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ABSTRACT

The Bayesian approach to vision provides a fruitful theoretical framewaork both for modeling
individual cues, such as stereo, shading. texture, and occlusion. and for integrating thei
information. In this formalism we represenl the viewed scene by one. or more. surfaces using
prior assumplions about the surface shapes and malerial propettics. On theoretical ground-
the less information available (o the cues (and the less accurate it is), the more important thes
assumptions become. This suggests that visual illusions, and biased perceptions, will arise fis
scenes for which the prior assumplions are not appropriate. We deseribe psyvehophysica?
experiments which are consistent willi these ideas. Our Bayesian approach alse has twe
important implications for coupling different visual cues. Firsl, different cues cannot in genera
be treated independently and then simply combined togelher at the end. There are depen-
dencies between them that have to be incorporated into the models. Second, a single generic
prior assumplion is not sufficient even if it dees incorporate cue inleractions because there are
many different types of visual scenes and different models are appropriate for each. This leads
to the concept of competitive priors where the visual systern must choose the correct model

depending on the stimulus.
3.1 INTRODUCTION

We define vision as perceplual inlerence, the estimalion of scene properties
from an image or a sequence of images.' Vision is ill posed in the sense that
the retinal image is potentially an arbitiarily complicated function of the
visual scene and so there is insufficicnt information in the image to uniquely
determine the scene. The brain, or any artificial vision system, must make
assumptions about the real world in order to overcome this problem. These
assumptions must be sufficiently powerful lo ensure thal vision is well posed
for those properties in the scene that the visual svstem needs Lo estimate. In
this chapter we argue that Bayes (1783) provides a nalural framework for
modeling perceptual inference. We emphasize thal we are describing a frame-
work and not a theory. The usefulness of such a framework is that it is
powerful enough to compnctly describe most, ideally all, visual phenomena
and that it leads to specific theories (by choosing priors and likelihoods) that
can be tested experimentally.



How are these assumptions imposed in vision systems? The Bayesian
formulation gives us an elegant way lo impose constraints in terms of prior
probabilistic assumptions about the world, based on Bayes formula (Bayes
1783):

P(S|l) = - . (3.1)

Here S represents the visual scene, the shape and location of the viewed
objects, and [ represents the retinal image. P(1|S) is the likelihood function for
the scenc and specifies the probability of obtaining an image ! from a given
scene S; it incorporates a model of image formation and of noise and hence
is the subject of compuler graphics. P(S) is the prior distribution and speci-
fies the relative probability of different scenes occurring in the world. The
probabilistic model, specified by P(I1S) and P(S), contains the prior assump-
tions about the scene structure, including the geometry, the lighting, and
the material propertics. P(f) can be thought of as a normalization constant
and can be derived from P(]|S) and P(S) by elementary probability theory,
P = _[P(!(S)P(S)[HS]. Finally, the posterior distribution P(S[I) is a function
giving the probability of the scene being S if the observed image is I.

In words (3.1) states that the probability of the scene S, given the image |,
is the product of the probabilily of the image, given the scene P(I}S), times
the a priori probability P(S) of the scene, divided by a normalization constant
P,

To specify a unique interpretation of the image I, we must make a decision
based on our probability distribution, P(5}1), and determine an estimate,
S*(I), of the scene. In Bayesian decision theory (Berger 1985) this estimate is
derived by choosing a loss function that specifies the penalty paid by the
system for producing an incorrect estimate. Standard estimators like the maxi-
muon a posteriori (MAP) estimator, S* = arg maxg P(S]I) (i.e, S* is the most
probable value of S given the posterior distribution P(S}1)) correspond to
specific choices of loss function. In this chapter we will, for simplicity and
reasons of space, assume that the MAP estimator is used though other esti-
mators are often preferable (sec Yuille and Biilthoff 1996).

Although the Bayesian framework is sufficiently general to encompass
many aspects of visual perception including depth estimation, object recogni-
tion. and scene understanding, to specify a complete Bayesian theory of
visual perception is, at present, completely impractical. Instead, we will re-
strict oursclves to model individual visual cues for estimating the depth and
malerial properties of objects and the ways these cues can be combined. It has
become standard practice for compulational theories of vision to separate
such cues into modules (Marr 1982) that only weakly interact with each
other. From the Bayesian perspective, weak coupling between modules is
often inappropriate, due to the interdependence between visual cues. Hence
we argue in section 3.3 that the visual cues should often be more strongly



coupled. In some cases weak coupling between modules is appropriate (sec
Landy, et al. 1995).

In the Bayesian framework the choice of prior assumptions used to model
each visual cue is very important. Each visual cue is subject to built-in prio
assumptions that will inevitably bias the visual system, particularly for the
impoverished stimuli favored by psychophysicists. The human visual system
is very good at performing the visual tasks necessary for us to interact
effectively with the world. Thus the prior assumptions used must be fairly
accurate, at least for those scenes that we need to perceive and interprel
correctly. The prior assumptions used lo interpret one visual cue may conflict
with those used lo interpret another, and consistency must be imposed
when cues are combined. Moreover, the prior assumptions may be context-
dependent and correspond lo the categorical structure of the world. A single
“generic” prior is not sufficient because there are many types of visual scenes
and different models are appropriate for each. Each visual module, or coupled
groups of modules, will have to determine automalically which prior assump-
tion, or model, should be used; this can lead to a system of competitive prior
assumptions (sce section 3.4).

In section 3.2 we first describe Bayesian theories for individual cues and
argue that several psychophysical experiments can be interpreted in terms of
biases toward prior assumptions. Next, in section 3.3, we describe ways of
combining different depth cues and argue that strong coupling between dif-
ferent modules is often desirable. Then in section 3.4 we argue that it is
preferable to use competing, often context-dependent, priors rather than the
single gencric priors commonly used. Inplicalions of this approach are de-
scribed in section 3.5.

3.2 BAYESIAN THEORIES OF INDIVIDUAL VISUAL MODULES

We now briefly describe some Bayesian theories of individual visual cues and
argue that psychophysical experiments can be interpreted as perceptual biases
toward prior assumptions. From (3.1) we sce thal the influence of the prior is
determined by the specificity of the likelihood function P(I1S). In principle,
according to standard Bayesian statistics, the likelihood function should make
no prior assumptions about the scene, yet the likelihood functions used in
most visual theories often make strong context-dependent assumptions. This
fact will be briefly illustrated in this section and we will describe its implica-
tions in sections 3.3 and 3.4.

We will specifically discuss theories of shape from shading and shape from
texture. All these modules require prior assumptions about the scene geome-
try, the material properties of the objects being viewed, and, in some cases,
the light source direction(s). We will concentrate on the assumptions used by
the theories rather than the specific algorithms. Although a number of theories
described here were originally formulated in terms of energy functions (Horn
1986) or regularization theory (Poggio, Torre, and Koch 1985), the Bayesian
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approach incorporates, by use of the Gibbs distribution (Parisi 1988), these
previous approaches (see Yuille and Bilthoff 1996).

Shape from Shading

Let us now look at one specific example. Standard models of image formation
assume lhat the observed intensity depends on the tendency of the viewed
surface to reflect light, ils albedo, and a geometric reflectance factor that
depends on the orientation of the surface, the viewing direction, and the light
source(s) direction, Shape from shading models (Horn 1986) typically assume
that the scene consisls of a single surface with constant albedo, a single light
source direction < that can be estimated, and a Lambertian veflectance func-
tion. This leads to an image formation model I = &-ii -+ N, where i denotes
the surface normals and N is additive Gaussian noise. In this-case the likeli-
hood function can be written as P(I|S) = (1/Z)e~(V2ehU =512 \here g2 s the
variance of the noise and Z is a normalization factor.? The prior model for the
surface geometry P(S) typically assumes that the surface is piecewise smooth
and biases toward a thin plate or membrane. These theories also assume that
the occluding boundaries of the object are known, which is helpful for giving
boundary conditions.

This likelihood function contains the prior assumption that the reflectance
function is Lambertian with constant albedo. Moreover, it ignores effects such
as mutual ilumination and self-shadowing. The model is therefore only appli-
cable for a certain limiled class of scenes and only works within a certain
context (see fig. 3.1). A visual system using this module would require a

Figure 3.1 Cues arc valid only in certain contexts. In (a) we sketch a Lambertian object
iliuminated by single light source and no mutual illumination; thus standard shape from
shading algorithms will work. However, in (b) mutual illumination will prevent shape from
shading from working. Similarly, shape from texture is possible for (c) but not for (d). where
homogeneily assumption for texture elements is violated. Thus both shading and texture

shape cues are only valid in certain contexts.



method for automatically checking whether the context was corre
return to this issue in section 3.4 on competitive priors.

What predictions would models of this type make for psycl
experiments? Clearly, they would predict that the perception of gec
shape from shading would be biased by the prior assumption of
smoolhness (see fig. 3.2). If we use the models of piecewise s
typically used in compuler vision, then we would find a bias towa
parallel surfaces. Such a bias is found for example in the psychophy:
from shading experiments by Bilthoff and Mallot (1988), Mam:
Kersten (1994), and Koenderink, van Doorn, and Kappers (1992). ¢
not all smoothness priors cause such a bias (see, for exampl
Mayhew, and Frisby 1985); nevertheless, the bias appears to be the
mentally. The more impoverished the stimuli, the greater the bia:
might expect this effect to be larger for psychophysical experin:
for realistic stimuli (realistic stimuli, i.e., natural images, are typ
impoverished).

Shape from Texture

Existing shape from texture models also make similar, though inc
assumptions about the scenes they are viewing. They assume th.
variations can be modeled by spatial changes in the albedo and
geometric reflectance factor can be neglected, or fillered out in s
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Figure 3.2 Prior assumption bias perception. Graph (a) shows true depth 1(x) ar
shows biased depth percept Di{x) alter smoothing. In (¢) we assume that likeliho
PyD()] is weakly peaked at true depth D;(xn Prior in (), however. is peake
Resulting posterior distribution P,[D()] is shown in (e} and yields biased percept {



Texture elements are assumed to be “painted” onto piecewise smooth sur-
faces in a spatially slatistically homogeneous manner. A specific example is
given by Blake, Bilthoff, and Sheinberg (1993). Therefore the imaging model,
or likelihood function, will assume thal these texture elements are generated
from a homogeneous distribution on the surface and then projected onto the
image plane. Assumptions about the geometry, such as piccewise smoothness,
are then placed in the prior.

Once again, the nature of the likelihood term means that the models will
only be appropriate in certain contexts (see fig. 3.1). To become well posed,
shape from lexture must make strong assumptions about the world that are
only valid for a limited class of scenes. If standard piecewise smoothness
priors are used, then texture models will also predict biases toward the
frontoparallel plane, as observed experimentally (Bilthoff and Mallot 1988).
Stronger predictions can be made by testing the predictions of a specific
model (see Blake, Biilthoff, and Sheinberg 1993).

What we have seen in this section are examples of individual visual mod-
ules. Although it is possible to interpret some psychophysical experiments as
biases toward “reasonable” prior assumptions, we have stressed that the less
constraint the likelihood funclion places on the scene, the stronger the bias.
All these theories make strong contextual assumptions, and the visual system
must be able to automatically verify whether the context is correct before
believing the output of the model. In the next section we will look at how
scveral different visual modules can be integrated to achieve a more robust

interpretation of the visual world.
3.3 BAYESIAN THEORIES OF MULTIPLE VISUAL MODULES

It has become standard praclice (or computational theorists and psychophys-
icists to assume that different visual cues are computed in separate modules
(Marr 1982) and therealter only weakly interact with cach other. Marr's
theory did not fully specify this weak interaction but seemed to suggest that
each module separatcly estimated scene properties, such as depth and surface
orientation, and then combined the results in some way.* A more quantitative
theory, which has experimental support (Bruno and Cutting 1988; Dosher,
Sperling, and Wurst 1986; Maloney and Landy 1989), involves taking
weighted averages for mutually consistent cues and using a vetoing mecha-
nism for inconsistent cues. A further approach by Poggio and collaborators
(Poggio, Gamble, and Little 1988) based on Markov random fields has been

implemented on real data.
Coupling of Modules
The Bayesian approach suggests an alternative viewpoint for the fusion of

visual information (Clark and Yuille 1990). This approach stresses the neces-
sity of taking into account the prior assumptions used by the individual cues.



These assumptions may conflict or be redundant. In either case, i'
better results can often be achieved by strongly coupling the
contrast to the weak methods proposed by Marr or the weight:
theories, though weak coupling may indeed be appropriate in son
(Landy et al. 1995).

To see the distinction belween weak and strong coupling,
have two sources of depth information, f and g. Marr’s theory we
specifying two posterior distributions, P, (S| f) and P,(S|g). for th
modules. Two MAP estimates of the scene, 5 and S;, would be
by each module and the results combined in some unspecified |
figure 3.3 for an overvicw of weak and strong coupling.

Weak Coupling

Although the weighted averages theories are not specified in
framework, one way to obtain them would be to multiply the
gether Lo obtain P(S|f g) = P(S]/)P,(Slg). If the MAD estimates
from the two theories are similar, then it is possible to use p
theory and find, to first order, that the resulting combined MAP ¢
is a weighted average of S and S5 (see Yuille and Biilthoff 1996).

Both Marr's and the weighted averages approach would be cl:
as weak (Clark and Yuille 1990) because Lhey assume that the i
conveyed by the a posteriori dislributions of the two modules is in
But, as we have argued, the forms of the prior assumptions mas
information to be dependent ar even contradictory.

By contrast, the Bayesian approach would require us to specify «
likelihood function P(f,¢|S) for the two cucs and a single prior -
P(S) for the combined system. This will give rise lo a distribulic
given by
P(f, &ISP(S)
i
and in general will not reduce to I, (S]f}P(Slg). A model like

P8I f.8) =

cannot be factorized is considered a form of strong coupling (Clark
1990).

We now discuss an important intermediale case between weak .
coupling. Consider two modules I',(f15), P (S) and Py (¢]S). P5(S).
pose that the likclihood funclion for the combined cues can be |
P(fg1S) = Py (f15)Py(g]S). Then we gel correct Bayesian integrati-
by using model (fig. 3.3¢c) provided the priors for the two mu
identical (i.e, P,(5) = P,(S)) and the prior for the coupled modi
changed (i.e., P(S) = P,(S) = [,(S)). For hislorical 1easons, we refer
“weak” coupling. It is not unusual, however, for existing vision n
use different priors (for example, binocular stereo modules typically

wise surface smoothness assumplions, while structure-from-motion .
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Figure 3.3 Different types of coupling between modules. Diagram (a) shows form of weak coupling where two modules act independently, with their own likelihood
functions P(1|5) and priors £(S5), producing MAP estimators. 5° = arg max P(I|5)P(S), as outputs, which are then combined in unspecified manner. Observe that this
method provides no information at all about uncertainty of each estimate. Diagram (b) shows weak coupling where likelihood functions and priors of two modules are
multiplied together and then MAP estimator is calculated. Such coupling would yield weighted combination of cues in some circumstances (see Yuille and Biilthoff 1995).
In (¢} likelihood functions of modules are combined with single prior for combined modules and then MAP estimator is found. This case is on borderline between weak
and strong coupling. It is weak if prior P(S} is same as that used for individual modules, and it is strong otherwise. Diagram (d) shows strong coupling where it is
impossible to factor the likelihood function of the combined modules into the likelihood functions for the individual moduies.



often assume rigidity). In this case, the piior for the coupled n»
different from the priors for the individual modules and we say the
are “strongly” coupled.

The need for formulating cue combination by (3.2) may seem ol
stalisticians. Indeed, some might argue that the nced for strong co
only an artifact of incorrect modularization of early vision. We hav:
thy for such a viewpoint.

Observe also thal there is no need for a veto mechanism betwee
our framework. Such a mechanism is only needed when two cues 2
conflicl. But this conflict is merely due te using mulually inconsisten
for the two cuces; if we combine the cues using (3.2), this conflict van

In the next subsection we will give onc example of cue integra
will demonstrate that for shading and lexture the likelihood functio’
cannot be factored, and thus strong coupling is required.

Strong Coupling of Shading and Texture

We now consider mup[ing shmling with texture. First, we argue th
case the likelihood functions are not independent and that strong co
usually required. Second, we describe an experiment from Biilthoff an
(1990), which shows how the integration of shading and texture in!-
gives a significantly more accwate depth perceplion than that att
shading and texture independently.

As we discussed in the previous section, standard theories of sh
shading and texturc, in particular their likelihood functions, are only
certain conlexts; moreover, these contexts are mutually exclusive. Sh
shading assumes that the image infensity is due purely to shading c
albedo variations), while shape from texture assumes that it is due on
presence of lexture,

To couple shading with texture, we must censider a context v
image inlensity is generated both by shading and texlural processe
context may be modceled by a simple reflectance model

-

I(v) = a(v)R(n(x)),

where the texture information is conveyed by the albedo term a(x
shading informalion is captured by ROi(x). U is typically assumed
rellectance function is Lambertian 517 and that there are a class of ¢l
texture elements painted onto the smface in a statistically uniform
tion. This will induce a distribution on the albedo, a(x), that depend!
geometry ol the surface in space.

Typically, texture modules assume that R(i(x)) = I, Vi, while
modules set a(x) = 1, Yx. For the coupled system, these assumpl
invalid (see fig. 3.4). The shading module has to filter out the albed:
lexture, while the texture information must ignore the shading inf
R(1(2)). For some images, il may be possible to do this filtering indep.
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Figure 3.4 Difficulty of decoupling shading and texture cues. Graph (a) shows typical
intensity profile for Lambertian surface with constant albedo, context in which shape from
shadiog can e computed Graph (89 shows intensily profile for sueface with strong albedo
variation, context for shape from texture. Graplh (¢) shows intensity profile when both cues are
present. Separating this profile into its shading in (a), and textural components in (b), is hard in
general. In Bayesian teims this is because likelihood function for combined shading and texture
cannol, in general, be factored into likelihood functions for two individual cues.

(i.e., the texture model can filter out R(i(x)) without any input from the
shading module, and vice versa). In general, however, distinguishing between
R(1(x)) and a(x) is not at ali straightforward. Consider an object made up of
many surface patches with Lambertian reflectance functions and differing
albedos. For such a stimmulus, it seems impossible to separate the intensity into
albedo and shading components before computing the surface geomelry. Thus
we argue that the likelihood functions for the combined shading and texture
module usually cannot be factored as the product of the likelihood functions
for the individual modules, and hence strong coupling is required (a similar
point is made by Adelson and Pentland 1991).

Other examples of “unfactorizable cues” include the phenomena of coopera-
tive processes, where the perception of shape from shading depends very
strongly on contour cues (Knill and Kersten 1991) or on stereo curvature cues
{Buckley, Frisby, and Freeman 1993).

In addition we argue that, because more information is available in the
likelihood term of the combined module, the prior assumption on the surface
geometry can be weakened. FHence there is both less bias towards the fronto-
parallel plane from the priors and more bias toward the correct perception
from the shading and texture cues.

In the experiment reported below (fig. 3.5), shape from shading and shape
from texture alone gave strong underestimations of orientation, yet the com-
bined cues gave almost perfect orientation. Such a result seems inconsistent
with Marr's (1982) theory or with coupling by weighted averages. Instead, it
seems plausible that this is an example of strong coupling between texlure
and shading, with a weak prior toward piecewise smooth surfaces. The only
way that these results might be consistent with weak coupling would be if
simple filters could decompose the image into texture and shading parts,
hence factorizing the likelihood function, and then combine the cues using the
same prior used by both modules. This prior would have to be so weak that
the likelihood functions of the two modules would dominate it.



R )

hosen Elongation
. n h
[S20N o BS | w O,

C

T T T

n=27 texture

N i
0.5 i [
0
c 0.5 1 1.5 2 205
Given Elongaiion
Figure 3.5

stope = [). Redrawn from Buithotf and Mallot (1990).

Chosen Elongation

T -

n=25

shading

0.5 1 1.5
Given Elongatien

Chosen Elongation

b
& oo

w
w
T

snading + texture J
n=27 PR

06 1 15 2 25 3 35 4 45
Given ziongation

Psychophysical experiments on integration of shading and texture In adjustment task subjects interactively adjusted snading or texture of simulated ellipsord
of rotation {seen by one eye! in order to match form of given ellipsoid seen with both eyes fin stereo). Ellipsoids were seen end-on so that outline was same for both
surfaces. Shape from shading and shape from texture individuaily lead to strong underestimation of shape, that is, shading or texture of ellipsoid with much larger
eiongation had to be simulated in order to match given ellipsoid (slope > 1). If shading and texture are presented simultaneously, shape is adjusted almost correctly



3.4 CONTEXTS AND COMPETITIVE PRIORS

As we have seen, the current models for visual cues make prior assumptions
about the scene. In particular, the likelihood function often assumes a particu-
lar context—for example, Lambertian surfaces. The choices of priors and
contexts is very imporlant; they correspond to the “knowledge” about the
world used by the visual system. In particular, the visual system will only
function well if the priors and the contexts are correct.

What types of priors or contexts should be used? The influential work of
Marr (1982) proposed that vision should proceed in a feedforward way.
Low-level vision was performed by vision modules that cach used a single
general purpose prior such as rigidity for structure from motion or surface
smoothness (or sterco. Such priors were called “natural constrainls” by Marr
(1982). Low-level vision culminated in the 23-D sketch, a representation of
the world in terms of surfaces. Finally, object specific knowledge was used to
act on the 2}-D sketch to perform object recognition and scene interpreta-
tion. Because the types of priors suggesled for low-level vision arc general-
purpose we will refer to them as generic priors.

The question naturally arises whelher models of carly vision should have
one generic prior. It is clear that when designing a visual system for perform-
ing a specific visual task, the prior assumptions should be geared toward
achieving the task. FHence il can be argued (Clark and Yuille 1990; Yuille and
Clark 1993) that a set of different systems geared toward differenl tasks and
competing with each other is preferable to a single generic prior.

These competitive priors should apply both to the material properties of
the objects and their surlace geometries. We will sketch how Lhe idea applies
to competing models for prior geometries and Lhen give a general mathemati-
cal formulation. An example of competing priors for material properties is
described in Yuille and Bilthoff (1996).

To make this more precise, consider the specific example of shape (rom
shading. Methods based on an energy funclion, such as Horn and Brooks
(1980), assume a specific form of smoothness for the surface. The algorithm is
thercefore biased toward the class of surfaces defined by the exact form of the
smoolhness constraint, which prevents it from correctly finding the shape of
surfaces such as spheres, cylinders, or cones.

On the other hand, there already exist algorithms hat are guaranteed to
work for specific types of surfaces. Pentland (1989) designed a local shape
from shading algorithm that, by the nature of its prior assumptions, is guaran-
teed to work for spherical surfaces. Similarly, Woodham (1981) has designed
a set of algorithms guaranteed to work on developable surfaces, a class of
surfaces that includes cones and cylinders.

Thus, instead of a single generic prior, it would seem niore sensible to use
different theories; in this case, Horn and Brooks’s, Pentland’s, and Woodham's,
in parallel. A fitness criterion is required for each theory to determine how



well it fits the data; these criteria can then be used to determinc
should be applied.

More formally, let P, {(f). Po(f). ..., Cy(f) be the prior assump
of competing models with corresponding imaging models P (1} f
We assume prior probabilities P (a) that the ath model is the
so 3 ¥ Po(a) = 1. This leads to a set of different modules, each !
the solulion that maximizes their associated conditional probabil

PifP(f)

D=
1
’ Py(l )Py
Pe(fil) = fv(lpfi”,\m
N

Let our space of decisions be D = {d, i}, where d specifies thi
labels the model we choosc to describe it. We must specify a !
L(d, i:f,a), the loss for using model i to obtain scene d when the
should be a and the scene is f, and dcfine a risk

Ry =Y jl,(zi,,;j;/1)1’,,(/|/)/’,,m)111/‘|,
where, for example, we might sct L(d,i:f,a) = —3(f — d)d,,
penalized by &, for not finding the right model and by —d(¢
(inding the right suiface). Here 5(f — d) denotes the Dirac delta |
8;0 is the Kronecker delta, where 8, = 1 if i = a and 0 otherwisc
decision corresponds to picking the model i and the scenc d th.
the risk.

A number of psychophysical experiments seem to require «
in terms of competitive priors. In all cases the perception of the
be made to change greatly by small changes in the stimuli; so

experiments would also seem to require strong coupling,
Transparency

Kersten et al. (1991) describe a transparency experiment in whic
can be interpreted cither as a pair of rectangles rotating rigidl
cotnmon axis or as two independent rigid rectangles rotating o
own axis (fig. 3.6). The compelilive priors correspond to assuni
reclangles are coupled together to form a rigid object or that the
are uncoupled and move independently; by adjusting the transpa
either perception can be achieved. Interestingly, the perception ol
pled motion is only temporary and scems to be replaced by the pe
the coupled motion. We conjecture that this is due to the buildup
for the coupled hypothesis over lime. The uncoupled interpretatio:
supported because it agrees with the transparency cue. Over a lon
lime, however, the uncoupled molion is judged less likely th.
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Figure 3.6 In order to study how structure from motion interacts with transparency cues,
two rigidly coupled planar surfaces rocking back and forth about common vertical axis midway
between them were simulated. Intensity relationships of various regions of overlapping faces
bias apparenl transparency faces and therefore depth ordering of faces. a. If simulated depth
ordering was consistent with depth ordering suggested by transparency cuve rigid motion
around common axis was perceived. b, If motion parallax and transparency cue were contradic-
tory, nenrigid motion of two faces slipping and sliding over one another was perceived.
Redrawn from Kersten et al. (1991).

motion, although this hypothesis does require a relative ordering of compet-
ing explanations, swhich could be implemented by prior probabilities. It is not
hard to persuade oneself that coupled motion is more natural, and hence
should have higher prior probability, than uncoupled motion.

Specular Stereo

Blake and Biiltholf’s (1990, 1991) work on specular stereo shows how small
changes in the stimuli can dramatically change the perception. In these experi-
ments a sphere is given a Lambertian reflectance function and is viewed
binocularly. A specular component is simulated and is adjusted so that it can
lie in front of the sphere, between the center and the surface of the sphere or
at the center of the sphere (fig. 3.7). If the specularity is at the center, it is seen
as a lightbulb and the sphere appcars transparent. If the specularity lies in the
physically correct position within the sphere (halfway between the center and
the surlace), the sphere is perceived as being a glossy, metallic object. It is
interesting that, before doing the experiment, most people think that the
specularity should lie on the convex surface and not behind. If the specularity
lies in front of the sphere, il is seen as a cloud floating in front of a matte
sphere. We can say that there are threc compeling assumptions for the
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behind transparent sphere. In (b) specularity lies in approximately the correct p
hemisphere is perceived to be metallic, with specularity appearing as image of lig!
specutlarily lies in front of hemisphere, as in {c), it is perceived as cloud floating

liemisphere.

materfal of the sphere: (1} transparent, (2) glossy, and (3) matte; the
model depends on the data. In addition, if the sphere is arranged <
Lambertian part has no disparily, the stereo cue for the specularity
the concave/convex ambiguity {rom the shading cues (see Blake an:
1990, 1991) for details.

Amodal Completion

Nakayama and Shimojo (1992) describe an impressive set of sterc
ments that suggest the visual system can interpret the world in
surfaces that may partially occlude each other. The visual system
forms significant inlerpolation in regions that are partially hidden. 1
ple, one can obtain a strong perceplion of a Japanesc flag (sce fig,
when the stimulus contains very little information, provided that th
parts of the flag are occluded by another surface.

Nakayama and Shimojo (1992) themselves argue that their ex)
can be desaibed by having a set of competing hypotheses, § =
about the possible scene and corresponding image formation model



Figure 3.8 Binocular stereo cues for surfaces occluding.each other, Observers of stereo pair
deft pair for uncrossed fusion and right pair for crossed fusion) usually sec planar surface, with
cross-shaped hole in its central region, floating above surface with circle at its center (see

decompasition below).

They suggest picking the interpretation j that maximizes P;(5,]I) = P(I|S,)/
13 PUIS,) }—which can be seen as a special case of our competitive prior
formulation. They also argue that this is related to the generic viewpoint
hypothesis (Freeman 1993)—if a regularity appears in an image, then the
regularity is due lo a regularily in the scene rather than an accidental result of
the viewpoint. Recently, Bulthoff, Kersten, and Bilthoff (1994) showed thal
the presumplian of a generic viewpoint can be extended also to the domain
of ilumination and the resulting shadow and lighling effecls. Given an acci-
dental view or a sequence of views of an object, the human visual system can
make use of global information from the illumination (shadows) to determine
the object’s shape and properties. For example, shadow information strongly
biases the perception of the horizontal bar in Nakayama and Shimojo’s ste-
reogram of a cross to appear nonplanar (fig. 3.9).

3.5 DISCUSSION

The competitive prior approach assumes that there is a large set of possible
hypotheses about scenes in the world and that these scenes must be inter-
preted by the set of hypotheses, or competing priors, that best fit the data.
We envision a far larger and richer set of competing priors than the natural
constraints proposed in Marr (1982) or the regularizers occurring in regular-
ization theory (Poggio, Torre, and Koch 1985).* These priors arise from the
categorical structure of the world (see also Knill, Kersten, and Yuille, 19906).



Figure 3.9  Upper stereogram (left pair far uncrossed fusion and right pair for cros
shows “stereocross” by Nakayma and Shitnojo (1992), which can be secn either as

frontoparalle] horizontal bar or as crass wilh wings (horizontal bar bent toward the
Lower stereagram shows same three-dimensional layoul but with added shadow
information can disambiguate many interprclations of upper stereogram and mos

will see hovizontal bar bent toward the observer (Bolthaff, Kersten, and Balthoff 1o

How sophisticated must these contextural priors be? In this ch
have only considered priors for low-level tasks such as surface estimo
we see no reason why they should not reach up to object recogni
scene inlerpretation. At an intermediate stage we shouid mention |
esting results of Kersten, Mamassian, and Knill (1994), which sho:
humans make use of shadow information for depth perception. In !
periments the perceived motion of a ball in a box was strongly afl
the molion of its shadow. But for this shadow information to be n
the visual system musl have decided that the geometry of the sce
box-—in other wards, that the shadow was projected from a ball
planar surface at the botlom of the box.

It is clear that the most effective computer vision systems strong!
contextural knowiedge and are geared to achieving specific tasks.
extent should the compeling priors be geared toward specific tasks
one would like to have priors that accurately model all aspects of
scene, but this may be unrealistic. Instead, it would be simpler to ha
that accurately model the aspects of the world the visual system
know about, aithough the decision rules inust be sophisticated o
prevent the system from constanily hallucinating the things it desir
it is tempting to consider the hallucinations induced by sensary de
as an example of the prior imposing nonexistent structure on the da
ing up priors in this task-dependent way seems a sensible strategy fc
ing a visual system, but is there any evidence that biological sy:
designed like this? It may be hord to test for humans because ¢



syslem appears very general-purpose, but we believe that many lower ani-
mals behavior can be interpreted this way already. This emphasis on task
dependence is at the heart of recent work on active vision (Blake and Yuille
1992). By making very specific prior assumptions about certain structures in
the scene, and ignoring everything else, it has proven possible to design
autonomous vehicles capable of driving at high speeds on the autobahn
(Dickmanns, Mysliwetz, and Christians 1990).

Clearly the range of visual tasks that we can achieve is determined by the
information, P(S]!), we have about the scenc. Thus the issue of what visual
tasks we can achieve, or what scenc parameters we can estimate, is deter-
mined by the form of P(S}I), assuming we have exploited all our prior
knowledge. It may well be that P(5]/) contains enough information for us to
make a reliable decision about whether one object is in front of another, but
not enough to decide on the absolute depth values of the objects themselves.

In its current formulation the competitive prior approach leaves many
questions unanswered. In particular, how many priors should there be, and
how can one search efficiently through them? We believe that the answer to
the first question is largely empirical and that, by building increasingly so-
phisticated artificial vision systems and performing more psychophysical ex-
periments, it will be possible to determine the priors required. To search
efficiently between competing priors seems to require a sophisticated mixed
bottom-up and top-down strategy of the type described by Mumford (1992).
In such an approach, low-level vision is constantly generating possible inter-
pretations while, simultaneously, high-level vision is hypothesizing them and
attempting to verify them.

In this Bayesian framework we have said nothing about the algorithms that
might be used to make the decisions. In this we are following Mart’s (1982)
levels of explanation, where a distinction is made between the high-level
information processing description of a visual system and the detailed algo-
rithms for computing it.> Thus we may hypothesize that a specific visual
ability can be modeled by a Bayesian theory without having to specify the
algorithin. In a similar style, Bialek (1987) describes various experiments
showing that the human visual system approaches optimal performance for
certain tasks, such as estimating the number of photons arriving at the retina
(Sakitt 1972), even though precise models for how these computational tasks
are achieved are currently lacking. Certainly the algorithms used to compute
a decision may be complex and require intermediate levels of representation.
For example, a shape from texture algorithm might require first extracting
textural features, which are then used to determined surface shape. Thus
Bayesian theories certainly do not imply “direct perception” (Gibson 1979) in
any meaningful sense. The issues of when to introduce intermediate levels of
representations and of finding algorithms to implement Bayesian theories are
important unsolved problems.

Finally, we have used a broad brush and not given specific details of many
theories. Though much progress has been made, existing vision theories are



still not as successful as one would like when implemented on rt
Bayesian decision theory gives a framework, but there are many «
need to be filled in. For example, the Bayesian approach emph
imporlance of priors but does not give any prescription for find
Although workers in computational vision have developed a s
promising priors {or nodeling the world, it is an open research tas!
refine and extend these models in order to build systems of the typ
here. Fortunately, the Bayesian framework is able to incorporate lei:
Kersten et al. 1987), and the success of (Bayesian) hidden Markov 1
speech recognition (Paul 1990) suggests that it may be practica
Bayesian theories. Il is parlicularly interesting to ask whether pric
learned for new task.

3.6 CONCLUSION

In this chapter we have argued for a framework for vision |
Bayesian theory. Such a theory will inevilably cause biases toward
assumptions of the theory, parlicularly for the impoverished stimul
psychophysicists.

This approach suggests that, when coupling visual cues, one mu:
mind the interdependence between the cues and, in particular, the
sumptions they might be subject to. In many cases, this will lead !
coupling between visual cues rather than the weak coupling proj
other theorists.

We also argue thal the prior assumptions used by the visual sysl
be considerably more complex than the natural constraints and genc
commonly used. Instead, there seems to be evidence for a competi
prior assumplions or contexts, which also seems to be a pragmatic
design a visual system to perform visual lasks. It may be better t.
visual systems in terms of modules that are geared toward specil
tasks in restricted contexts than modules based on the traditional cor
visual cues.
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NOTES

1. This is somewhat similar to the idea of “anconscions inference” developed by von |

(1910) and Gregory (1970).



2. That is, we assume the observed inlensity at each point in the image is modeled by a
Gaussian dislribution with a mean given by the s, where i is the normal of the correspond-

ing point in space, and variance a2,

3. "The principle of modular design does not ferbid weak interactions between different
modules in a task. but it docs insist that the overail arganization must, to a first approximation,
be modular” (Marr 1982, 102)).

4. The Bayesian approach Lo vision, and to stalistics in general, emphasizes the importance of
speciflying precisely which prior assumptions are being used. Thus it intrinsically leads to the
search and identification of priors/constraints.

5. Note that we treat the choice of modules and their coupling as being high-level descriptions
rather than algorithmic ones.
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