
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �

�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�� �
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
� M a x { P l a n c k { I n s t i t u t

f �u r b i o l og i s che Kybe rne t i k
A r b e i t s g r u p p e B �u l t h o f f

Technical Report No. 9 December 1, 1994

Face Recognition across Large Viewpoint Changes
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Abstract

We describe a computational model of face recognition that makes use of the overlapping

texture and shape information visible in di�erent views of faces. The model operates on

view dependent data from three-dimensional laser scans of human heads, which provided

three-dimensional surface data as well as surface image detail in the form of a texture map.

View-dependent information from these surface and texture representations was registered

onto separate three-dimensional head models. We used an auto-associative memory model

as a pattern completion device to �ll in parts of the head from a learned view when a test

view with partially overlapping information was used as a memory key. We show that the

overlapping visible regions of heads for both surface and texture data can support accurate

recognition, even with pose di�erences of as much as 90 degrees (full face to pro�le view)

between the learning and test view.
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1 Introduction

A number of recent computational models of face

recognition and analysis have relied primarily on

face encodings derived from an image-based repre-

sentation of a single view of a face [3, 4, 10, 11, 12].

The primary advantage of an image-based rep-

resentation is that it eliminates the need to se-

lect and extract a specialized facial feature set

for describing/representing faces. Additionally,

with such representations, information about sub-

tle shape and texture variations in the faces is re-

tained and can be used for recognition. This kind

of information is frequently discarded when pre-

selected facial feature sets are used.

The primary limitation of image-based repre-

sentations is that they are not optimally suited

for recognizing faces across transformations that

result in large changes in the image-based informa-

tion. In other words, models that use these kinds

of representations are able to recognize novel in-

stances of faces only insofar as their image-based

codings are similar to a learned/stored exemplar

of the face. One important case in which this be-

comes highly problematic is when novel instances

of stored faces di�er in pose or viewpoint from the

stored exemplar.

In recent years, clever elaborations of image-

based codes have been developed to deal with this

problem. For example, Lades, et al. [8] imple-

mented a dynamic link architecture that operates

on an elaborated image based code consisting of

a series of orientation-selective Gabor jet �lters.

These jets sample the image at regular intervals

on the vertices of a lattice and are \elastically"

connected to their neighbors. The Gabor jet cen-

ters can deform to �t a novel instance of a face.

A match cost is computed as a function of the

quality of the �lter match and a term penalizing

lattice distortion. Lades et al. achieved excellent

recognition performance for faces rotated 15 de-

grees from the original orientation. While it is

likely that this model can be extended to handle

larger viewpoint changes, it is unlikely that it will

be extendable easily to viewpoint changes exceed-

ing 25-30 degrees. This is due to the fact that

substantial portions of the stored face over which

the lattice samples were taken will not be visible

in the novel face with viewpoint changes of this

magnitude.

An alternative approach to the problem of view

independent face recognition is to use multiple

views of faces to generalize recognition perfor-

mance between sampled views [1], [15]. This

approach has been implemented successfully in

template-based systems [14] by Beymer [1] and in

autoassociative memory models by Valentin and

Abdi [15]. In the template model, recognition

of a novel view of a face occurs by locating a

subset of facial features and by using their loca-

tion/con�guration to register the input face geo-

metrically with the model views. The input face is

then correlated with stored face images to produce

a match. In the autoassociative memory, multiple

views are stored and intermediary views can be

reconstructed. For both cases, excellent recogni-

tion generalization over a wide range of poses was

achieved. This approach is quite e�ective if several

views of faces are available.

2 Rationale and Approach

It is well known that human observers are capable

of recognizing familiar faces from any of a number

of viewpoints. By face recognition, we mean the

classi�cation of a face as \familiar"/\known" ver-

sus \unfamilar"/\unknown". Clearly, this ability

could be due to the fact that when a face is famil-

iar to us, it is likely that we have encountered it

previously in a variety of orientations. For unfa-

miliar faces, however, even those encountered only

from a single viewpoint, while human performance

across large pose changes is not perfect, it is still

well above chance [7]. This latter fact indicates

that there is information available in a single view

of a face to make relatively accurate recognition

judgments even across quite large changes in view-

point (e.g., full face to pro�le). Intuitively, this is

not surprising since much of the information that

makes individual faces recognizable is visible from

largely di�erent poses/viewpoints. This kind of

information includes both global features such as

skin texture and tone, as well as very local features

such as moles, blemishes and dimples.

In the present study, we describe a system that

uses a view-dependent coding from only a single

pose of a face, to recognize the face when it has

been rotated by 45 and 90 degrees. To do this,

we have made one important assumption. Specif-

ically, we assume that a person or computational

model can determine, with reasonable accuracy,

the view from which a face is imaged, e.g., can de-

termine whether any given view is taken from the

front (i.e., full-face), side (i.e., pro�le), or some

other intermediary position. With this informa-

tion, it is possible to map the view-dependent

information onto a three-dimensionally invariant

code commonto all heads. In short, when we know

that we are looking at a pro�le, we can map the

information it contains onto the \pro�le section"
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of a memory representation of heads.

In any given pair of views of a head, up to nearly

180 degrees of rotation between the two, some

common parts of the surface will be visible. In

fact, for full face and pro�le views (90 degree rota-

tion), quite a large area of surface is visible in both

views. Assuming that a reasonably accurate map-

ping can be made to a standardized head code, the

question then becomes, \How useful is the overlap-

ping information between any given pair of views

of a head for recognizing the head (i.e., distin-

guishing a \known" head from other \unknown"

heads)?

The method we employ to answer this ques-

tion is a simple extension of the eigenvector-based

analysis that has been used frequently in compu-

tational models of image-based face recognition in

recent years [3, 4, 10, 11, 12]. As has been pointed

out [10, 13], this method is consistent with much

older work by Kohonen [5] using autoassociative

memories for face recognition. Of direct inter-

est for the present work, Kohonen illustrated that

an autoassociative memory can serve as a pattern

completion device when noisy or partially ablated

faces are used as memory keys.

The present study is a very straightforward ex-

tension of this approach as follows. We treat a

view of a head (e.g., full-face, three-quarter, or

pro�le) as partial information about the head.

The remaining information about the head is not

completely unspeci�ed since we have general infor-

mation about the shape of human heads. Thus, a

single view of a face is coded in the present study

as a complete head, part of which contains the in-

formation visible from the encountered view. The

remaining parts are �lled in with average head val-

ues taken from a set of faces. When a face is en-

countered from a single view, and re-encountered

from a novel view, the re-encountered view (coded

as above) acts as a partially ablated version of a

learned pattern. This partially ablated pattern

can be used as a retrieval cue for the autoassocia-

tive memory, which acts to complete the pattern

based on its similarity to a learned pattern. Thus,

the question becomes, \To what degree is overlap-

ping information su�cient to retrieve the learned

view, and hence, distinguish previously encoun-

tered faces from novel cases under various degrees

of pose change?"

3 Simulations

We carried out two simulations contrasting the rel-

ative utility of texture versus surface-based data

in discriminating learned from novel heads. The

methods are carried out separately on each kind

of face code. For convenience and brevity, we de-

scribe the methods for the range data, noting any

di�erences in methods required to deal with the

texture data.

3.1 Methods

Apparatus. Simulations were performed on a

database of laser scanned three-dimensional head

models that were collected using a Cyberware

Laser ScannerTM .

Figure 1: Top left: Subject represented using both
the surface data and texture map. Top right: the
same subject represented using only the surface data.
Middle: the texture data only, \unrolled" to see the
entire head. Bottom: the range data only, \unrolled"
to see the entire head.

The representation of the scanned heads con-
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sisted of two parts: (1) a three-dimensional sur-

face map, which we will refer to as range data;

and (2) a texture map containing color values at

all points of the three-dimensional surface. Fig-

ure 1 illustrates the di�erence between texture and

range data. The top left image of Figure 1 shows

a full-face view of the texture map pasted onto

the range data. The top right image is a full-face

view of the range data displayed here by modeling

the illumination of the three-dimensional surface

(range data) of the head with a standard Lam-

bertian shading model. This image resembles a

bust of a person made out of uniform material

(constant albedo). The middle image of Figure 1

shows the texture map for the entire head. This

can be thought of as a kind of \peeled o�" skin.

A similar \unrolled" representation of the range

data appears in the bottom image. These repre-

sentations comprised the data for our simulations.

Gray levels are used to display \depth" values for

the surface. We discuss the nature of the depth

value coding for the head model in detail shortly.

If the texture data are wrapped around the sur-

face (range data of the same person), any view of

the person can be computed with standard com-

puter graphics techniques. Figure 2 shows the

three-quarter and pro�le view of the person shown

in full face view in Figure 1.

Figure 2: Left: Subject (shown in Fig. 1) rotated to
three-quarter view. Right: the same subject shown in
pro�le view.

Stimuli. Sixty-eight volunteers from the

Max Planck Institute for Biological Cybernet-

ics in T�ubingen, Germany and the surrounding

T�ubingen area were scanned. To keep the face

area free from hair, volunteers were asked to wear

a bathing cap, which was adjusted to hide the

hair as much as possible. Care was taken to align

heights of volunteers' heads with a central point

that rested on the top of the head surface during

the scan.

The range data consisted of the lengths of radii

from a vertical axis centered in the middle of the

subject's head to the head surface. Speci�cally,

the vertical axis formed the center of an imagi-

nary cylinder. Each head comprised a 512-by-512

grid of radius lengths sampled at equally-spaced

angles about the vertical axis and at equally-space

heights along the long axis of the head. This grid is

represented schematically in the \unrolled" range

and texture maps in Figure 1.

The texture data consisted of a standard rgb im-

age that maps point for point onto the range data

grid. For purposes of the present simulations, rgb

values were reduced to gray levels using a standard

weighted linear combination of the red, green, and

blue values (gray = :30� r + :59� g + :11� b).

Since the quality of the laser scan data in the

region of the hair was unsatisfactory, and since we

were not interested in the back of the head, fur-

ther processing of the heads was carried out as

follows. First, the region covered by the bathing

cap was removed completely. Second, a vertical

cut was made behind the ears. Third, with a hor-

izontal cut, we removed the shoulders. Finally,

prior to the simulations, we aligned all of the head

data vertically to a constant eye height, by locat-

ing (manually) the y coordinate of the eye level

of each head individually and digitally translating

the head surfaces accordingly. Simple arithmetic

averages of the range and texture maps over all 68

heads were used as data for �lling in parts of the

head not visible in a given view.

Views of heads for each pose group were cre-

ated by ablating parts of the surface map that

would not be visible from that view and replac-

ing these parts of the range or texture map with

values taken from the average range or texture

map, respectively. While there are di�erent ways

to de�ne the face views, we approximated them

simply as follows. First, the radius values of the

cylindrical coordinate system were converted into

three-dimensional Cartesian coordinates. Next,

the head was rotated about the vertical axis 0,

45, and 90 degrees, for the full-face, three-quarter,

or pro�le views, respectively. Finally, the outer

edges/contours of the rotated face were located by

�nding the minimum and maximum x coordinates

in each row of the scan. \Hidden" sample points

were eliminated by replacing radii in each row with

indices greater or lesser than these outer edge co-

ordinates with values taken from the average head.

This algorithm for �nding the views is not perfect,

since it will miss some internally blocked regions

of the face, which have the extreme x coordinates
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in the row more peripherally located. (e.g., the

inner ear regions in the full face, for which the

extreme x coordinates for the row are located on

the pinnae of the ear). However, in general, quite

good approximations of the views can be made.

The top of Figure 3 shows a three-quarter view of

the range data taken from a head. The bottom

two images of this �gure show: (a.) left: the same

head turned to a full-face view so that the missing

parts can be seen easily; and (b) right: the same

head and view with the missing parts �lled in by

values taken from the average range map.

Figure 3: Top: Range data from a face viewed from
three-quarter pose. Left: Head rotated to see missing
parts. The weakness of the view algorithm can be seen
(i.e., some parts behind the bridge of the nose should
be invisible but are retained due to the existence of
more peripheral x values on the cheeks). Right: Ro-
tated head with missing parts �lled in with values from
the mean head.

Learning Procedure. A cross-product matrix

was created from the range data for 51 of the orig-

inal 68 heads (26 male and 25 female). Hence-

forth, we refer to the heads used to create this

matrix as the learning set. Heads in the learning

set comprised three pose groups: full-face, three-

quarter, and pro�le, with almost equal numbers of

male and female heads (i.e., 17) per group. The

remaining 17 heads from the original 68 were re-

served for testing purposes. Each face view was

coded as a vector consisting of the concatenation

of the rows of the range map. The mean of the

learning set was subtracted from all face vectors,

and the vectors were normalized in length, such

that fTi fi = 1. The cross-product matrix was

computed as:

A =

nX

i=1

fif
T

i (1)

where fi is the ith face and where n is the number

of faces1.

Recognition Testing. Using an eigenvector-

based representation computed from the learning

set of head stimuli, a face view fi from this set can

be expressed, without error, as a weighted sum of

the eigenvectors of the matrix A as follows:

fi =

rX

j=1

(fi � uj)uj (2)

where (fi � uj) is the dot product between the ith

face and the jth eigenvector and where r is the

rank of the matrix. An estimate of a novel view of

a learned face or an unlearned face can be made

by applying the same operation (i.e., Eq. 2) to

the novel view or unlearned face. In this case,

however, the left side of Eq. 2 does not produce

a perfect reconstruction of the face, but rather,

an estimate, which we will refer to as f̂i. The

quality of this estimate can be evaluated by taking

a measure of the similarity between the original

and reconstructed vectors, which we measured as

the cosine between fi and f̂i as follows:

(fi � f̂i)

kfikkf̂ik
(3)

Perfect reconstructions of fi yield cosines of 1.

In summary, recognition testing is applied to

three kinds of inputs: (1) learned views of learned

faces, which are retrieved without error; (2) novel

views of learned faces; and (3) unlearned faces.

The design of the present study involved the

manipulation of two independent variables: learn-

ing pose (full-face, three-quarter, and pro�le) and

testing pose (full-face, three-quarter, and pro-

�le). The dependent variable was a measure of

the model's ability to discriminate learned ver-

sus novel faces in each of the nine combinations

of the two independent variables. Face recogni-

tion, the dependent variable in this design, in-

volves a decision about whether a face is \known"

or \unknown". With eigenvector-based represen-

tations of faces this task has been simulated in

1In fact, the normalization and centering proce-
dures makes this matrix a correlation matrix
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several ways (cf., [11] for an alternative method

to the one employed here). In the present study,

we have used signal detection theory [6] to model

face recognition (cf., [10]). In general, the idea

is that the \signal" is comprised of known faces,

which must be discriminated reliably from \noise"

or unknown faces. In the present case, \known"

faces include all views of any face learned, re-

gardless of the viewpoint from which the face was

learned. \Unknown" faces were those not learned

from any viewpoint. The measure on which this

known/unknown discrimination was made is the

quality of the face estimation or reconstruction,

measured as the cosine between the original and

reconstructed face. This can be considered as a

sort of \resonant familiarity". The model is said

to be able to recognize faces when, on the average,

the cosines for the learned faces exceed the cosines

for the novel faces. The measure taken is referred

to as d' and is simply the distance, in z-score units

between the means of the cosine distributions for

learned and unlearned faces.

Recognition testing was implemented in the

present study as follows. All views of all 68 faces

(both novel and learned) were estimated using Eq.

2. For each learn-test condition, a mean cosine

was computed across the learned faces. For each

test condition for the unlearned faces a mean co-

sine was computed. A d' was computed for each

learn-test condition by setting a criterion cosine

as the mean of the means for the learned faces

and novel faces for the appropriate test condition.

Thus, for example, for the full-learn/pro�le-test

condition the pro�le test condition for novel faces

was used as the noise distribution.

One �nal methodological point is worth noting

before presenting results. Since we had a relatively

small number of heads, we ran four simulations

counterbalancing the heads over conditions. The

counterbalance was implemented such that over

the set of 4 simulations, every head appeared in

each of the conditions exactly once (i.e., learned

full, learned three-quarter, learned pro�le, novel).

This was done to minimize the possibility of a sam-

pling 
uke occurring with particularly distinctive

heads clustered in any given condition.

3.2 Results

All results are from the four counterbalance sim-

ulations for the texture and range data, which we

present in two ways. First, we plot the quality

of reconstructions, measured as cosines between

original and reconstructed vectors for all learning-

test transfer conditions and for the novel heads in

each pose condition (see Figure 4). From these

data, several points are worth noting. First, for

both range and texture data, the quality of recon-

structions was, in general, better for the learned

faces than for the unlearned faces. This was true,

regardless of the match/mismatch between the

learn and test conditions. Thus, novel views of

the learned faces can e�ectively retrieve enough of

the learned view to produce reconstructions better

than those seen for the unlearned faces. Second,

smaller changes in viewpoint between the learn

and test views resulted in better reconstructions

than larger changes. This indicates, not too sur-

prisingly, that better retrieval of the learned view

was possible when larger regions of the learned and

tested view overlapped.

Figure 4: Quality of reconstruction for range and tex-
ture maps, measured as cosine, for learned faces as a
function of learn and test view, and for unlearned faces
as a function of test view.

The cosine data alone, however, do not give an

indication about how reliably the learned faces (re-

gardless of test view) can be discriminated from

the unlearned faces. For this, we applied signal

detection theory, which extends the above anal-
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Range Data

Training view

Testing View Full Three-quarter Pro�le

Hit FA d' Hit FA d' Hit FA d'

Full 1.00 0.00 3.78 0.97 0.05 3.54 0.94 0.36 1.92

Three-quarter 0.97 0.08 3.30 1.00 0.00 3.78 0.96 0.23 2.59

Pro�le 0.79 0.36 1.17 0.99 0.20 2.74 1.00 0.00 3.78

Texture Data

Training view

Testing View Full Three-quarter Pro�le

Hit FA d' Hit FA d' Hit FA d'

Full 1.00 0.00 3.78 0.91 0.32 1.82 0.75 0.32 1.15

Three-quarter 0.88 0.23 1.92 1.00 0.00 3.78 0.99 0.17 2.86

Pro�le 0.79 0.32 1.28 1.00 0.16 2.89 1.00 0.00 3.78

Table 1: Recognition performance measured as d' for the range and texture map data.

ysis by setting a criterion cosine for determining

the learned/novel status of faces in each condi-

tion. This technique is commonly applied in the

psychological literature to measure human recog-

nition memory for faces.

These data appear in Table 1, for the surface

maps (top), and for the texture maps (bottom).

In each table cell, three values are given: (1) the

hit rate: the proportion of times a learned face

was correctly labeled learned; (2) the false alarm

rate: the proportion of times an unlearned face

was incorrectly called learned; and (3) the d' : the

discrimination index. As can be seen, performance

ranges from moderately good to excellent in the

di�erent conditions.

Perfect discrimination of learned and novel faces

was observed when the learned and test faces were

of the same view2. Again, when the learned and

test views were not the same, the general pat-

tern of results indicated better performance with

smaller pose changes

4 Conclusions

The present study illustrates that information for

face recognition across pose change is available in

the overlapping visible surface or texture maps be-

tween pairs of views. This information is reliable

for pose changes of as much as 90 degrees and can

be retrieved using a simple linear autoassociative

model, when there is su�cient overlap between the

2In cases where hit or false alarm rates indicate per-
fect performance, d' is e�ectively in�nite. Therefore,
we applied the standard correction for perfect hit or
false alarm rates, cf., [9], leading in the present case
to d's of 3.78 indicating no errors.

learned and test faces. As noted, we rely here on

the assumption that it is possible to make a rea-

sonably accurate assessment of the pose of a face.

While to our knowledge, there is no psychophysi-

cal data to support this conclusion, we think that

it is certainly reasonable to believe that humans

can make reasonably accurate estimates of pose.

There is also computational work indicating that

the pose of a face is detectable by relatively simple

models [1, 15].

The present study provides only an exploratory

look at the utility of this approach for measur-

ing the quality of information available in sur-

face/texture maps for making pose transfers. We

do not wish to claim that the present data repre-

sent the \last word" on the subject. In fact, the

particular way in which we have implemented this

model has implications for the precise outcome of

the data. For example, we have \�lled-in" non-

visible parts of the heads with values from the

average head. With the additional assumption

that heads are generally symmetric, it is likely

that symmetric �lls of the head, computed from

each individual head, would bene�t pose trans-

fer performance. Additionally, such a representa-

tion might show better pose transfer abilities be-

tween symmetric pose changes than between other

smaller non-symmetric changes in pose.

We view the importance of representational as-

sumptions to the outcome of the transfer data here

as a positive aspect of the model. This character-

istic makes the model a very useful tool for test-

ing quite speci�c psychophysical hypotheses about

human representations of faces and quite speci�c

computational hypotheses concerning the optimal-
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ity of these representations. As such, psychophys-

ical data can be collected on the recognizability of

these heads over various pose changes, and com-

parisons can be made between the human data

and the model performance as a function of these

representational assumptions.

Additionally, the optimality of di�erent repre-

sentations for di�erent tasks (e.g., recognition ver-

sus sex classi�cation) can be examined. This is

because the eigenvector-based representation al-

lows for a detailed analysis of the utility of individ-

ual eigenvectors for di�erent tasks. With face im-

ages, this analysis has shown that di�erent low di-

mensional representations of faces are optimal for

recognition versus categorizations (e.g., sex and

race classi�cations [10]). This analysis is likely to

prove fruitful for the present stimuli since we are

able to separate texture versus surface based in-

formation.
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