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Abstract

Currently two major limitations to applying vision in real tasks are robustness in real-
world, uncontrolled environments, and the computational resources required for real-time
operation. In particular, many current robotic visual motion detection algorithms (optical

ow) are not suited for practical applications such as segmentation and structure-from-
motion because they either require highly specialized hardware or up to several minutes on
a scienti�c workstation. In addition, many such algorithms depend on the computation of
�rst and in some cases higher numerical derivatives, which are notoriously sensitive to noise.
In fact the current trend in optical 
ow research is to stress accuracy under ideal conditions
and not to consider computational resource requirements or resistance to noise, which are
essential for real-time robotics. As a result robotic vision researchers are frustrated by
an inability to obtain reliable optical 
ow estimates in real-world conditions, and practical
applications for optical 
ow algorithms remain scarce. Algorithms based on the correlation
of image patches have been shown to be robust in practice but are in general infeasible due to
their computational complexity. This paper describes a space-time tradeo� to this algorithm
which converts a quadratic-time algorithm into a linear-time one, as well as a method for
dealing with the resulting problem of temporal aliasing, resulting in an algorithm that can
run at over 6 frames per second on an 50 MHz Sun Sparcstation 20.
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1 Introduction

Despite strong incentives to use vision as a pow-
erful means of perception on mobile robots, and
extensive mathematical analysis of computer vi-
sion, practical real-time robotic vision algorithms
remain elusive, as recently noted by D. Touretzky
et.al. ([TWR94]):

\But the real problem with video cam-
eras is that image processing is compu-
tationally expensive. Even something
as simple as calculating real-time op-
tic 
ow requires more processing power
than is practical for a mobile robot.
Yet optic 
ow is known to be computed
in the early stages of mammalian vi-
sion. Such observations underscore the
tremendous gulf that remains between
today's digital computers and real ner-
vous systems."

It is undeniably true that biological organisms
are able to perform such tasks as motion detec-
tion, and most evidence from the �eld of com-
puter vision (even to the present day) would tend
to con�rm the above statement that it might not
seem possible to be able to compute optical 
ow,
or point-wise visual motion detection, in real-time
using computing power that was practical for a
mobile robot. Nonetheless, [C93] proposed that
optical 
ow could indeed be computed in real-
time using computing power that is appropriate
and practical for a mobile robot, that the optical

ow thus produced would be robust, and that it
would be su�ciently accurate to be used for cer-
tain robotic vision tasks. Here \real-time" is de-
�ned in the loose sense of being fast enough to be
calculated on-line and be usable in some reactive
system; on the order of 4-5 frames per second at
a minimum. \Practical for a mobile robot" im-
plies something on the order of a current low-end
workstation or possibly a mid- to high-end per-
sonal computer. Unfortunately, in the past this
has proven very di�cult, since such the calcula-
tion of optical 
ow is traditionally computation-
ally intensive, very sensitive to noise, and often
inaccurate.
In fact currently the two major limitations to

applying vision in real tasks are robustness in real-
world, uncontrolled environments, and the compu-
tational resources required for real-time operation.
In particular, many current optical 
ow algorithms
are not suited for practical applications such as
segmentation and structure-from-motion because
they either require highly specialized hardware or

up to several minutes on a scienti�c workstation.
For example, [WM93] quotes 4 minutes on a Sun
workstation and 10 seconds on a 128-processor
Thinking Machines CM5 supercomputer. If com-
puter processing power continues to grow at ap-
proximately 50% per year [PH94], then such an
algorithm would take approximately 16 years for
the 1000-fold increase in performance necessary for
real-time rates on an ordinary workstation. In ad-
dition, many such algorithms depend on the com-
putation of �rst and in some cases higher numer-
ical derivatives, which are notoriously sensitive to
noise. In fact the current trend in optical 
ow re-
search ([BFBB92], [WM93]) is to stress accuracy
under ideal conditions (either no noise or at best,
modeling the noise as Gaussian, a questionable as-
sumption), and not to consider computational re-
source requirements or resistance to noise, which
are essential for real-time robotics. As a result
robotic vision researchers are frustrated by an in-
ability to obtain reliable optical 
ow estimates in
real-world conditions, and practical applications
for optical 
ow algorithms remain scarce.
Another trend is to only compute qualitative op-

tical 
ow, such as normal 
ow [HS81]. Although
normal 
ow can be computed much more easily
than full optical 
ow and may be su�cient input
for many useful tasks (e.g. [HA91], [CHHN95])
there will be many cases where full 
ow is prefer-
able, if it can be computed e�ciently and robustly.
Algorithms based on the correlation of image

patches (e.g. [BLP89a]) have been shown to be
robust in practice but are in general infeasible due
to their computational complexity. This paper
describes a space-time tradeo� to this algorithm
which converts a quadratic-time algorithm into a
linear-time one, as well as a heuristic for dealing
with the resulting problem of temporal aliasing.

2 Optical Flow

The primary di�culty with computer vision is that
a single 2-dimensional image can arise from e�ec-
tively an in�nite number of 3-dimensional scenes.
A characteristic of image formation, one that must
be well understood in order to attempt to under-
stand the scene giving rise to a particular image, is
the unavoidable loss of information in the imaging
process. A single pixel is represented by a single
intensity value, which itself is the result of many
factors, such as the intensity, color, and location
of the light source or sources, and the orientation,
re
ectance, and transparency of the objects in the
scene, as well as the optical and electrical prop-
erties of the imaging device itself. Each of these
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e�ects may be understood individually, but they
are mutually confounding; a single 2-dimensional
image can correspond to an in�nite number of 3-
dimensional scenes.

Motion detection is an essential means of per-
ception for an organism for determining the organ-
ism's own movement, the structure of the organ-
ism's environment, as well the motions of other
organism's in its environment. Movement in im-
ages can be divided into real motion across the
retina, and apparent motion, the perception of
motion that arises when an object or pattern ap-
pears to instantaneously move from one place to
another [RA86]. In the case of the latter, the cor-
respondence problem must be solved [U79], that
of matching points or features in one image with
that of another. If motion across the retina is real,
then it may be possible to detect motion using
the spatial and temporal derivatives in an image,
however, if the motion (or time delay) between
successive frames is su�ciently small, then appar-

ent motion begins to approximate real motion,
thus it can be argued that studying the former is
all that is necessary.

An object moving in 3-D space has a three di-
mensional velocity vector �eld W (x; y; z). This
3-D motion �eld is projected onto the retina of an
observer as the 2-D motion �eld Wp(x; y). Un-
fortunately, this 2-D motion �eld may not be per-
ceived directly since it is a purely geometrical con-
cept; all that may be detected is some local mea-
sure of incident light at each point, E(x; y). In
a typical machine vision system, two images are
taken by a camera separated by a discrete time in-
terval �t. What may be observed at each point is
the changes in a point's intensity value �E(x; y)
during this time interval. The optical 
ow is a
vector �eld describing this intensity change by in-
dicating the motion of features from one image to
the other. An example of optical 
ow is shown in
Figure 1.

By accurately computing this 2-D vector �eld,
it is in principle possible to calculate three-
dimensional properties of the environment, and
quantities such as time-to-contact with an an ob-
served object [Lee76]. Biological organisms make
considerable use of optical 
ow, such as the detec-
tion of discontinuities [PRH81], and �gure-ground
discrimination [B81]. Motion detection is useful
for autonomous mobile robot navigation [PBF89]
as well as undersea navigation [NSY91]. [K86],
[KvD78] discusses the decomposition of optical

ow into curl, divergence and shear for the pur-
poses of determining local shape of an object,

Figure 1: Optical 
ow \needles", overlaid onto the
second image of an image sequence, indicate direction
and magnitude of motion of pixels from the �rst (left)
image to the second (right) image.

and [Reg86] presents evidence that the human vi-
sual system possesses speci�c detectors for sim-
ilar types of basic motion. [TR93] describes an
application for image coding. [MB90] covers ex-
periments in segmentation, structure frommotion,
tracking and qualitative shape analysis. [NA89]
discusses obstacle avoidance using only qualitative
optical 
ow.

In general the optical 
ow will not be the
same as the true 2-D projection of the 3-D mo-
tion �eld [VP87]. For example, a rotating, per-
fectly featureless sphere will not induce any opti-
cal 
ow, however the 2-D projection of its motion
�eld is non-zero everywhere on the sphere except
at the occluding boundaries. Conversely, if the
sphere is stationary but a light source moves, the
changes in shading will induce an optical 
ow �eld
even though the motion �eld is zero everywhere
([Horn86]). However, for a su�ciently textured
surface, the optical 
ow �eld will be arbitrarily
close to the motion �eld.

Many techniques for optical 
ow exist (see
[BFBB92] and [LV89] for reviews and discussions
of several techniques). Although these techniques
can perform very well for certain sequences of im-
ages, there are very few that are currently able
to support real-time performance. Authors rarely
report the computational time needed for their
algorithms; when they do, it is on the order of
many minutes per frame ([WM93]), or require spe-
cialized hardware such as a Connection Machine
([BLP89a], [DN93], [SU87], [WZ91], [L88]), Dat-
acube ([LK93], [N91]), custom image processors
[DW93], or PIPE [KSL85], [WWB88]. Techniques
which can run in real-time often impose strict re-
strictions on the environment; [HB88] presents a
technique that can segment in real-time for track-
ing purposes, but requires that a textured object
be moving in front of a relative textureless back-
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ground. We desire a technique that computes a
more general-purpose optical 
ow �eld, in real-
time on a standard desktop workstation, without
imposing strict restrictions on the input.
Techniques for optical 
ow can be divided

into gradient-based, velocity-tuned �lter based, and
correspondence-based motion, each described in
turn.

2.1 Gradient-Based Optical Flow

A common technique for computing optical 
ow
is to assume that the total spatial and temporal
derivatives of the image brightness remain con-
stant. For small motions, constant ambient illu-
mination, these assumptions are more or less true
except for pathological situations such as occlud-
ing boundaries. While detecting occluding bound-
aries is an important application for optical 
ow,
for the moment we will only consider the general
case.
>From [HS81], assume that the brightness of a
given point in an image is constant:

dE

dt
= 0: (1)

We wish to �nd the velocity v = (u;w) =
(dx
dt
; dy
dt
).

After expanding equation 1 we have:

@E

@x
u+

@E

@y
w +

@E

@t
= 0: (2)

(Note that equation 2 does not contain second
and higher order terms; these vanish as �t ! 0.
Since �t is often a signi�cant fraction of a second,
it is questionable to ignore these terms, thus yield-
ing second-derivative methods such as [UGVT88],
which we will mention later. For now we will ig-
nore this issue.)
The spatial derivatives @E

@x
and @E

@y
and the tem-

poral derivative at an image point @E
@t

can be esti-
mated using two or more images by using for ex-
ample �nite or central di�erence methods [LV89].
This leaves two unknowns u and w, motion along
the X and Y axes respectively, with only one con-
straint, equation 2. Only the motion along the di-
rection of the gradient (@E

@x
; @E
@y

) is available. This

is known as the aperture problem [MU81], [NS88]
and is illustrated in Figure 2. The left of Fig-
ure 2 shows an instance of the strong aperture

problem [BLP89b]. If intensity variations are one-
dimensional (i.e. no curvature of the intensity
isocountours), and no endpoints or distinguish-
ing markers are visible (as if the contour were

viewed through a small aperture), then the mo-
tion of a point on a line is ambiguous; point A
could have moved to point A or point A' for exam-
ple. Under these conditions (when intensity vari-
ation is one-dimensional) the problem as stated is
ill-posed without further assumptions and the cor-
rect motion cannot be determined. When dealing
with spatial gradients, the aperture problem man-
ifests itself in the fact that �rst derivatives are
only a planar approximation to the curvature at
a given point. Generally however natural image
sequences do have su�cient intensity variations.
The right of Figure 2 shows a translating curved
contour. Here, the motion of point A may be dis-
ambiguated by comparing the motion of nearby
points as well; points B and C match the correct
motion of point A, but that of points D and E do
not. If there are two-dimensional intensity varia-
tions, then the aperture problem is known as the
weak aperture problem. However, this particular
solution requires a non-local mechanism, and in
this case an assumption of local rigidity, which is
not necessarily true in general, but may be ap-
proximately true for most cases.

Given that nearby points on moving objects are
likely to have similar three-dimensional velocities,
their two-dimensional velocity projections should
also have similar velocities. The problem can then
be formulated as minimizing the sum of the errors
in the equation for the rate of change of image
brightness and the deviation from smoothness in
the optical 
ow [HS81]. The optical 
ow �eld is
then determined by minimizing a cost functional
L ([HS81], [KWM89]):

L( _x; _y) =
RR
f[Ex _x + Ey _y + Et]2 + �[(@ _x

@x
)2 +

(@ _x
@y
)2 + (@ _y

@x
)2 + (@ _y

@y
)2]gdx dy

In this equation � is a parameter which weighs
the smoothness of the motion �eld relative to
the error in the intensity constraint equation (2).
[KWM89] proposes implementing such a smooth-
ness constraint in a neural network and relates it
to the primate's visual system.

In contrast to �nding dense 
ow using a smooth-
ness constraint, [Hil84] proposes calculating opti-
cal 
ow at points along the contours in the image.
Here contours are extracted from the image using
Marr and Hildreth's edge detector [MH80] and re-
quired that the velocity �eld be smooth only along
a contour and not across it. This method does
not blur the optical 
ow �eld at discontinuities,
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Actual motion

Detected motion

Figure 2: The strong aperture problem is illustrated on
the left; only motion normal to a translating straight
contour may be determined. If there are curvature or
intensity variations, then we have the weak aperture

problem, which can be satisfactorily solved if certain
assumptions are enforced.

but only gives sparse measurements (only along
the contours) and may confuse object boundary
contours with other kinds of edges, such as those
due to changes in shape or re
ectance.

[SAH91] represents the problem probabilisti-
cally to account for the confounding e�ects of im-
age noise, low contrast regions, multiple motions,
lighting changes. A two-dimensional probability
distribution is used that re
ects directional un-
certainty in the motion estimates. Areas of high
contrast are treated as more reliable than areas of
low contrast, subject to an asymptotic maximum,
rather than e�ectively normalizing contrast when
combining velocity information of a given point
with that of nearby points.

A description of a general gradient-based
method for a one-dimensional image is seen in
Figure 3. Here a one-dimensional image intensity
pro�le is shown in the vicinity of a given point
p at coordinate (x). At time t0 the image inten-
sity at point p is E0, and at time t1 at point p
it is E1. An estimate �E

�t
of the temporal deriva-

tive @E
@t

can be provided using a forward-di�erence

method: �E
�t

= E1�E0

t1�t0
. The spatial derivative @E

@x

can be similarly estimated using the pixels adja-
cent to pixel p.

[DN93] calculates gradient-based optical 
ow
using the multipoint technique for solving partial
di�erential equations. Here the least-squares solu-
tion for equation 2 is solved in a local NxN neigh-
borhood, under the assumption that local velocity
is locally constant. This can run at several frames
per second on a Connection-Machine 2 (depend-
ing on the size of the neighborhood N ); see also
[DNS92].

[BJ94] minimizes an objective function consist-
ing of three terms: one, the standard optical

X

Intensity (X)

p = (x)

Intensity profile at image
point p = (x) at time t0

Intensity profile at image
point p = (x) at time t1

Tangent  estimate 
at point p = (x) at
time t0

0E

E 1

dE / dx  (est.)

dE / dt  (est.)

Figure 3: Gradient-based Optical Flow


ow intensity constraint equation; two, the di�er-
ences with the optical 
ow in neighboring pixels;
and three, the di�erence with a parametric pla-
nar patch estimate of the optical 
ow in regions
of approximately constant intensity. Robust er-
ror norms are used to reject outliers in each error
term.
[WWB88] calculates the motion of edges by

di�erentiating their Gaussian-convolved spatio-
temporal activation pro�les with the PIPE
pipelined image processor at 15 frames per sec-
ond. This method is very fast and can be robust,
but only gives normal 
ow at edges, not the true

ow.
One solution to the aperture problem of equa-

tion 2 is to assume that the total temporal deriva-
tive of the spatial gradient is zero:

drE

dt
= 0

Expanding this equation leads to two con-
straints:

@2E
@x2

v1 + @2E
@x@y

v2 + @2E
@x@t

= @2E
@y@x

v1 + @2E
@y2

v2 +
@2E
@y@t

= 0

This approach is taken in [Nag87], [UGVT88],
and assumes that the displacements being mea-
sured are less than one half of a cycle of the highest
spatial frequencies in the image, otherwise there
will be aliasing. Although this approach can in
theory give very precise measurements, one major
problem is that numerical di�erentiation of this
sort is very sensitive to noise in the input (for ex-
ample cf. [KMB+91]). This is particularly true
if the spatial derivative is small (i.e. the slope is

at) at the point in question, in which case a con-
stant amount of noise has a greater detrimental
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e�ect on the numerical di�erentiation. Methods
based on second or higher derivatives are poten-
tially even more susceptible to noise as the prob-
lems associated with numerical di�erentiation are
even worse. [To92a] calculates velocity at areas of
su�cient contrast in the image using the technique
of [UGVT88] at about 2-3 frames per second on
a Sun 4/330. For his tracking application, dense
measurements are not needed, nor is it necessary
for highly accurate measurements. Any less than
a full 8 bits of information per pixel may make
second-derivative techniques unsuitable however
[To92b]. In practice for robustness, [UGVT88] im-
plements two variants of regularization techniques
to create a smooth optical 
ow �eld. Smoothing
the image can help attenuate the e�ects of noise,
however smoothing the basic optical 
ow measure-
ments by imposing a smoothness constraint or reg-
ularization such as in [HS81] can smooth over dis-
continuities in the motion �eld and introduce in-
accuracies, as well as increase the computational
cost. One option for improving performance for
these methods is to only calculate optical 
ow
where the spatial derivatives are large (i.e. the
gradient is steep), such as is discussed in [BFB94],
however this can result in a sparse motion �eld
which may be inadequate for some problems. It
is desirable to �nd a method of calculating optical

ow that is less sensitive to noise in the imaging
process, gives a dense output, and is computation-
ally e�cient.

2.2 Velocity-Tuned Filter Optical Flow

One class of optical 
ow techniques represents mo-
tion in terms of spatial and temporal frequencies.
From [Heg87], two-dimensional patterns translat-
ing in the image plane occupy a plane in the
spatio-temporal frequency domain:

!t = u!x + v!y

where !t, !x, !y are the temporal and spa-
tial frequencies of the motion respectively. This
approach assumes that several points in spatio-
temporal space can be detected in the moving sur-
face. If, however, the aperture problem exists,
then the points in spatiotemporal space occupy
a line, and the plane is not fully determined. To
solve this problem, [WA85] combines ten oriented
sensors into opponent-motion pairs, discarding the
smaller response of the pair. In theory, the output
of any two remaining sensors (within 90 degrees
of the actual motion) is su�cient to determine the
actual motion, since that would provide two lin-
early independent components of the velocity vec-

tor. [SS85] describes elaborated Reichardt detec-

tors, in which the point receptive �elds of the orig-
inal Reichardt detectors [R57] are replaced with
spatial �lters, and stresses the need for e�ective
voting rules in di�erentiating between di�erent
sensors' outputs. [AB85] describes the construc-
tion of phase-independent separable spatiotempo-
rally oriented opponent-motion �lters, and sug-
gests using the ratios between multiple sensors for
contrast-invariance; although higher contrast will
increase the absolute outputs of the motion sen-
sors, the ratios of their outputs should remain con-
stant. [AB85] also shows the relationship between
energy models and Reichardt detectors.

[WM93] �rst convolves the image with a set of
linear, separable spatiotemporal �lters and applies
the brightness constancy equation (equation 1) to
each. The resulting over-determined set of equa-
tions is then solved using a total least squares or
orthogonal regression technique.

[Fl92] describes a phase-based method which
describes component velocity in terms of the mo-
tion of level phase contours in the output of band-
pass velocity-tuned �lters. This technique is es-
sentially a di�erential method applied to phase
rather than intensity [BFBB92]. The full 2-
dimensional velocity �eld is determined by �tting
a linear velocity �eld to the component veloci-
ties. Although these methods can produce accu-
rate results ([BFB94], [WM93]), methods based
on velocity-tuned or spatiotemporal �lters can be
extremely computationally intensive, requiring up
to several minutes or even hours on a scienti�c
workstation. Thus without some powerful special-
purpose hardware, they are generally not suitable
for real-time robotic vision.

2.3 Correlation-based Optical Flow

In general it is not possible to determine the cor-
rect optical 
ow �eld given a pair of successive im-
age frames, due to the aperture problem. If certain
assumptions are enforced, however, then the prob-
lem becomes well-posed, and can be satisfactorily
solved in most cases. A relatively noise-resistant
method of calculating optical 
ow is described in
[BLP89a], [BLP89b] and summarized here. We
will assume that the maximum possible displace-
ment for any pixel is limited to � in any direction.
The actual value of � depends on the expected ve-
locities of the pixels in the image plane. This is
shown in Figure 4.

Since we are generally concerned with the 
ow
of rigid-bodied objects, it is usually the case that
any given pixel has the same velocity as those of
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Figure 5: Optical 
ow for pixels adjacent to a given
pixel is assumed constant due to the rigid-body as-
sumption. In this �gure, � = 3.

its neighbors. We assume that these pixels are in a
square neighborhood, or window, of size � centered
around the given pixel. That is, it is assumed that
the motion vectors for pixels adjacent to a given
pixel will be similar, as shown in Figure 5. All
examples in this paper use a value � = 7.

The motion for the pixel at [x,y] is de�ned to
be the determined motion of the patch of � � �
pixels centered at [x,y], out of (2� + 1) � (2� + 1)
possible displacements. We determine the correct
motion of the patch of pixels by simulating the
motion of the patch for each possible displace-
ment of [x,y] and considering a match strength
for each displacement. If � represents a match-
ing function which returns a value proportional to
the match of two given features, then the match
strength M(x,y;u,w) for a point [x,y] and displace-
ment (u,w) is calculated by taking the sum of the
match values between each pixel in the displaced
patch P� in the �rst image and the corresponding
pixel in the actual patch in the second image:

8u;w : M (x; y;u;w) =
P

�(E1(i; j) � E2(i +
u; j + w)); (i; j)�P�

A possible function for � is the absolute dif-
ference between the two pixels' intensity values;
another is the squared di�erence of their respec-
tive intensity values. In these cases a lower value
indicates a better match. Moravec [Mor77] uses
a variant of normalized cross correlation in stereo
matching. Although this has the advantage of in-
sensitivity to contrast, the sum of absolute di�er-
ences measure used in most examples in this paper
was found to be very insensitive to the image con-
trast. In addition, experiments using normalized
cross-correlation did not produce good results.

In an ideal situation, where we have only fronto-
parallel motion, no noise, constant ambient illu-
mination, and a translation of an integer number
of pixels (within our given range) we would ex-
pect the pixels of the two patches to match per-
fectly. The actual motion of the pixel is taken
to be that of the particular displacement, out of
(2�+1)� (2�+1) possible displacements, with the
maximum neighborhood match strength (equiv-
alently minimum patch di�erence); thus this is
called a \winner-take-all" algorithm. This is re-
peated for each pixel in the image, independently
of the other pixels, with the exception that mo-
tion is not computed along a � + b�=2c border at
the edges of the image since the matching operator
would have to access points that are not available
in the image itself. With a large neighborhood,
ties are relatively rare and are decided arbitrarily.

This algorithm has many desirable properties.
Due to the two-dimensional scope of the match-
ing window, this algorithm generally does not suf-
fer from the aperture problem except in extreme
cases [BLP89b], and tends to be very resistant to
random noise. In fact the algorithm's \winner-
take-all" nature does not even require that the cal-
culated match strengths have any relation what-
soever to what their values should theoretically
be, it is only necessary that their relative order-
ing remains correct. For example, a change in
illumination between frames would certainly af-
fect the individual match strengths, but need not
change the best matching pixel shift. Conversely,
any noise in a gradient-based method usually di-
rectly results in errors in the basic optical 
ow
measurements. In the case of a change in illu-
mination, the image intensity constraint equation
does not apply since total image intensity does not
remain constant. In addition, since the patch of a
given pixel largely overlaps with that of an adja-
cent pixel, match strengths for all displacements
for adjacent pixels tend to be similar, and so the
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resultant optical 
ow �eld tends to be relatively
smooth, without requiring an additional smooth-
ing step. Finally, since one optical 
ow vector is
produced for each pixel of input (excepting the
small �+b�=2c border), optical 
ow measurement
density is 100 percent. For these reasons, the basic
correlation-based algorithm tends to be robust in
practice, thus satisfying the �rst criteria for prac-
tical robotic vision.

[A87a] and [G87] pre�lter the images with band-
pass �lters and employ a coarse-to-�ne matching
strategy in which initial coarse estimates at one
spatial scale are fed into the next higher resolution
level. Although sub-pixel motions can be calcu-
lated by �nding the minima of a sum-of-squared-
di�erence with a quadratic approximation to the
intensity surface, this usually requires an itera-
tive procedure which increases computation time.
Furthermore, although matching methods such as
these can do well with translating images, they
are less e�ective when there are multiple veloci-
ties present [BFB94]; in any event hierarchal tech-
niques are not inconsistent with the methods de-
scribed in this paper.

[AP93] computes optical 
ow only along a sin-
gle dimension; often, the vector sum of two one-
dimensional optical 
ow vectors is su�ciently
qualitatively similar to the two-dimensional opti-
cal 
ow to be used in certain robotic vision tasks.
Using Green's theorems, the divergence of the op-
tical 
ow �eld can be estimated by integrating the
optical 
ow normal to a closed contour. By using
the estimated divergence of the 
ow �eld, time-to-
contact is calculated with errors reported on the
order of 10% [AP93]. The simplicity of this ap-
proach makes it a plausible candidate for biologi-
cal implementations.

[Hub94a] uses the correlation of 2-dimensional
image patches along a single dimension ([AP93],
[BLP89a]) to simulate the navigation of a 
y in
a synthetic maze using optical 
ow, at a rate of
about one frame per second using 512x512 images
[Hub94b]. A genetic algorithm is used to train
the arti�cial 
y's optomotor response to turbulent
air conditions to prevent collisions with the maze's
walls.

The independence of one pixel's chosen dis-
placement from all other pixels' displacements mo-
tivates massive parallel implementations such as
the one implemented on the connection machine
[BLP89a]. But even these massively parallel im-
plementations are only \close-to-real-time", on the
order of seconds per frame. Here we de�ne \real-
time" in the loose sense of being fast enough to be

A

B

A

C

Constant time delay, variable distances. Constant distance, variable time delays.

C

B

t 1

t 2

Figure 6: As the maximum pixel shift increases lin-
early, the search area increases quadratically. However
with a constant shift distance and variable discrete
time delays, search over time is linear.

calculated on-line and be usable in some reactive
system; on the order of 4-5 frames per second at a
minimum.
It is possible to perform the bulk of the com-

putations in customized silicon chips; one such
(partial) implementation has been done in CMOS
[C91]. [DW93] calculates structure-from-motion
using the same basic shift-match-winner-take-all
algorithm implemented on the Image Understand-
ing Architecture simulator; they report an esti-
mated 0.54 seconds per frame using a maximum
possible displacement � = 20. [LK93] calculates
optical 
ow (for the purposes of tracking) within a
limited radius (+/- 2 pixels vertically, +/- 3 pix-
els horizontally) using a 7x7 correlation window
at 10 Hz on 128x120 images using the Datacube
MaxVideo 200.
Certainly, without the luxury of custom image

processors, other techniques must be used for prac-
tical operation with conventional serial computers
due to the search-based nature of the optical 
ow
algorithm itself, which is described next.

3 Linear-Time Optical Flow

Since correlation-based optical 
ow algorithms
(e.g. [BLP89a]) satisfy the �rst criteria for practi-
cal robotic vision, that of robustness, we will use it
as a starting point. The second criteria for practi-
cal robotic vision is computational e�ciency. This
section will analyze the computational complexity
of the traditional correlation-based optical 
ow al-
gorithm and develop a space-time tradeo� to cre-
ate a very fast, linear-time optical 
ow algorithm.

3.1 Time-Space Dimensional Reduction

One limitation with the traditional correlation-
based algorithm described in Section 2.3 is that
its time complexity grows quadratically with the
maximum possible displacement allowed for the
pixel; see the left of Figure 6. Intuitively, as the
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speed of the object being tracked doubles, the time
taken to search for its motion quadruples, because
the area over which we have to search is equal to
a circle centered at the pixel with a radius equal
to the maximum speed we wish to detect.
However, note the simple relationship between ve-
locity, distance and time:

velocity =
�distance

�time
:

Normally, in order to search for variable veloci-
ties, we keep the inter-frame delay �t constant and
search over variable distances (pixel shifts):

�v =
�d

�t
:

However, we can easily see from Figure 6 that do-
ing so results in an algorithm that is quadratic in
the range of velocities present. Alternatively, we
can keep the shift distance �d constant and search
over variable time delays:

�v =
�d

�t
: (3)

In this case, we generally prefer to keep �d as small
as possible in order to avoid the quadratic increase
in search area. Thus, in all examples �d is �xed
to be a single pixel. (Note however, there is noth-
ing preventing an algorithm based on both vari-
able �d and �t's). Since the frame rate is gen-
erally constant, we implement \variable time de-
lays" by integral multiples of a single frame delay.
Thus, we search for a �xed pixel shift distance
�d = 1 pixel over variable integral frame delays
of �t 2 f1; 2; 3; :::Sg. S is the maximum time
delay allowed and results in the slowest motion
calculated, 1=S pixel/frames. For example, a 1=k
pixel/frames motion is checked by searching for a
1-pixel motion between the current frame t and
frame t � k. Thus our pixel-shift search space is
�xed in the 2-D space of the current image, but
has been extended linearly in time. As before,
the chosen motion for a given pixel is that motion
which yields the best match value of all possible
shifts.
For example consider Figure 7 and Figure 8.

Here we are trying to calculate the optical 
ow
for pixel (1,1) at the current frame, image T . In
Figure 7 the optimal optical 
ow for pixel (1,1)
from image T � 1 to image T is calculated to be
a pixel shift of (1,-1). This is only a temporally
local measurement however; it may not be the �-
nal chosen motion. In Figure 8 the same search is
performed, except using image T � 2 as the �rst
image. In this case the calculated motion happens

Image t−2 Image t−1 Image t
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Figure 7: Visualization of motion from image T � 1:
(1,1) to image T : (2,0). This would be an optical 
ow
of (1,-1) pixel/frames motion for pixel image T : (1,1).
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Figure 8: Visualization of motion from image T � 2:
(1,1) to image T : (1,2). This would be an optical

ow of (0,1/2) pixel/frames motion for pixel image T :
(1,1).

to be a pixel shift of (0,1) pixels over 2 frames,
equivalently (0,1/2) pixel/frames motion. If the
maximum time delay S = 2, then the procedure
would stop here, otherwise we would continue pro-
cessing frames until �nally the optical 
ow from
image T � S to image T was calculated as well.
The best of all these motions is taken to be the
actual motion.

For a given velocity of 1=�t pixel/frames, we as-
sume that motion is constant for t frames in order
to register a cumulative motion of one pixel. Fail-
ure of this assumption can result in temporal alias-
ing, discussed in more detail later. [P90] calcu-
lates the normal velocity of edges using temporal-
delay sensors which are summed in a later stage
to determine actual motion. The images are �rst
smoothed with a Gaussian to reduce the chances
of aliasing due to multiple edges appearing at a
single sensor.

This time-space tradeo� reduces a quadratic
search in space into a linear one in time, result-
ing in a very fast algorithm for computing optical

ow. This partially satis�es the second criteria for
practical robotic vision, that of real-time perfor-
mance. Performance issues, particularly hardware
considerations, are discussed in detail in [C94b].
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One factor in producing real-time performance
is that the original images are generally subsam-
pled from 256x256 pixels to 64x64 pixels in size.
Ideally, some optimal �ltering procedure would be
used to produce these reduced-resolution images,
however this is generally not possible in a real-
world situation. This is because the original im-
ages must be subsampled on the framebu�er it-
self in order to reduce the framebu�er to host
computer memory bandwidth requirements. The
method of subsampling is not known, but due to
limited hardware on the framebu�er itself it is
likely to be a simple technique such as a box �lter
which performs an unweighted average of the pix-
els within the �lter area, i.e., most likely a 256x256
to 64x64 reduction is performed by an unweighted
averaging of each subsequent 16x16 block of pix-
els. Since this system is over �ve years old, normal
advances in framebu�er technology would be ex-
pected to greatly increase this rate. For the mo-
ment however, we will simply have to deal with
this loss in resolution. For this reason as well,
all images in this paper that are originally greater
than 64x64 in resolution are subsampled to 64x64
using a box �lter, since it is likely the technique
used by simple framebu�ers (to use a more sophis-
ticated technique would give an unrealistic advan-
tage to synthetic and high-resolution images).

When viewing such a subsampled image se-
quence, it is clear that considerable aliasing is oc-
curring (see [FvD+90] for details on the problem
of aliasing). In fact the aliasing is so bad one won-
ders how the algorithm can work at all. Figure 9
provides an example of this problem. On the left,
a dark pixel moves between two CCD sensors. In
particular, this dark pixel is split between both
sensors during frame 1. This split cannot be rep-
resented in an actual image of the given resolution;
however, the CCD sensor must provide a unique
intensity for each pixel location. Thus in the ac-
tual image the pixel's intensity is \split" between
both pixel locations. An image sequence f0, 1, 2g
would result in a 
ickering e�ect as the dark pixel
passed between the two positions. For an algo-
rithm measuring spatial derivatives, this could re-
sult in inaccurate measurements. The linear-time
correlation algorithm, however, does not measure
these types of spatial derivatives. Instead, it per-
forms pixel matching across space and time. In
this example, a perfect pixel match can be made
between frame 0 and frame 2 (a motion of 1/2
pixel/frames), completely avoiding the di�culties
associated with frame 1.

This algorithm has been successively used on

Frame #.

0

1

2

Intensity distribution.Pixel positions.

Figure 9: A dark square moves across a light back-
ground. As the square crosses a pixel boundary, its
intensity is \split" between the two adjacent pixels in
the image.
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T−1

T−2
t = 2

t = 1

actual
motion

B−>A = correct match
C−>A = false match

Figure 10: The Temporal Aperture Problem. The cor-
rect motion is B ! A, however if our window in time
is too narrow, an incorrect motion C ! A may be
detected, because the contours are similar at points C
and A.

many real and synthetic image sequences for a
variety of real-time robotic vision tasks ([CB91],
[C93], [C94a]). [Du94a] reports being able to use
this optical 
ow algorithm to instantiate some 
y-
like control laws ([War88]) in a small mobile robot.
With the camera mounted on top of the robot, the
image information from the camera is fed through
the optical 
ow routine and the motion informa-
tion is then used to directly control the robot.
With a frame rate of 4-5 frames per second and the
robot moving at 4-5 cm per second, the robot is
able to successfully maneuver through an unmodi-
�ed o�ce environment. Recently, [Du94b] has also
been able to use the algorithm to play the game of
tag with a cardboard target, and even with a slow-
moving person, using only optical 
ow for pursuit,
docking, and escape.

3.2 Temporal Aperture Problem

The standard aperture problem has already been
discussed in Section 2.1. In the temporal domain,
it takes on a slightly di�erent form. In Figure 10
there is a contour translating to the lower-right
at a certain speed, such that it requires �t = 2
time units to translate one pixel. We expect a
match between points A at time T and point B
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at time T � 2 to be very close. However, we get
another \close" match between points A at time
T and point C at time T � 1. Globally, this mo-
tion is not correct, however motion is calculated
independently at each time delay, and locally this
false motion has a better match than no motion
for that time delay.

If the contour shown extended in�nitely with
no end markers or distinguishing illumination
changes, then we would have an instance of the
strong aperture problem [BLP89b], which in prin-
ciple cannot be solved. If there is at least some
variation of the isocontour and/or textural di�er-
ences, then we have an instance of the weak aper-
ture problem, which can be solved but requires a
non-local mechanism. In our case of an area-based
correlation algorithm, our non-local mechanism is
the matching window, which has a �nite (but usu-
ally su�cient) spatial extent.

In the case of the standard aperture problem,
the motion of a contour may be ambiguous when
viewed through a small aperture (or equivalently
when our matching window is too small). In the
case discussed above, the incorrect motion of the
contour may be detected when our search \win-
dow" through time is too narrow. Thus we call
this the temporal aperture problem. By su�ciently
extending our search through time and picking the
best match across time as well as space, we can in
general avoid this problem. However, there is one
special circumstance where this approach fails due
to temporal aliasing, discussed next.

3.3 Temporal Aliasing

Previously, we have seen that we may solve the
aperture problem for most cases by taking the best
match value for a translating pixel in both time as
well as space. Unfortunately, this does not always
give the correct result. Examine Figure 11. Pixel
A translates to pixel B and then to pixel C, as if
some object was executing a tight turn. In this
diagram, it might be entirely possible that the A
) C motion may yield a better match than B
) C. If this is true, then based on a best-match
policy, we would erroneously choose A) C as the
correct motion.

One \obvious" solution is to assume that the
faster motions are correct.

It works for this example, and one can argue
that the potential for aliasing is only limited by
the sampling rate. Therefore, it might seem that
the motion B) C was correct, based on temporal
aliasing arguments. This solution was presented
in [CB91], and was a reasonable solution at the

A

C B

position at time t−2 :
position at time t−1 :
position at time  t    :

A
B
C

motion at time t :  
  B−>C  or  A−>C  ?

?

?

Figure 11: Temporal Aliasing. The correct motion is
B ! C, however A! C may give a better match. Our
solution to the Temporal Aperture Problem would fail
for such a case.

time, because available computational power lim-
ited practical motion detection to a small num-
ber of temporal delays. Now however, delays of
as much as �t = 20 frames are practical and
have been successfully tested. In these cases, the
\fastest �rst" rule [CB91] too often selects an in-
correct faster motion over a slower, better match-
ing motion. The Temporal Aperture Problem is
an example of this phenomenon.

Our solution to this problem is the following:
in cases where the best velocity match is not in
the same direction as the fastest motion for that
time frame, then we have an inconsistency. Ei-
ther 1) the slower motion is due to temporal alias-
ing or 2) the faster motion is due to the temporal
aperture problem. To resolve the inconsistency,
we perform a second search over the multiple in-
dependent measurements, starting from the best
matching velocity and continuing until the fastest
velocity. Among these, we select as the correct mo-
tion the velocity with the best matching value sub-
ject to either a temporal consistency constraint, or
the motion satis�es the intent of the \fastest-�rst"
rule. In the former case, we assume that a motion
has temporal support if it the motion at time t is
\similar" to that at time t+1. To do this, we per-
form a \look-ahead" of one frame, and we de�ne
\similar" to be motion in the same direction (i.e.
we allow for slight speed variations). In the latter
case, if the motion is in the same direction as the
fastest motion in the image, then we accept it.

Although not guaranteed to be correct, this
heuristic has been thoroughly tested on many nat-
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Figure 12: Only 1/(frame delay) velocity measure-
ments can be detected in the current implementation.

ural and synthetic image sequences and seems to
perform quite well. Slow motion is accommodated
by the temporal consistency constraint, and faster
motions are supported by the modi�ed \fastest-
�rst" rule. Note that this additional search is lim-
ited to the number of velocities searched over, i.e.
it is still a strictly linear algorithm. In addition,
we limit our look-ahead to only one frame. Al-
though techniques that use considerable temporal
support can perform quite well [BFBB92], in real-
time robotics it is not acceptable to impose a la-
tency of a large number of images before a result
is produced. The lookahead of a single image used
by this algorithm is a relatively modest require-
ment.

4 Harmonic Search Intervals

We have seen that by performing searches in time
instead of space we can, in theory, convert a
quadratic time algorithm into a linear one. In this
section we will more closely examine this point.
One disadvantage of the traditional algorithm is

that it computes image velocities that are integral
multiples of pixel shifts [BLP89a,b] : f1,2,3,...,�g
pixels per frame. Although the algorithm dis-
cussed in this paper does calculate sub-pixel mo-
tions, it still computes velocities that are basi-
cally a ratio of integers (generally with the nu-
merator equal to one pixel), not a truly real-
valued measurement. Given �d = 1 and discrete
frame delays �t = f1; 2; 3; :::; Sg equation 3 yields

scene point

0−

0−

0−

d
v   t

v   t  sin 0−

0−
v   t  sin 0−

d
~~

focus of projection
at time t

focus of projection
at time t+1

Figure 13: [From Nalwa 93] Change in visual angle is
inversely related to depth.

f1=1; 1=2; 1=3; :::;1=Sg pixels per frame equivalent
motion, Figure 12. An immediate consequence of
this is that sub-pixel motions are now detectable,
correcting a de�ciency of the original algorithm.
Although the linear set of velocities may seem
more intuitive than the harmonic series, in fact
the latter is often much more suited to the types
of motion found in real vision problems.

One example is shown in Figure 13 [Nal93]. If
the velocities in the image are small, we can ap-
proximate

�� �
v�t sin �

d
(4)

where � is the visual angle (although visual angle
is a measure used with spherical perspective pro-
jection, rather than planar perspective projection
which is more appropriate for a machine vision
system, they are approximately the same near the
line of sight where tan � � �. Although the former
has the advantage of being independent of any co-
ordinate system, the latter more accurately char-
acterizes a machine vision system (see also [T91],
Appendix). The motion of a point in an image for
a moving camera with line of sight orthogonal to
the direction of motion is inversely proportional to
a point's distance from the focus of projection, and
can be used to determine depth; for example see
Figure 14. This algorithm, which computes veloc-
ities inversely proportional to the discrete frame
delays �t = f1; 2; 3; :::Sg is therefore very well
suited to computing depth via motion parallax. It
would be muchmore awkward to attempt to calcu-
late motion parallax using a linear set of motions
f1; 2; 3; :::; �g pixels per frame. Although there is a
sine factor in equation 4, note that sine \degrades
gracefully" with small deviations from 90 degrees,
e.g., a 10 degree deviation from orthogonal motion
to the line of sight is a factor of 0.985, and a 20 de-
gree deviation (quite large for even a moderately
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Figure 14: Depth from motion parallax. Camera is
translating left, with the resulting optical 
ow and
grey-level shaded relative depth map. Lighter areas
indicate objects closer to the camera.

calibrated mobile robot) still yields 0.94. Even a
very large 30 degree deviation from the orthog-
onal yields only a .866 factor. To complete the
argument, even if the deviation was a ridiculous
45 degrees (i.e. the robot was heading as much
parallel to the line of sight as orthogonal to it!)
the factor is still only 0.707. Thus, we do not need
anywhere near perfect orthogonal motion to make
practical use of depth from motion parallax.
It should be noted that it is not necessary

to limit the measured velocities to a strict har-
monic sequence. Given that the motion to be
detected lies within our slowest and fastest mea-
surements (1=1 and 1=S pixels per frame), and
in the absence of bad spatial aliasing, we need
only make measurements as precisely as we need.
For example, we could detect a range of velocities
v = f1=1; 1=2; 1=4;1=8; ::;1=(2blog2Sc)g pixels per
frame. In e�ect, this means that we have the op-
tion of detecting up to a quadratic range of veloc-
ities, again at only a linear-time cost. Of course,
the resolution within these ranges is reduced by
the same factor, but this may be a useful trade-o�
for a particular application. Conversely, it is gen-
erally not possible for the traditional algorithm
to \skip" pixels, since the actual motion may be
missed.

5 Summary

The space-time tradeo� discussed in Section 3.1 al-
lowed the development of an optical 
ow algorithm
that was linear in the range of velocities detected,
rather than quadratic as in the traditional algo-
rithm. Unfortunately, dealing with time in this
new manner introduces the problems of tempo-
ral aliasing and the temporal aperture problem,
which were addressed by adding heuristic tempo-
ral antialiasing to the linear-time optical 
ow al-
gorithm. Adding time to the search space also had

some unexpected bene�cial side e�ects, as noted
in Section 4.
One disadvantage of the patch-matching ap-

proach is that the basic motion measurements are
integer multiples of pixel-shifts. Although the
linear-time algorithm discussed in this paper does
calculate sub-pixel motions, it still computes ve-
locities that are basically a ratio of integers (gen-
erally with the numerator equal to one pixel), not
a truly real-valued measurement. Although calcu-
lating real-valued optical 
ow measurements may
be possible by using interpolation, this remains fu-
ture work. In addition, the angles computed in the
current implementation are only the eight nearest-
neighbor pixels for eight possible angles of motion
(plus the possibility of no motion). Increasing an-
gular accuracy may also be possible by interpo-
lating pixels, however this too remains as future
work. Although it is not always necessary to have
accurate optical 
ow to perform such functions as
obstacle avoidance ([NA89]), [C94b] demonstrates
that despite these de�ciences remarkable accuracy
may still be achieved in the context of calculating
time-to-collision.

6 Conclusions and Future Work

The current implementation of the algorithm still
su�ers from many limitations. One example is the
limited angular accuracy due to the standard rect-
angular tessellation of images; this can be clearly
seen in Figure 1. This can be overcome in principle
by shifting the input image by a half-pixel in ei-
ther the X or the Y direction, and performing the
search over these new pixels as well. For applica-
tions that demand increased angular accuracy, it
may be worth the additional computational cost.
This approximation can be performed by either in-
terpolation, or exactly in cases when subsampling
is done by shifting the input array appropriately.
A similar form of interpolation via pixel-shifting
could be used to increase the accuracy of the mag-
nitudes of the motions detected.
The capturing of o�-object pixels is not an is-

sue in many types of qualitative computer vision
where precise boundary detection is not needed,
nor is it an issue in the case of time-to-contact
with a single surface. In cases were more precise
boundary detection is desired however, one option
is to zoom in on boundaries using a pyramid tech-
nique such as in [BBH+89]. Figure 15 shows the
optical 
ow algorithm run on the same SRI tree
sequence as in Figure 14, except that the image is
zoomed by a factor of 2, and shows the outline of
the branches much more clearly. One issue with
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Figure 15: Depth from motion parallax, using image
zoomed by a factor of 2. Camera is translating left,
with the resulting optical 
ow and grey-level shaded
relative depth map. Lighter areas indicate objects
closer to the camera.

this type of processing is that the image motion
for such a zoomed image is double that of the nor-
mal sequence; a method of dynamically adjusting
the range of velocities detected would be useful in
this case.

[BFBB93], [NG92], [VG92], [SAH91] make use
of con�dence measures in calculating optical 
ow.
Conversely, the \winner-take-all" nature of this
algorithm makes no use of con�dence measures
whatsoever, instead relying on the algorithm's in-
herent smoothness in producing a 100% dense out-
put. If dense measurements are required, this fact
may be viewed as a strength; if only sparse mea-
surements are acceptable, it may be viewed as a
weakness. In fact, there would be little computa-
tional savings in calculating optical 
ow only at
areas of high contrast such as edges [Hil84] or cor-
ners ([Nag87]) since the pipelined nature of the
box-�lter generally assumes that optical 
ow is
calculated at all points in the image to be e�-
cient [C94b]. Although it may be possible to use
the match strengths as a measure of con�dence, it
seems more bene�cial to use the match values for
interpolation of velocities. In this way all veloci-
ties become more accurate, rather than throwing
out \bad" matches.

Although the �eld of computer graphics is
mostly concerned with the opposite of com-
puter vision, that is the process of converting 3-
dimensional scenes into two-dimensional images,
concepts from one �eld are very often applicable
to the other. For example, spatial resampling tech-
niques can be used in the construction of pyramids
[F86]. [Burt81] presents a Hierarchal Discrete Cor-
relation technique which can very e�ciently ap-
proximate a Gaussian kernel. It remains to be seen
how useful antialiasing techniques such as in [SS93]
are applicable to the problems described in this

paper. In addition, there would be a tremendous
potential for using commercial graphics hardware
to assist computer vision algorithms should a com-
mon ground be found. Special-purpose MPEG
encoders/decoders, or special-purpose instructions
found on general-purpose CPU's) are the �rst ex-
amples of this.
Ultimately, it is likely that accurate and robust

structure-from-motion will make use of both depth
from stereo as well as depth from motion, as in
[TGS91]. The process of correspondence in optical

ow can be similar to that of binocular stereo, ex-
cept that in the former case the matching is across
time, and in the latter the matching is across
space [Rock75]. Both applications can make use
of various methods for correspondence (issues of
correspondence and image matching are discussed
in [HS93]), however tracking across space is not
equivalent to tracking across time. In particular,
the former can make use of the epipolar constraint
in matching across space. The latter's matching
across space and time can make use of the velocity
equation in matching across both space and time.
Of course, stereo can make use of spatiotemporal
coherence as well.
The major barrier to applying this algorithm

as a generic optical 
ow \black box" for robotic
vision is that it must be carefully adapted to the
speci�c task in order to produce quantitatively ac-
curate results, as in the case of time-to-contact.
It would be pointless to attempt to measure the
performance of this particular algorithm per se us-
ing the methods used in [BFBB92] and [WM93];
since the individual optical 
ow vectors are quan-
tized in magnitude and direction, the average er-
ror for a single pixel would be very poor. But
note that optical 
ow is only valuable when used
in the context of a speci�c task, such as obsta-
cle avoidance [MBLB91] or time-to-contact, and
the performance of this algorithm when applied
to the latter has been shown to be exceptionally
good. However, it remains to be seen if such per-
formance can be equaled for other robotic vision
tasks. Given the algorithm's inherent robustness,
computational e�ciency, and demonstrated poten-
tial accuracy, there is a good chance for success.
Ideally, a more general procedure for adapting this
real-time optical 
ow algorithm to speci�c robotic
vision tasks will someday emerge.
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