set of pairs of
images of human faces. From each pair of im-
ages, each consisting of a “rotated” and a “frontal”
view of a face, the 2D-shape vectors s for the
“rotated” shape and s for the “frontal”shape are
computed. Consider the three-dimensional shape
of a human head defined in terms of pointwise
features. The 3D-shape of the head can be repre-
sented by a vector S = (x1,y1, 21, %2, oo, Yn, Zn) L,
that contains the z, y, z-coordinates of its n feature
points. Assume that S € R is the linear com-
bination of ¢ 3D shapes S; of other heads, such
that: S = 3"7 | 3;S;. It is quite obvious that for
any linear transformation R (e.g. rotation in 3D)
with 87 = RS, it follows that S"™ = ?:1 B S5
Thus, if a 3D head shape can be represented as
the weighted sum of the shapes of other heads,
its rotated shape is a linear combination of the
rotated shapes of the other heads with the same
weights ;.

To apply this to the 2D face shapes computed
from images, we have to consider the following.
A projection P from 3D to 2D with s = PS”

under which the minimal number ¢ of shape vec-
tors necessary to represent S” = >°7_, 3,87 and
s" = > | Bis’ does not change, it allows the
correct evaluation of the coefficients §; from the
images. Or in other words, the dimension of a
three-dimensional linear shape class is not allowed
to change under a projection P. Assuming such a
projection, and that s”, a 2D shape of a given “ro-
tated” view, can be represented by the “rotated”
shapes of the example set s} as

q
5" = Zﬁisga (1)
i=1

then the “frontal” 2D-shape s/ to a given s” can be
computed without knowing S using 3; of equation
(1) and the other s{ given through the images in
the training set with the following equation:

q
sf = Zﬁls{ (2)
i=1

In other words, a new 2D face shape can be
computed without knowing its three-dimensional
structure. It should be noted that no knowledge of
correspondence between equation (1) and equation
(2) is necessary (rows in a linear equation system
can be exchanged freely).

Texture model of faces: In contrast to the shape
model, two different possibilities for generating a
“frontal” texture given a “rotated” texture are de-
scribed. The first method is again based on the lin-
ear object class approach and the second method
uses a single three-dimensional head model to map
the texture from the “rotated” texture onto the
“frontal” texture. The linear object class approach
for the texture vectors is equivalent to the method
described earlier for the 2D-shape vectors. It is
assumed that a “rotated” texture T" can be rep-
resented by the ¢ “rotated” textures T} computed
from the given example set as follows:

q
T =) o/T}. (3)
i=1

It is assumed further that the new texture TV
can be computed using a; of equation (3) and the

other T{ given through the “frontal” images in
the training set by the following equation:

q
T/ = o, (4)
i=1

The three-dimensional head model: Whereas the
linear texture approach is satisfactory for generat-
ing new “frontal” textures for regions not visible
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Figure 2: A three-dimensional model of a human head was used to render the reference images (column A) for
the linear shape and texture model. The model defines corresponding parts in the two images (column B) and
also establishes pizelwise correspondence between the two views (column C). Such a correspondence allows texture

mapping from one view (C1) to the other (C2).

in the “rotated” texture, 1t is not satisfactory for
the regions visible in both views. The linear tex-
ture approach is hardly able to capture or repre-
sent features which are particular to an individual
face (e.g. freckles, moles or any similar distinct
aspect of facial texture). Such features ask for a
direct mapping from the given “rotated” texture
onto the new “frontal” texture. However, this re-
quires pixelwise correspondence between the two
views (see (Beymer et al., 1993)) .
Since all textures are mapped onto the reference
face, it is sufficient to solve the correspondence
problem across the the viewpoint change for the
reference face only. A three-dimensional model
of an object intrinsically allows the exact compu-
tation of a correspondence field between images
of the object from different viewpoints, because
the three-dimensional coordinates of the whole ob-
ject are given, occlusions are not problematic and
hence the pixels visible in both images can be sep-
arated from the pixels which are only visible from
one viewpoint.

A single three-dimensional model of a human
head is incorporated into the algorithm for three
different processing steps.

1. The reference face images used for the for-
mation of the linear texture and 2D-shape
representations were rendered from the 3D-
model under ambient illumination conditions

(see figure 2A).

2. The 3D-model was manually divided into sep-
arate parts, the nose, the eye and mouth re-

gion and the rest of the model. Using the pro-
jections of these parts, the reference images
for different orientations could be segmented
into corresponding parts for which the linear
texture and 2D-shape representation could
be applied separately (see next paragraph on
“The shape and texture models applied to
parts” and also figure 2B).

3. The correspondence field across the two dif-
ferent orientations was computed for the two
reference face images based on the given 3D-
model. So the visible part of any texture,
mapped onto the reference face in one orien-
tation, can now be mapped onto the reference
face in the second orientation (see figure 2C

and 3).

To synthesize a complete texture map on the
“frontal” reference face for a new view, (i.e., the
regions invisible in the exemplar view are lacking),
the texture of the region visible in both views,
which has been obtained through direct texture
mapping across the viewpoint change, is merged
with the texture obtained through the linear class
approach (see figure 3). The blending technique
used to merge the regions is described in detail in
the appendix D.

The shape and texture models applied to parts.
The linear object class approach for 2D-shape and
texture, as proposed in (Vetter and Poggio, 1996),
can be improved through the 3D-model of the ref-
erence face. Since the linear object class approach
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Figure 3: Ouerview of the algorithm for synthesizing a new view from a single input image. After mapping the
input tmage onto a reference face in the same orientation, texture and 2D-shape can be processed separately. The
example based linear face model allows the computation of 2D-shape and texture of a new “frontal” view. Warping
the new tezture along the new deformation field (coding the shape) results in the new “frontal” views as output.
In the lower row on the right the result purely based on the linear class approach applied to parts is shown, in the
center the result with texture mapping from the “rotated” to the “frontal” view using a single generic 81 model of
a human head. On the bottom left the real frontal view of the face is shown.



did not assume correspondence between equations
(1) and (2) or (3) and (4), shape and texture vec-
tors had to be constructed for the complete face
as a whole. On the other hand, modeling parts
of a face (e.g. nose, mouth or eye region ) in in-
dependent separate linear classes is highly prefer-
able, because it allows a much better utilization of
the example image set and therefore gives a much
more detailed representation of a face. A full set of
coefficients for shape and texture representation is
evaluated separately for each part instead of just
one set for the entire face.

To apply equations (1 — 4) to individual parts of
a face, 1t is necessary to isolate the corresponding
it areas in the “rotated’ and “frontal” reference
images. Such a separation requires the correspon-
dence between the “rotated’ and “frontal” refer-
ence image or equivalent between equations (1)
and (2) of the shape representation and also be-
tween equations (3) and (4) for the texture. The
3D-model, however, used for generating the ref-
erence face images determines such a correspon-
dence immediately (for example see figure 2B) and
allows the separate application of the linear class
approach to parts. To generate the final shape and
texture vector for the whole face, this separation
adds only a few complexities to the computational
process . Shape and texture vectors obtained for
the different parts must be merged, which requires
the use of blending techniques to suppress visi-
ble border effects. The blending technique used
to merge the regions is described in detail in ap-
pendix D.

3 Results

The algorithm was tested on 100 human faces. For
each face, images were given in two orientations
(24° and 0°) with a resolution of 256-by-256 pixels
and 8 bit (more details are given in appendix A).
In a leave—one—out procedure, a new “frontal”
view of a face was synthesized to a given “rotated”
view (24°). In each case the remaining 99 pairs
of face images were used to build the linear 2D-
shape and texture model of faces. Figure 4 shows
the results for six faces for three different imple-
mentations of the algorithm (center rows A B,C).
The left column shows the test image given to the
algorithm. The true “frontal” view to each test
face from the data base is shown in the right col-
umn. The implementation used for generating the
images in column A was identical to the method
already described in (Vetter and Poggio, 1996),
the linear object class approach was applied to the
shape and texture vector as a whole, no partition-

ing of the reference face or texture mapping across
the viewpoints was applied. The method used in
B was identical to A, except that the linear ob-
ject class approach was applied separately to the
different parts of a face. The three-dimensional
head model was divided into four parts (see figure
2B) the eye, nose, mouth region, and the remain-
ing part of the face. To segment the two reference
images correctly, it was clearly necessary to ren-
der both of them from the same three-dimensional
model of a head. Based on this segmentation,
the texture and 2D-shape vectors for the differ-
ent parts were separated and for each part a sep-
arate linear texture and 2D-shape model was ap-
plied. The final image was rendered after merging
the new shape and texture vectors of the parts.
The images shown in column C are the result of a
combination of the technique described in B and
texture mapping across the viewpoint change. Af-
ter mapping a given “rotated” face image onto the
“rotated” reference image, this normalized texture
can be mapped onto the “frontal” reference face
since the correspondence between the two images
of the reference face is given through the three-
dimensional model. The part of the “frontal” tex-
ture not visible in the “rotated” view is substi-
tuted by the texture obtained by the linear texture
model as described under B.

The quality of the synthesized “frontal” views was
tested 1n a simple simulated recognition experi-
ment. For each synthetic image, the most similar
frontal face image in the data base of 130 faces was
computed. For the image comparison, two com-
mon similarity measures were used: a) the corre-
lation coefficient, also known as direction cosine;
and b) the FBuclidean distance (Ls). Both mea-
sures were applied to the images in pixel represen-
tation without further processing.

The recognition rate of the synthesized images
(type A,B,C) was 100 % correct, both similar-
ity measures independently evaluated the true
“frontal” view to a given “rotated” view of a face
as the most similar image. This result holds for all
three different methods applied for the image syn-
thesis. The similarity of the synthetic images to
the real face image improved by applying the lin-
ear object class approach separately to the parts
and improved again adding the correspondence be-
tween the two reference images to the method.
This improvement is indicated in figure 5 where
Lo-norm decreases where as the correlation coeffi-
cients increase for the different techniques.
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Column A shows the result based purely on the linear object class
approach. Adding a single 3D-head model, the linear object class approach can be applied separately to the nose

1
mouth and eye region in a face (column B). The same 3D-model allows the texture mapping across the viewpoint
change (column C). The frontal image of the real face is shown in the right column



Average Image Distance to Nearest Neighbor
|| Lo | Direction Cosines
Real Face Images 4780.3 0.9589
Synthetic Images Type A 3131.9 0.9811
Synthetic Images Type B 3039.3 0.9822
Synthetic Images Type C 2995.0 0.9827

Figure 5: Comparing the different image synthesis techniques using Direction Cosines and Lo-Norm as distance
measures. First, for all real frontal face images the average distance to its nearest neighbor (an image of a
different face) was computed over an images test set of 130 frontal face images. Second, for all synthetic images
(type A,B,C) the average value to its nearest neighbor was computed for both distance measures. For all synthetic
mages the real face image was found as nearest neighbor. Switching from technique A to B and from B to C the
average values of Direction Cosines increase whereas the values of the La-Norm decrease, indicating an improved

tmage simelarity.

A crucial test for the synthesis of images is a direct
comparison of real and synthetic images by hu-
man observers. In a two alternative forced choice
task 10 subjects were asked to decide which of the
two frontal face images matches a given rotated
image (24°) best. One image was the “real” face
the other a synthetic image generated applying the
linear class method to the parts of the faces sep-
arately (method B). The first five images of the
data set were used to familiarize the subjects with
the task, whereas the performance was evaluated
on the remaining 95 faces. Although there was no
time limit for a response and all three images were
shown simultaneously, there were only 6 faces clas-
sified correctly by all 10 subjects (see figure 6). In
all other cases the synthetic image was at least by
one subject classified as the true image and in one
case the synthetic image was found to match the
rotated image better as the real frontal image. In
average each observer was 74% correct whereas the
chance level was at 50%. The subjects responded
in average after 12 seconds.

4 Discussion

The results demonstrate clearly an improvement
in generating new synthetic images of a human
face from only a single given example view, over
techniques proposed previously (Beymer and Pog-
gio, 1995; Vetter and Poggio, 1996). Here a sin-
gle three-dimensional model of a human head was
added to the linear class approach. Using this
model the reference images could be segmented
into corresponding parts and additionally any tex-
ture on the reference image could be mapped pre-
cisely across the view point change. The infor-
mation used from the three-dimensional model is
equivalent to the addition of a single correspon-

dence field across the viewpoint change. This ad-
dition increased the similarity of the synthesized
image to the image of the real face for the shape
as well as for the texture. The improvement could
be demonstrated in automated image comparison
as well as in perceptual experiments with human
observers.

The results of the automated image comparison in-
dicate the importance of the proposed face model
for viewpoint independent face recognition sys-
tems. Here the synthetic rotated images were com-
pared with the real frontal face image. It should
also be noted, that coefficients, which result from
the decomposition of shape and texture into ex-
ample shapes and textures, already give us a rep-
resentation which is invariant under any 3D affine
transformation, supposing of course the linear face
model holds a good approximation of the target
face.

The difficulties experienced by human observers in
distinguishing between the synthetic images and
the real face images indicate, that a linear face
model of 99 faces segmented into parts gives a
good approximation of a new face, it also indicates
possible applications of this method in computer
graphics. Clearly, the linear model depends on the
given example set; so in order to represent faces
from a different race or a different age group, the
model would clearly need examples of these, an
effect well known in human perception (cf. e.g.

(O’Toole et al., 1994)).

The key step in the proposed technique is a dense
correspondence field between images of faces seen
from the same view point. The optical flow tech-
nique used for the examples shown worked well,
however, for images obtained under less controlled
conditions a more sophisticated method for find-
ing the correspondence might be necessary. New
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| Classification of Synthetic Versus Real Face Images |

Error 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70 — 0%
Number

of 6 17 22 24 19 6 1 0
Faces

Figure 6: For 95 different faces a rotated image (24°) and two frontal images were shown to human observers
simultaneously. They had to decide which of the frontal images was the synthesized image (type B) and which

one was the real image.

The table shows the error rate for 10 observers and the related number of faces. In

average each observer was correct in 74% of the trails (chance level was 50% ) and the average response time was

12 seconds.

correspondence techniques based on active shape
models (Cootes et al., 1995; Jones and Poggio,
1995) are more robust against local occlusions and
larger distortions when applied to a known object
class. There shape parameters are optimized ac-
tively to model the target image.

Several open questions remain for a fully auto-
mated implementation. The separation of parts
of an object to form separated subspaces could
be done by computing the covariance between the
pixels of the example images. However, for images
at high resolution, this may need thousands of ex-
ample images. The linear object class approach
assumes that the orientation of an object in an
image is known. The orientation of faces can be
approximated computing the correlation of a new
image to templates of faces in various orientations
(Beymer, 1993). Tt is not clear jet how precisely
the orientation should be estimated to yield satis-
factory results.

Appendix
A

Face Images.

130 pairs of images of caucasian faces, showing a
frontal view and a view taken 24° from the frontal
were available. The images were originally ren-
dered for psychophysical experiments under ambi-
ent illumination conditions from a data base of
three-dimensional human head models recorded
with laser scanner (Cyberware?™)
without makeup, accessories, and facial hair. Ad-
ditionally, the head hair was removed digitally
(but with manual editing), via a vertical cut be-
hind the ears. The resolution of the grey-level im-
ages was 256-by-256 pixels and 8 bit.
Preprocessing:  First the faces were segmented
from the background and aligned roughly by auto-
matically adjusting them to their two-dimensional
centroid. The centroid was computed by evaluat-
ing separately the average of all z,y coordinates
of the image pixels related to the face independent

. All faces were
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of their intensity value.

A single three-dimensional model of a hu-
man head, recorded with a laser scanner
(CyberwareT™)
erence images.

, was used to render the two ref-

B Computation of the
Correspondence.

To compute the 2D-shape vectors s”, s}, s{,
in equations (1) and (2), which are the vectors of
the spatial distances between corresponding points
in the face images, the correspondence of these
points has to be established first. That means we
have to find for every pixel location in an image,
e.g. a pixel located on the nose, the correspond-
ing pixel location on the nose in the other image.
This is in general a hard problem. However, since
all face images compared are in the same orienta-
tion, one can assume that the images are quite
similar and occlusions are negligible. The sim-
plified condition of a single view make it feasi-
ble to compare the images of the different faces
with automatic techniques. Such algorithms are
known from optical flow computation, in which
points have to be tracked from one image to the
other. We use a coarse-to-fine gradient-based gra-
dient method (Bergen et al., 1992) and follow an
implementation described in (Bergen and Hingo-
rani, 1990). For every point z,y in an image I,
the error term E = > (I,dz + [,6y — 61)? is min-
imized for dx, dy, with I, I, being the spatial im-
age derivatives and 7 the difference of intensity
of the two compared images. The coarse-to-fine
strategy refines the computed displacements when
finer levels are processed. The final result of this
computation (dx,dy) is used as an approximation
of the spatial displacement vector s in equation
(1)and (2). The correspondence is computed to-
wards the reference image from the example and
test images. As a consequence, all vector fields
have a common origin at the pixel locations of the
reference 1mage.

used



C

Linear shape and texture
synthesis.

First the optimal linear decomposition of a given
shape vector in equation (1) and a given texture
vector in equation (3) was computed. To compute
the coefficients a; (or similar 3;) the “initial” vec-
tor T” of the new image is decomposed (in the
sense of least square) to the ¢ training image vec-
tors T} given through the training images by min-

imizing
q
IT" = > T
i=1

The numerical solution for «; and 3; was obtained
by an standard SVD-algorithm (Press and Flan-
nery, 1992). The new shape and texture vectors
for the “frontal” view were obtained through sim-
ple summation of the weighted “frontal” vectors
(equations( 2) and (4)).

D Blending of patches.

Blending of patches is used at different steps in
the proposed algorithm. It is applied for merging
different regions of texture as well as for merging
regions of correspondence fields which were com-
puted separately for different parts of the face.
Such a patch work might have little discontinu-
ities at the borders between the different patches.
It 1s known that human observers are very sensi-
tive to such effects and the overall perception of
the image might be dominated by these.

For images Burt and Adelson (Burt and Adel-
son, 1983; Burt and Adelson, 1985) proposed a
multiresolution approach for merging images or
components of images. First, each image patch is
decomposed into bandpass filtered component im-
ages. Secondly, this component images are merged
separately for each band to form mosaic images by
weighted averaging in the transition zone. Finally,
these bandpass mosaic images are summed to ob-
tain the desired composite image. This method
was applied to merge the different patches for the
texture construction as well as to combine the
texture mapped across the viewpoint change with
the missing part taken from the constructed one.
Originally this merging method was only described
for an application to images, however, the appli-
cation to patches of correspondence fields elimi-
nates visible discontinuities in the warped images.
Taking a correspondence field as an image with a
vector valued intensity, the merging technique was
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applied to the x and y components of the corre-
spondence vectors separately.

E  Synthesis of the New Image.

The final step is image rendering. The new image
can be generated combining the texture and shape
vector generated in the previous steps. Since both
are given in the coordinates of the reference image,
for every pixel in the reference image the pixel in-
tensity and coordinates to the new location are
given. The new location generally does not coin-
cide with the equally spaced grid of pixels of the
destination image. The final pixel intensities of
the new image are computed by linear interpola-
tion, a commonly used solution of this problem
known as forward warping (Wolberg, 1990).
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