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Abstract

This paper presents a view—based approach to map learning and nav-
igation in mazes. By means of graph theory we have shown that the
view—graph is a sufficient representation for map behaviour such as path
planning. A neural network for unsupervised learning of the view—graph
from sequences of views is constructed. We use a modified Kohonen
(1988) learning rule that transforms temporal sequence (rather than fea-
tural similarity) into connectedness. In the main part of the paper, we
present a robot implementation of the scheme. The results show that the
proposed network is able to support map behaviour in simple environ-
ments.

1 Introduction: The view—graph
representation

A cognitive map is a neural mechanism supporting navigation and orientation
tasks much as a real map of the environment. Schéolkopf and Mallot (1995)
presented a mechanism for the learning of a cognitive map of a maze from
the sequence of local views encountered when exploring the maze. In this
approach, the topological structure of a maze is represented as a graph where
the places are the nodes and the (directional) corridors are the edges (see
Fig. 1a). The explorative sequence of encountered views corresponds to the
sequence of directed corridors passed along the way through the maze. Instead
of reconstructing the place graph explicitly (e.g., Kuipers and Byun 1988), we
consider an intermediate representation which is called the view-graph, i.e.,
a graph whose nodes represent the encountered views and whose (directed)
links represent the temporal coherence of views (Fig. 1b). If one assumes that
each corridor corresponds to exactly one view and all views are distinguish-
able, the view graph can be shown to contain all of the information required to
reconstruct the place graph (Scholkopf and Mallot 1995). In the present paper,
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Figure 1: a. Simple maze shown as a directed graph with places p; and corridors
¢;. b. Associated view—graph where each node v; corresponds to one view, i.e.
one directed connection in the place graph. Only the edges with go-labels are
shown. In graph theory, b. is called the interchange graph of a. Simpler plots
of b. are possible but not required for our argument. c. Adjacency matrix of
the view—graph with labels indicating the egocentric movement leading from
one view to another. g;: go left, g,: go right, ¢g5: go backward.

we show that the view graph can be used directly as a “cognitive map” for a
mobile robot.

2 Competitive sequence learning

View graphs can be learnt from sequences of views by use of a competitive
learning rule which translates temporal sequence (rather than featural similar-
ity) into connectedness. The wiring diagram of the network is shown in Fig. 2,
for details see Scholkopf and Mallot (1995). Tt takes two inputs, a feature vector
representing the view information and a unique activity in one of a small num-
ber of movement units representing the most recent movement decision. The
view vectors are mapped to view—cell activity by input weights g,; which spe-
cialize to one view during exploration. View—cells that become “winners” (i.e.
recognize their corresponding views) in subsequent time steps are connected by
an intrinsic (auto—associative) weight ay;. This weight is modulated by input
from movement—cell myg, if the sequence of the two views was brought about
by performing the corresponding movement.

Note that movement decisions are treated as input to the network. This
makes it possible to use arbitrary exploration sequences such as random walks
around the maze. In path-planning, possible motion decisions are presented
to the network one after the other. Each decision is evaluated in terms of the
time it takes for an activation of the cell representing the start view to reach
the goal view cell. Path-planning is thus performed by “mental imagery” of
the path to the goal before actually executing it.

In simulations with various mazes and exploration strategies, we found that
the network is able to learn the view—graph from the sequence of views en-
countered during exploration of the maze. Convergence is rather fast (e.g. 60
learning steps for a four—place maze). It can be further improved by exploration
strategies which can be derived from a theoretical analysis of view—graphs.
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3 The robot environment

3.1 The maze

In our autonomous robot experiments, we use a hexagonal maze with 12 junc-
tions (places) and 24 directed connections between them (see Fig. 3). The
views are replaced by black and white textures on the floor of the maze. These
textures consist of black and white lines orthogonal to the corridor axis. The
patterns which were actually used are shown in Fig. 3. Each texture is charac-
teristic of one directed connection. Note that each corridor carries two texture
patterns, one for each direction between the two places connected by the cor-
ridor.

3.2 The robot sensorium

The navigation experiments were performed with a Khepera® minature robot

(Mondada et al. 1993). The robot uses eight infrared sensors, six of which are
mounted evenly across the front, with the other two mounted at the rear. The
two rear sensors were bent downwards in order to sense the floor texture. The
robot thus uses two—pixel “image-sequences” generated by its own movement
along the corridor.

When the robot enters a corridor, it uses its front sensors to center itself
between the side walls. This is normally achieved by the time it reaches the
midline between the two places (i.e., the narrowest point of the corridor). From
then on the readings of the rear sensors are stored. The robot continues its
way until it encounters an obstacle, i.e. the wall behind the place being ap-
proached. The obstacle is detected if the input from the front sensors on both
sides exceeds a threshold. Thus, both obstacle avoidance and centering behav-
ior are implemented as a “vehicle 3b” in the sense of Braitenberg (1984). The
detection of the obstacle triggers the read—out of the stored sensor readings
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Figure 3: Left: Scheme of the hexagonal maze with 12 places and 24 “views”.
View—information is provided by the textured floor of the corridors. Right:
Part of the real maze with place 6 in front and the robot exploring place 4.

representing the current view.
The interaction of robot and neural network is schematically summarized
in Figure 4.

3.3 Preprocessing

The neural network sketched in Fig. 2 contains two parts, a hetero—associative
memory for view recognition (upper weights in Fig. 2) and an auto-associative
memory of the view—graph connections (middle and lower weights in Fig. 2).
In a first series of experiments, we have by—passed the recognition part of the
network by assuming ideal preprocessing which transforms the set of views
into a set of canonical basis vectors. l.e., after this preprocessing stage, the
input line f; of the network will be 1 if view ¢ was present and 0 otherwise.
The results thus concern the learning and use of the view—graph connections.
For more elaborated schemes of view recognition with associative networks, see

Nelson (1991) and Crespi et al. (1993).

4 Experiments

The navigation system was tested in three behavioural modes (cf. Fig. 4):

1. In the exploration mode, the robot was driving through the maze using
its obstacle avoidance and dead—end modules to get around. When facing
an obstacle (i.e. a wall opposing a corridor), the next movement was
selected at random.

At each stop in front of an obstacle, the texture information collected prior
to this stop was preprocessed as explained in Section 3.3. The resulting
view vector was then presented to the network. This view information
together with the movement decision was used by the neural network to
learn the view—graph. In our experimental maze with 12 places and 24
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Figure 4: Control diagram for the interaction of robot and neural network.

views, learning was usually complete after about 200 learning steps. For
the Khepera, this amounts to an exploration time of about an hour.

. In the navigation mode, the robot used the information stored in the
neural network to find a particular view (the “goal” view) from various
starting positions. This goal view could be any view in the maze without
additional learning required. Map readout in the neural network was
performed as explained in Scholkopf and Mallot (1995). In our small
experimental maze, the robot found the shortest way to the goal view in
all trials.

. In addition to the ordinary navigation task, we tested the system with
a task called navigation in the dark. In this case, the robot had to
approach teh goal view without any view information available on its way.
In the neural network, the trajectory of the robot is still represented by
the correct sequence of view—cell activations which are now propagated
via the auto-associative weights o (see Fig. 2). In long trajecories, one
would expect position errors to accumulate in this case. However, after
sufficient training (200 movement decisions steps), the robot found its
way in our experimental maze in more than 90 % of the trials.

385



5 Discussion

Our results show that the topological structure of a maze can be recovered
from the sequence of views experienced when exploring the maze. The map
information is suitably represented as a view—graph. Since the maze can be
recovered from the view—graph using a simple algorithm, the view—graph is
sufficient to support map behaviour. We conjecture that this is fact the minimal
representation required to perform path planning.

Both the graph theory and the robot experiments reported here have been
carried out for navigation in mazes rather than open environments. An exten-
tion to open environments can be made along the following lines. First note
that we define a view as the input sequence encountered prior to the contact
with an obstacle. Consider now an arena with a number of isolated objects and
a robot moving around with the following rule: Fixate and approach an object
until you (almost) touch it. Then select another visible object and proceed as
before (see Sobey 1994). In this case, the arena with objects has an obvious
place—graph representation, which differs from the place-graph of a maze only
in that it need not be planar. The view—graph theory can be applied to this
case in complete analogy to the case of maze navigation.
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