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A separated linear shape and texture space for

modeling two-dimensional images of human faces

Thomas Vetter and Nikolaus Troje

Abstract

Human faces di�er in shape and texture. This paper describes a representation of grey-level
images of human faces based on an automated separation of two-dimensional shape and
texture. The separations were done using the point correspondence between the di�erent
images, which was established through algorithms known from optical 
ow computation. A
linear description of the separated texture and shape spaces allows a smooth modeling of
human faces. Images of faces along the principal axes of a small data set of 50 faces are
shown. We also reconstruct images of faces using the 49 remaining faces in our data set.
These reconstructions are the projections of an image into the space spanned by the textures
and shapes of the other faces.
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1 Introduction

A natural description of objects which belong to
the same object class typically evaluates the di�er-
ences between corresponding features. This com-
parison can contain di�erences in the texture (i.e.
the color or intensity) as well as in the shape of
the objects. In this paper, we describe a fully au-
tomated system for separating texture di�erences
in images of human faces from di�erences in their
2D-shape. Linear space models applied to both,
the texture di�erences and the 2D-shape deforma-
tions allow a smooth and low-dimensional repre-
sentation and enables a continous modeling of hu-
man faces. A representation separated in texture
and 2D-shape di�erences has several applications
which are outside the scope of this paper. We only
want to mention some of them brie
y. The linear
model based on such a representation can be used
for automatic face recognition in the same manner,
but presumably with more e�ciency, than using
principal component analysis on pixel based rep-
resentations. The representation further serves as
a universal feature detector. If the location of an
arbitrary feature is known in some reference face,
it can be determined in all other faces, too. The
representation also enables an estimation about
the complexity (i.e. the dimensionality) of the
object class \human faces". This knowledge can
be used to establish a \linear object class" [10] of
faces which can further be used to apply trans-
formations corresponding to other orientations or
expressions of a face or even to change its per-
ceived age. Low dimensional representations will
also play a role in data transmission, e.g. for tele-
conferencing.

The main scope of this paper is to develop a
method which allows a continuous modeling of hu-
man faces. In image based face recognition and

image representation, linear space models and es-
pecially principal component analysis became very
important [12, 13, 9]. Principal component anal-
ysis is appropriate for normally distributed data
sets which form a dense, convex body (in the best
case an ellipsoid) in the underlying linear space.
The principal components then yield the direc-
tion of the axis of the ellipsoid and the eigenvalues
of the corresponding covariance matrix provide a
measure for the variances of the data in these di-
rections. In face recognition principal component
analysis is usually applied to pixel based represen-
tations. It is obvious, that the resulting topology
is not at all convex. In general, the average of
two faces (corresponding to the point in the face

space located just in the middle between the two
faces) is not a normal looking face. It is clear,
that this is due to the lack of a correct alignment
of the faces. The average of a mouth and a nose
can never become something sensefull. A proper
alignment, however, is not possible applying only
linear image transformations since faces di�er in
the proportions of distances between eyes, nose,
mouth etc. To perform nonlinear image transfor-
mations, which would align eyes, nose and mouth,
it is necessary to establish correspondence between
the images of two face, which is not a trivial prob-
lem.

Human perception is very good in �nding this cor-
respondence. A common approach for establish-
ing correspondence between two images thus uses
our built-in system and requires the user to hand-
select corresponding feature points, like the tip of
the nose or the corners of the mouth. The areas
between the distinct feature points are usually tri-
angulated and linearly matched [3, 6]. Although
very time consuming this method is widely used
for morphing purposes. In contrast to this feature
based approach are methods based on the image
intensities or their gradients, mainly known from
the optical 
ow literature [2]. Such algorithms
which compute for every pixel in one image the
corresponding pixels in the other image, were al-
ready employed to compute the correspondence
between images of faces [5, 7]. For our purposes
we will use a gradient based optical 
ow algorithm
which has been adapted from [4].

After solving the correspondence problem, we can
represent an image as follows: We code its 2D-
shape as the deformation �eld from a reference
image which serves as origin of our space. The
texture is coded as the intensity map of the im-
age which results from mapping the face onto the
reference face. Now 2D-shape and texture can be
treated separately. Both spaces can be expected
to be continuous: Intermediate stages between two
faces are always naturally looking faces again, and
a linear approach seems to be justi�ed.

2 An Implementation

Images: We used the two-dimensional images of
human faces that were generated as projections
from a database of three-dimensional head mod-
els. The head models had originally been collected
for psychophysical experiments from male and fe-
male volunteers between twenty and forty years
old. The volunteers were asked to remove glasses
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Figure 1: As in standard image morphing, the automatically computed correspondence of two images of faces
(upper row) can be used to generate the average (or any other linear combination) of the two faces (center),
by taking the average of the corresponding pixel intensities and the average of the deformation between the two
images. It is also possible to exchange the textures of two faces (lower row).

and earrings. Males were only scanned if they had
no beard. The images we used were the same as
used in psychophysical experiments but the reso-
lution was reduced to 256-by-256 pixels and the
color images were converted to 8-bit grey level im-
ages. The images were generated under controlled
illumination conditions and the hair of the heads
was removed completely from the images.

Preprocessing: In a �rst step the faces were seg-
mented from the background. This was easy since
the background was set to a special intensity value
during the image generation. Then the faces were
roughly aligned by automatically adjusting them
with respect to their two-dimensional center. The
center was computed by evaluating separately the
average of all x,y coordinates of the pixels related
to the face, independent of their intensity values.

Image matching: The essential step in our ap-
proach is the computation of the correspondence
between two images for every pixel location. That
means we have to �nd for every pixel in the �rst
image, e.g. a pixel located on the nose, the cor-
responding pixel location on the nose in the sec-
ond image. This can be a hard problem. How-

ever, since we controlled for illumination, and
since all faces are compared in the same orien-
tation, a strong similarity of the images can be
assumed and problems attributed to occlusions
should be negligible. These conditions make an
automatic mechanism for comparing the images
of the di�erent faces feasible [5]. Such algo-
rithms are known from optical 
ow computation,
in which points have to be tracked from one image
to the other. We used a coarse-to-�ne gradient-
based optical 
ow algorithm [1] and followed an
implementation described in [4]. Begining with
the lowest level of a resolution pyramid for ev-
ery pixel (x; y) in the �rst image, the error term
E = ((�I1=�x)�x+(�I1=�y)�y��I1;2)

2 was min-
imized for �x and �y. I1 denotes the intensity of
the pixel (x; y) in the �rst image and �I1;2 stands
for the di�erence of the intensities in the two im-
ages. The resulting vector �eld (�x;�y) was then
smoothed and the procedure was iterated through
all levels of the resolution pyramid. The �nally re-
sulting vector �eld was used as the corresponding
pattern between the two images.

A representation separating texture and 2D shape:

We calculated the correspondence pattern with
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respect to a reference face for all faces in the
database. In theory any face could be used as a
reference. However, since peculiarities of a face in-

uence the automated matching process, we used
a synthetic face which was generated as an av-
erage of a small subset of our data base. The
computed correspondance between a face and the
reference face enables a representation of the face
that separates 2D shape and texture information.
The 2D shape is coded as the deformation �eld
from the reference image to the face. This defor-
mation �eld is identical with the calculated cor-
respondance pattern. The texture information is
coded in terms of the texture map that results
from mapping the image onto the reference im-
age by means of the deformation �eld. Thus each
texture had now the same dimension, which was
equal to the number of pixels of the reference face.
Since the correspondence was computed towards
the reference face, the deformation �eld also had
a common basis on the pixels of the reference im-
age. However, the dimension is twice as large as
in the case of the textures, since each deformation
vector on a pixel has an x and a y component.

Synthesis of a new image: A new image can be
generated combining any texture with any corre-
spondence �eld. This is possible because both are
given in the coordinates of the reference image.
That means for every pixel in the reference im-
age the pixel value and the vector, pointing to the
new location are given. The new location generally
does not coincide with the equally spaced grid of
pixels of the destination image. A commonly used
solution of this problem is known as forward warp-
ing [14]. For every new pixel, we used the nearest
three points to linearly approximate the pixel in-
tensity. As in standard image morphing [3] we are
able to compute an average of two faces (�g.1) by
averaging the corresponding pixel intensities and
drawing them at the average location, which is at
half the distance from the reference image to the
other image. Figure 1 also shows the mapping of
the texture of one face onto the 2D shape of the
other face by simply exchanging the correspond-
ing pixel intensities of the faces.

Linear Analysis of Texture and Deformation: We
�tted a multivariate normal distribution by per-
forming a principal component analysis separately
on the texture and the 2D shape data. The princi-
pal components can be calculated as the eigenvec-
tors of the covariance matrix of the data. Figure
2 and 3 show variations of the deformations and

the textures along the �rst six principal compo-
nents. To the average face we added the respec-
tive normalized principal component with weights
corresponding to two, four and six standard de-
viations in both directions. Although this widely
exceeds the range of naturally occuring faces, it
gives a better understanding of the information
contained in the di�erent principal components.
All textures were presented on the average shape
and the deformations along the deformation prin-
cipal component were shown with the average tex-
ture. Thus the center row (dashed box) shows al-
ways the same image, the average face consisting
of the average texture and the average 2D-shape.

Reconstruction: Assuming the separated linear
spaces of texture and deformation as complete, a
basis set of faces, split up into the textures and the
deformation �elds, will be su�cient to reconstruct
any other face. We tested this possibility of recon-
structing faces on our small data set of 50 faces.
In each test we selected one face and used the re-
maining 49 faces as basis set. Reconstruction of a
face in our terms is equivalent with computing the
linear projection of the new face onto the texture
and deformation space spanned by the basis faces.
This can be done directly on textures and deforma-
tions given by the basis faces using singular value
decomposition [11]. Figure 4 shows reconstruction
experiments for four di�erent faces. In each case
we computed separately the projection onto the
texture space and deformation space. Then the
projections were combined as described earlier to
generate the reconstructed image.

3 Results

The quality of the synthesized faces, the faces
along principal components and the face recon-
structions, demonstrates the quality of the chosen
representation. Starting with a total of 83 faces
we could easily select �fty faces without visible
matching problems by applying the plain optical

ow algorithm without any special adaptation to
faces. In approximately �fteen cases the match-
ing was obviously wrong. The remaining cases
showed fairly good correspondence, but also con-
tained small errors.

The principal component analysis demonstrates
that our \face-space" is continuous over a con-
nected parameter set. Within this set we are able
to generate images which all look like a human
face, only with increasing distance from the aver-
age they change smoothly to something di�erent.
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Figure 2: Examples of a sequence of images along the �rst six principal components of the shape are shown. The
components are computed on a set of 50 faces. The shape variances are visualized by using the average texture.
The average face shape is shown in the center row (dashed box). The images in each column show the normalized
principal component scaled by � and added to the average, with � being the standard deviation of the data set
along the selected principal component.
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Figure 3: Examples of a sequence of images along the �rst six principal components of texture are shown. The
components are computed on a set of 50 faces. The texture variances are visualized by mapping them onto the
average shape. The average face texture is shown in the center row (dashed box). The images in each column show
the normalized principal component scaled by � and added to the average, with � being the standard deviation of
the data set along the selected principal component.
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The �rst few principal components clearly mark
some characteristics. The �rst two components of
the shape di�erences show a size e�ect that goes
along with a change of perceived gender, which is
also visible in the sixth `shape-component'. Start-
ing with component three any general size e�ect
disappears and the components characterize only
the internal proportions of the faces. Component
three and �ve characterize di�erent head orienta-
tions of the faces in our data set. The fourth com-
ponent shows the transition from a narrow head
to a wide head. The �rst principal component
of the textures clearly indicates an illumination
change. The light source is moving from above
to below. The second texture component shows
a change from bright eyebrows to dark ones and
also a change in the darkness around the chin,
which might be due to the beard of males. The
higher components are not so clearly to character-
ize. They all show various changes in the bright-
ness pattern over the face.

The reconstruction experiments demonstrate the
possibility of reconstructing images of human faces
using images of other faces as examples. The re-
construction quality, however, di�ers. From the
50 face which we reconstructed (using in each case
the remaining 49 faces as a basis), in eleven cases
the reconstruction looked very similar to the origi-
nal. Approximately the same amount looked very
di�erent. The majority was similar, however, hu-
man observer judged them as di�erent persons.
This was mostly due to very small di�erences in
the region of the eyes. Humans are very sensi-
tive to changes in that region and often two faces
are judged to belong to di�erent persons, although
the concrete nature of the di�erences is hardly de-
tectable. In general the reconstruction of female
faces was better than that of male faces.

4 Discussion

The presented automated method o�ers a tool to
provide a natural representation which describes
the relation of objects belonging to the same ob-
ject class. On the image level these relations can
be interpreted as 2D-deformations according to a
reference face shape and to intensity changes in
the matched texture map. The demonstrated sep-
aration of shape and texture leads to a natural
representations of human faces and objects in gen-
eral. The resulting "face-space" is continuous over
a connected parameter range and allows a smooth
modeling of images of faces.

A �rst step towards a linear description of that
space is a principal component analysis, which
can be done separately for the deformation and
for the texture. Our data set was not very large
and conclusions are thus preliminary. However,
the fact, that projections of a new face into the
space spanned by the 49 remaining faces yields a
fairly good reconstruction, shows that the dimen-
sionality of the space might be not much larger.
Before being able to fully interpret our analysis,
it is necessary to calculate the projections of the
data points on the principal components and to
investigate the underlying distributions.

A critical point for improving the quality of face
reconstructions is an appropriate measure for the
similarity of two faces. Such a measure should be
based on psychophysical experiments. The sensi-
tivity of human observers to di�erences in texture
or shape depend strongly on the location of these
di�erences in the face. For instance, we are much
more sensitive to changes in the eye region than to
changes in the region of the ears or the nose. Euk-
lidian distance in the face space does certainly not
re
ect the perceived di�erence between to faces.
On the other hand, it is likely that the just noti-
cible distance along single principal components
stays constant.

A good measure, which evaluates the perceptual
di�erence between two faces could also help, to
adapt the optical 
ow algorithm and to make it
more appropriate for �nding correspondence be-
tween faces. The error function, which the algo-
rithm tries to minimize, could be formulated in a
more subtle way. To come back to the above exam-
ple, changes in the eye region could be made more
expensive than changes in other regions of the face.
There are several other improvements which could
be done to optimize the correspondence within a
data set. One possibility is a multi-step procedure.
If two faces cannot be set into correspondence cor-
rectly, but if there is a third face which is already
in good correspondence to both of them, the two
deformation �elds can be added to get the correct
one.

Our goal for the moment is to represent a large
data base in the described manner and to provide
reliable statements about the statistics of the \face
space". This requires also improvements on the
data base. The �rst principal component for the
texture seems mainly to account for di�erences in
illumination. The second accounts for the amount
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ORIGINAL          RECONSTRUCTION ORIGINAL          RECONSTRUCTION

Figure 4: The reconstruction of two female faces (left block) and of two male faces (right block) is shown. The
faces were reconstructed through projecting them on the texture and shape space of the 49 images of other faces in
our data base.

of hairs (eyebrows, beard) in the face. Both pa-
rameters have not been varied systematically but
are rather accidental. Since the data base was
originally established for psychophysical purposes,
we actually tried to provide constant illumination
conditions. The remaining di�erences, however,
were extracted very precisely by the �rst principal
component. Also, male persons were taken up into
the data base only if they did not wear a beard.
However some of them were obviously not shaved
good enough.

Changes in the texture according to changes of
illumination form a low-dimensional linear space
[8]. So in long terms, changes of illumination and
also of other relevant parameters like expression,
age and orientation should be included systemat-
ically into an enlarged data base. We expect that
a principal component analysis will lead to low di-
mensional subspaces, accounting for these param-
eters in a way like the �rst principal component in
Figure 3 accounts for the illumination.

A recognition system based on a space spanned
by the principal components could solve the prob-
lem of being invariant to parameters like illumi-
nation, orientation or expression by ignoring the
corresponding subspaces. The biological relevance

of our model can easily be veri�ed by means of psy-
chophysical experiments. Faces can systematically
be varied along the de�ned directions in the "face
space" and the robustness of subjects recognition
performance to that component can be measured.
These experiments are planed for the future and
we hope that they will improve our understanding
of human face recognition.
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