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Abstract

The sex of a face is perhaps its most salient feature. A principal components analysis

(PCA) was applied separately to the three-dimensional structure and texture data from

laser-scanned human heads. Individual components from both analyses captured informa-

tion related to the sex of the face. Notably, single projection coe�cients characterized

complex structural di�erences between three-dimensional male and female heads and be-

tween male and female texture maps. In a series of simulations, we compared the quality of

the information available in the head versus texture data for predicting in the sex of the face.

The results indicated that the three-dimensional structural data supported more accurate

sex classi�cation than the texture data, across a range of PCA-compressed (dimensionality-

reduced) representations of the heads. This kind of dual face representation can give insight

into the nature of the information available to humans for categorizing and remembering

faces.
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1 Introduction

In recent computational work, principal compo-

nents analysis (PCA)1 has been applied widely

to analyzing the information in images of hu-

man faces. The information captured by PCA

has been shown to be reliable, in purely com-

putational terms, for recognizing faces (O'Toole,

Abdi, De�enbacher & Valentin, 1993; Turk &

Pentland, 1991) and for classifying them by race

and sex (O'Toole, Abdi, De�enbacher & Bartlett,

1991). Additionally, di�erent components of PCA

have been shown to relate reliably to human

performance on some of these same tasks (e.g.,

O'Toole, De�enbacher, Valentin, & Abdi, 1994).

The human head, however, is a complex three-

dimensional object with a characteristic shape and

texture, from which individual faces, and cate-

gories of faces, vary. In the present study, we

applied PCA to a more complete physical model

of the human face than is available from a fa-

cial image. This model included both a three-

dimensional structure- and texture-based compo-

nent. Recently, Hancock, Burton and Bruce (in

press) highlighted the importance of considering

separately texture and \shape-based" components

in modeling human performance on a face recog-

nition task. They used images of faces to create

a \shape-free" face by hand-selecting facial land-

marks and morphing the faces to an average shape

(Craw & Cameron, 1991). They then applied PCA

separately to the shape-free texture map of the

face and to the deviation of the individual faces

from the average shape. Their results indicated

that di�erent components of human recognition

performance related to the structure- and texture-

based information.

A more explicit representation of three-

dimensional head information than that available

from morphing between two-dimensional images

can be obtained from laser scan technology, which

provides both the three-dimensional coordinates

of the head (structure) and a wrap-around image

(texture) that maps point for point onto the head

surface.2 While this representation lacks the ad-

vantageous feature of established correspondences

between a reduced set of facial features (34 facial

landmarks such as the corners of the mouth and

eyes, Hancock et al.), it has the important advan-

tage of including much more detailed information

1For related analyses, see also Pearson, 1901;
Hotelling, 1933; Karhunen, 1946; Lo�eve, 1955.

2We use the term "texture" to refer to this complete
wrap-around image, which is distinct from view- based
images of the heads.

about subtle variations in three-dimensional struc-

ture than that retained with a relatively small set

of inter-facial landmark distances. The purpose

of the present study was to compare the overall

utility of the structure versus texture information

for predicting the sex of a face. We did this in

two steps. First, we applied PCA separately to

the head structure and texture data taken from a

large number of male and female faces. Second,

we carried out a series of simulations to compare

the quality of the information available in the head

structure versus texture data for categorizing faces

by gender.

1.1 PCA Analysis

1.1.1 Methods

Stimuli. Laser scans (CyberwareTM ) of 130

heads of young adults (65 male and 65 female)

were used as stimuli. The subjects were scanned

wearing bathing caps, which were removed digi-

tally prior to the PCA, consequently eliminating

most of the hair region of the head. Addition-

ally, further pre-processing of the heads was done

by making a vertical cut behind the ears, and a

horizontal cut to remove the shoulders. The laser

scans provide two kinds of information. First,

the head structure data consisted of the lengths

of 512x512 radii from a vertical axis centered in

the middle of the subject's head to the head sur-

face. This provides a representation of the three-

dimensional coordinates of a head. The texture

data consisted of a 512x512 gray level image that

maps point-for-point onto the three-dimensional

head scan. The three-dimensional head models

and texture maps were aligned so that regions

around the nose and eyes roughly coincided spa-

tially. In both cases, the mean of the data was

subtracted prior to the application of the PCA.

Analysis Procedure and Results. Principal com-

ponents analysis was applied separately to the

structure and texture data. Figure 1 shows the

average head in the top row, and the two eigen-

vectors (the �rst and sixth), that related most re-

liably to face sex for the head data in the sec-

ond and third rows, respectively. The eigenvec-

tors are displayed by adding (subtracting) them to

(from) the mean head. In both cases, distinctive

shape di�erences between male and female heads

can be captured simply by adding versus subtract-

ing these single components to/from the average

head (cf., Figure 2 for several views of the �rst

eigenvector demonstration). This demonstration

replicates a similar �nding for images (O'Toole et

al., 1993) and indicates that in this representation
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as well, the facial characteristics related to face

sex explain relatively large proportions of vari-

ance in the face set. The �rst eigenvector captured

global di�erences in the shapes of male versus fe-

male heads, including the structure of the jaw and

brow. The sixth eigenvector captured di�erences

in nose/brow size and shape for male and female

heads. More formally for the predition of face sex,

point-by-serial correlations between the projection

of individual faces onto these eigenvectors and the

face sex (de�ned as 1 or 0) were statistically reli-

able (r = .66, p < .0001; r = .30, p < .001, respec-

tively).

For the texture data also, the PCA revealed

several eigenvectors that contrasted male versus

female face textures. The two eigenvectors that

most related to face sex were the second and �fth.

Again, point-by-serial correlations between projec-

tion coe�cients and sex were statistically signi�-

cant (r = .71, p < .0001; r = .25, p < .01; re-

spectively). The mean texture map is displayed in

the top row of Figure 3, and the second and �fth

eigenvectors appear in the second and third rows,

respectively, again adding (subtracting) them to

(from) the mean texture map. The second eigen-

vector is easily interpretable as contrasting the

characteristic texture shadowing of male facial

hair against its absence in female faces. The �fth

eigenvector seems to re
ect overall di�erences in

the size/shape of the outer contour, with an inter-

esting relative size di�erence especially apparent

for neck width.

1.2 Gender Classi�cation Simulations

Given that some of the individual components

appeared to capture salient categorical informa-

tion about faces, we carried out a more for-

mal analysis as follows. The PCA enables a

dimensionally-reduced representation of individ-

ual heads/textures in terms of their projection co-

e�cients. The utility of di�erent low dimensional

representations for specifying categorical informa-

tion about faces, such as gender, can be analyzed

in this abbreviated representation much more eas-

ily than in full texture/head data. Abdi, Valentin,

Edelman and O'Toole (1995) compared raw image

and PCA-pre-processed image representations and

showed that PCA pre-processing had tangible ad-

vantages over a purely image-based representation

in terms of the generalizability of sex information

it captured when used as input to simple sex clas-

si�cation algorithms. We applied the methods de-

veloped by Abdi et al. to compare the quality of

the texture versus structure information in human

Figure 1: Top center: average of 130 heads (65 male
and 65 female). Row 1: left head constructed by
adding the shape de�ned by the �rst eigenvector to
the average head; right head constructed by subtract-
ing the shape de�ned by the �rst eigenvector from the
average head. More precisely, the display shows the
average head combined linearly with �2� times the
�rst eigenvector, where � is the standard deviation
of the projection coe�cients on this eigenvector com-
puted across all faces. It is interesting to note that
a single coe�cient describes a compelling and com-
plex structural transformation between male and fe-
male heads, including aspects of brow protrusion and
jaw shape. Row 2: the same as Row 1 but with the
sixth eigenvector, viewed from the side where it is eas-
iest to see that it captures di�erences in nose size and
shape between male and female heads.

faces for classifying faces by sex. Two simulations

were carried out. In the �rst, we analyzed the head

structure data and in the second we analyzed the

texture map data.

1.2.1 Methods

Stimuli. Separate representations of the stim-

uli in terms of their head structure versus texture

data were created. In both cases, each stimulus

was represented by its projection coe�cients onto

the eigenvectors extracted from the PCA of the

appropriate data, i.e., either the three-dimensional

structure data or texture map data.
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Figure 2: Several views of the male-female contrast
demonstration using the �rst eigenvector for shape.

Procedure. The derived face codings were used

to train simple perceptron sex classi�cation net-

works, which were then tested for the generaliz-

ability of the information learned for classifying

novel faces by sex. The perceptron was chosen

since previous work comparing several sex classi-

�cation network models of face images indicated

that it performed roughly equivalently to a radial

basis function (RBF) network, both of which out-

performed all other models tested on a general-

ization sex classi�cation task (Abdi et al., 1995).

The perceptron was chosen over the RBF network

since it is the simpler of the two models. To test

the generalizability of the sex classi�cation per-

formance of the network, we applied a standard

\jack-knife" procedure, which operated as follows.

A perceptron model was trained with all possi-

ble combinations of the n-1 faces, where n is the

number of available faces (130, in this case). Each

trained network was then used to classify the sin-

gle unlearned face of the set. The error rate was

taken as the percentage of these novel faces cor-

rectly classi�ed across the 130 perceptrons in each

subspace simulation.

Figure 3: This �gure duplicates the illustration in Fig.
1 for the texture data, using the second, and �fth
eigenvectors. The second eigenvector is easily inter-
pretable as contrasting the characteristic texture shad-
owing of male facial hair against its absence in female
faces; the �fth eigenvector seems to re
ect overall dif-
ferences in the size/shape of the outer contour, with an
interesting relative size di�erence especially apparent
for neck width.

Additionally, we varied the size of the subspace,

to determine the minimum subspace required in

the two representations to achieve maximally gen-

eral sex classi�cation, as was done with images

previously by Abdi et al. (1995).

Results. The results of these simulations ap-

pear in Figure 4, plotted as the generalization ac-

curacy of the sex classi�cation network for the

texture and structure- based representations as

a function of the size of the subspace. Three

points are worth noting. First, both the structure-

and texture-based representations provided reli-

able information for determining face sex. Per-

formance for even very small subspaces was well

above chance. Second, across nearly the entire

range of subspaces tested, the structure data sup-

ported better sex classi�cation than the texture

data. For the texture data, a peak generalization
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performance of 93.8 percent correct sex generaliza-

tion was achieved with a minimum subspace of 20

projection coe�cients { a rate comparable to that

reported previously with a perceptron and images

with hair cues to sex present, but better than that

reported previously with images more comparable

to our stimuli (i.e., excluding hair, Abdi et al.,

1995). While it is di�cult to make precise perfor-

mance comparisons with other previous models of

automated image-based sex classi�cation (due to

important di�erences in stimulus sets, face repre-

sentations, and classi�cation algorithms), in gen-

eral, the present results for texture data compare

quite favorably with these other models (Brunelli

& Poggio, 1993; Burton, Bruce, & Dench, 1993;

Fleming & Cottrell, 1990; Golomb, Lawrence, &

Sejnowski, 1991; Gray, Lawrence, Golomb, & Se-

jnowski, 1995; see the last paper for more precise

model comparisons). For the three-dimensional

head data in the present study, the results showed

generalization performance that was even better

than that obtained with texture, peaking at 96.9

percent correct with a minimum subspace dimen-

sionality of 17 projection coe�cients.

Finally, the most reliable information for sex

classi�cation was found in eigenvectors with rela-

tively larger eigenvalues, a �nding consistent with

previous work on images O'Toole et al. 1993;

Abdi, et al., 1995).
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Figure 4: The generalization accuracy of the sex clas-
si�cation network for the texture and structure-based
representations as a function of the size of the sub-
space. In general, three-dimensional structure data
supported more accurate sex classi�cation than did
texture data. Though interestingly, one exception oc-
curred due to the very strong predictive power of the
second eigenvector of the texture analysis, which en-
abled better classi�cation in this very low-dimensional
subspace.

2 General Discussion

The results of the present study indicated that

the PCA of the separated structure and texture

data captured information relevant for determing

the sex of a face. Additionally, the quality of the

sex-related information di�ered in structure ver-

sus texture representations of the faces. This �nd-

ing highlights the importance of considering the

nature of the information available for the di�er-

ent tasks we carry out with faces. Previous work

that has considered human perception of purely

shape-based data on faces (again from laser scans)

has indicated generally that human observers �nd

it very di�cult to extract the information useful

for identifying a face from this representation (cf.,

Bruce, Healey, Burton, Doyle, Coombes & Lin-

ney, 1991; Bruce & Langton, 1994, though the

data from both studies need to be interpreted

with caution given the very small number of head

scans used, varying between 3 and 8 for the recog-

nition and identity tasks reported). Consistent

with this �nding, using a large number of heads,

Troje and B�ultho� (in press) showed that human

observers matched the identity of depth-rotated

(i.e., view-changed) heads with texture data more

quickly than heads without texture data. On a

face recogntion task, however, Hancock et al. (in

press) showed that at least one component of hu-

man performance, the hit rate, was best predicted

by separate analyses of the shape and texture in-

formation, subsequently brought together.

Interestingly, where sex classi�cation is con-

cerned, there is evidence from several sources that

human observers make use of a very broad range of

cues, including aspects of the the structure/shape

of the face and a variety of texture cues. For

example, Bruce, Burton, Hanna, Healey, Mason,

Coombes, Fright and Linney (1993) showed accu-

racy decrements in sex classi�cation using \tex-

tureless" laser scanned heads, which they sur-

mised carried important cues for sex classi�ca-

tion (e.g., bushiness of eyebrows, and beard stub-

ble). Additionally, however, they found decremen-

tal e�ects of sex classi�cation performance with

the manipulations: (I) of face inversion, which

they interpreted in terms of the importance of the

global con�guration; and (II) photographic nega-

tion, which they interpreted in terms of the impor-

tance of three-dimensional shape-from-shading in-

formation. Using a more comprehensive combina-

tion of inversion and negation with laser scanned

heads and photographs, Bruce and Langton (1994)

found rather di�erent patterns of performance

decrements for identi�cation and sex classi�cation
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tasks { again stressing the importance of consider-

ing the kinds of information available for di�erent

tasks. For identi�cation, their results indicated

rather less importance of the shape-from-shading

information relative to other cues. For sex classi�-

cation, however, their results were again consistent

with the importance of a more diverse set of cues

(see also Burton et al. 1993).

More generally, the extent to which humans

rely on three-dimensional structure information

derived from objects/faces as opposed to two-

dimensional image-based information is currently

a much-debated point in the psychology literature

(Biederman, 1987; B�ultho� & Edelman, 1992) and

is being investigated actively by neuroscientists in-

terested in the neurophysiological substrates of ob-

ject and face recognition (Logothetis, Pauls, Pog-

gio, 1995; Perrett, Hietanen, Oram, & Benson,

1992). At present, we consider the application of

PCA to di�erent representations of faces as a very

useful tool for quantifying the information avail-

able in these representations. Applied to three-

dimensional heads, the analysis provides a useful

low dimensional quanti�cation of the information

that would be available to human observers were

they able to mentally generate such representa-

tions. Likewise, the application of this analysis

to texture data versus view-dependent images can

also provide a baseline measure of the informa-

tion inherent in these di�ferent representations.

The comparison of human performance on simple

tasks like sex classi�cation and recognition, with

the quality of information available in di�erent

representations (e.g., three-dimensional structure,

complete textures, and single view-based represen-

tations) can serve as a powerful tool for learning

about the nature of human representations of ob-

jects.
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