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ABSTRACT

Computational or information-processing theories of vision describe object recognition in terms
of a comparison between the input imagc and a set of stored models that represent known objects.
The nature of these representations is reflected in the performance of the visual system and may
be studied experimentally by presenting subjects with computer graphics simulations of
three-dimensional objects (with precisely controlled shape cues), and by analyzing the ensuing
patterns of response time and error rate.

We discuss a series of psychophysical experiments that explore different aspects of the
problem of subordinate-level object recognition and representation in human vision. Contrary
to the paradigmatic view, which holds that the representations are three-dimensional and
object-centered, the results consistently support the notion of view-specific representations that
include at most partial depth information. In simulated experiments that involved the same
stimuli being shown to human subjects, computational models built around two-dimensional,
multiple-view representations replicated psychophysical results concerning the observed
pattern of generalization errors. We argue that extensions of the multiple-view theory, based on
the notion of a hierarchy of spatial and nonspatial features, could lead to a unification of
theoretical accounts of a wide range of phenomena in human object recognition.

INTRODUCTION

How does the human visual system represent three-dimensional (3D) objects for
recognition? Object recognition is carried out by the human visual system with such
expediency that upon introspection it normally appears to be immediate and effortless
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(Fig. 11.1, canonical). Computationally, recognition of a 3D objcct seen from an
arbitrary viewpoint is difficult because its appearance may vary considerably depend-
ing on its pose relative to the observer (Fig. 11.1, noncanonical). Because of this
variability, simple 2D template matching is hardly a plausible approach to 3D object
recognition, since it would require that a template be stored for each view that will
cver have to be recognized. Consequently, until recently, most computational theories
of object recognition (for a survey, see Ullman 1989) rejected the notion of view-spe-
cific representations. Some approaches, rooted in pattern recognition theory, postu-
lated that objects are represented by lists of viewpoint-invariant properties or by points
in abstract multidimensional feature spaces (Duda and Hart 1973). Others suggested
that the representations are 3D and object-centered (Marr and Nishihara 1978;
Biederman 1987), much like the solid geometrical models used in computer-aided
design.

Surprisingly, classical theories that rely on object-centered 3D representations fail
to account for a number of important characteristics of human performance in
recognition. We describe the results of a series of experiments that provide converging
evidence in favor of an alternative theory of recognition, based on viewpoint-specific,
largely 2D representations. Most of the psychophysical results are accompanied by
data from simulated experiments, in which central characteristics of human perform-
ance were replicated by computational models based on viewpoint-specific 2D
representations. Before proceeding to describe and interpret our computational and
psychophysical findings, we discuss briefly several theoretical issues relevant to the
understanding of the logic behind the experiments and of the predictions they were
designed to test. More about these theories and about the implemented computational
models of recognition used in our simulations can be found in Lowe (1986), Bieder-
man (1987), Ullman (1989), Ullman and Basri (1990), Poggio and Edelman (1990),
Edelman et al. (1990), and Edelman and Weinshall (1991).

NON-CANONICAL CANONICAL

Figure 11.1 Canonical views: certain views of 3D objects are consistently easier to recognize
or process in a variety of visual tasks. Once this object is identified as a pair of spectacles seen
from above, we find it difficult to believe its recognition was anything less than immediate.
Nevertheless, recognition is at times prone to error, and even familiar objects take longer to
recognize if they are seen from unusual (noncanonical) viewpoints (Palmer et al. 1981),
Exploring this and other related phenomena can help elucidate the nature of the representation
of 3D objects in the human visual system.
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COMPUTATIONAL THEORIES OF OBJECT RECOGNITION

Explicit computational theories of recognition serve as good starting points forinquiry
into the nature of object representation, by providing concrete hypotheses that may be
refuted or refined through appropriately designed experiments. Two examples of
concrete questions pertinent to the representation issue are:

1. Do the representations include depth or 3D information, or are they, in a sense,
flat or 2D?

Are the representations object-centered (coded in an object-based coordinate
system) or viewer-centered?

)

One can use the 3D/2D and the object-centered/viewer-centered distinctions
among the various theories to generate specific psvchophysical predictions. Intui-
tively. if the representation is 3D, then depth information (available, e.g., through
stereopsis) should facilitate recognition. Furthermore, if the representation is object-
centered, then neither recognition time nor error rate should depend on the attitude of
the object with respect to the observer. To obtain more detailed predictions, one must
have a closer look at the different theories.

Theories that Attempt to Achieve Full Object Constancy

Theories of the first kind we mention here attempt to achieve a computer vision
equivalent of object const:mcy,1 a central characteristic in the human perception of
3D shape (Ellis et al. 1989). Two major approaches to object constancy can be
discerned. The first approach uses fully 3D object-centered representations and
requires that a similar representation of the input be achieved before it is matched to
memory. The second approach, however, represents objects by selected views that
include depth information, and attempts to normalize the appearance of the input by
applying an appropriate spatial transformation.

Theories that Use Viewpoint-independent 3D Representations

The notion that the processing of the visnal input culminates in a full restoration of its
3D structure, which may then be matched to 3D object-centered representations in
memory, was popularized by Marr and Nishihara (1978). This theory was never fully
implemented due to severe difficulties faced by the attempts to solve the problem of
reconstructing the input in 3D in the general case. However, a variant of this approach
became widely adopted as a psychological model of recognition, following the work

! The tendency of human subjects to perceive and recognize 3D shapes irrespective of factors such as the
viewpoint.
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of Biederman and his associates. Biederman’s theory, known as recognition by
components, postulates that the human visual system represents objects by 3D
structural relationships between generic volumetric primitives called geons (Bieder-
man 1987).

Theories that Use Viewpoint-specific 3D Representations in Conjunction with
Normalization

As a representative of this class of theories, we consider recognition by viewpoint
normalization, of which Ullman’s method of alignment is an example (Ullman 1989).
In the alignment approach the 2D input image is compared with the projection of a
stored model, much like in template matching, but only after the two are brought into
register. The transformation necessary to achieve alignment is computed by matching
a small number of features in the image with the corresponding teatures in the 3D
model. The aligning transformation is computed separately for each of the models
stored in the system. The outcome of the recognition process is the model that fits the
input most closely after the two are aligned. Related schemes (Lowe 1986; Thompson
and Mundy 1987) choose the best model using viewpoint consistency constraints that
relate the projected locations aof the features of a model to its 3D structure, given a
hypothesized viewpoint.

Ullman (1989) distinguishes between full alignment that uses 3D models and
attempts to compensate for 3D transformations of objects, such as rotation in depth,
and the alignment of pictorial descriptions that decomposes objects into (nongeneric)
parts and uses multiple views rather than a single object-centered description. Ullman
also notes (Ullman 1989, p. 228) that this multiple-view version of alignment involves
representation that is “view-dependent, since a number of different models of the same
object from different viewing positions will be used,” but at the same time “view-in-
sensitive, since the differences between views are partially compensated by the
alignment process.” Thus, view-independent performance (e.g., error rate) can be
considered the central distinguishing feature of both versions of this theory, which
subsequently will be referred to simply as alignment.

Theories that Use 2D Representations
Linear Combination (LC) of Views

Three recently proposed approaches to recognition dispense with the need to store 3D
models. The first of these, recognition by LC of views (Ullman and Basri 1990), is
built on the observation that, under orthographic projection, the 2D coordinates of an
object point can be represented as a LC of the coordinates of the corresponding points
in a small number of fixed 2D views of the same object. The required number of views
depends on the allowed 3D transformations of the objects and on the representation
of an individual view. For a polyhedral object to undergo a general linear transforma-
tion, three views are required if separate linear bases are used to represent the x and
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the y coordinates of a new view. Two views suffice if a mixed x, y basis is used (Ullman
and Basri 1990; Edelman and Poggio 1990). A system that relies solely on the LC
approach should achieve uniformly high performance on those views that fall within
the space spanned by the stored set of model views, and should perform poorly on
views that belong to an orthogonal space.

Two-dimensional View Interpolation (HyperBF)

Another approach that represents objects by sets of 2D views is view interpolation by
hyper basis functions (HyperBF) implemented as regularization networks (Broom-
head and Lowe 1988; Moody and Darken 1989; Poggio and Edelman 1990; Poggio
and Girosi 1990). In this approach, generalization from stored to novel views is
regarded as a problem of multivariate function interpolation in the space of all possible
views. The interpolation is performed in two stages. In the first, intermediate re-
sponses are formed by a collection of nonlinear receptive fields (these can be, e.g.,
multidimensional Gaussians). The output of the second stage is a LC of the intermedi-
ate receptive field responses.

More explicitly, a Gaussian-shaped basis function is placed at each of the proto-
typical stored views of the object so that an appropriately weighted sum of the
Gaussians approximates the desired characteristic function for that object over the
entire range of possible views (for details see Poggio and Edelman 1990; Edelman
and Poggio 1990). Recognition of the object represented by such a characteristic
function amounts to a comparison between the value of the function computed for the
input image and a threshold situated between 0 and 1.

Conjunction of Localized Features (CLF)

The third scheme we mention is also based on interpolation among 2D views and, in
addition, is particularly suitable for modeling the time course of recognition, includ-
ing long-term learning effects (Edelman and Weinshall 1991; Edelman 1991b). The
scheme is implemented as a two-layer network of thresholded summation units. The
input layer of the network is a retinotopic feature map (thus the model’s name). The
distribution of the connections from the first layer to the second, or representation,
layer is such that the activity in the second layer is a blurred version of the input.
Unsupervised Hebbian learning augmented by a winner-take-all operation ensures that
each sufficiently distinct input pattern (such as a particular view of a 3D object) is
represented by a dedicated small clique of units in the second layer. Units that stand
for individual views are linked together in an experience-driven fashion, again through
Hebbian learning, to form a multiple-view representation of the object. When
presented with a novel view, the CLF network can recognize it through a process that
amounts to blurred template matching and is related to nonlinear basis function
interpolation.
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IMPLICATIONS OF THE DIFFERENT THEORIES

Experimental Issues

We have investigated the subjects’ performance in three distinct cases, each corre-
sponding to a different Kind of test views. In the first and easiest case, the test views
are familiar to the subject (that is, werc shown during training). In the second case,
the test views are unfamiliar, but are related to the training views through a rigid 3D
transformation of the target. In this case the problem can be regarded as generalization
of recognition to novel views. In the third case, which is especially relevant in the
recognition of articulated or flexible objects, the test views are obtained through a
combination of rigid transformation and nonrigid deformation of the target object.

An additional and important issue we have addressed is the role of depth cues in
recognition. Providing the subject with ample depth cues should increase the plausi-
bility of attributing any subsequent manifestation of viewpoint dependency in recog-
nition to viewpoint-dependent representation, rather than to general scarcity of 3D
information in the stimulus during training. Second, adding depth to the stimulus
eliminates the possibility that the subjects do form a 3D object-centered representation
during training; they fail, however, to make full use of it because test images normally
used in psychophysical investigations of recognition, being inherently two dimen-
sional, do not activate the “real” 3D pathway to recognition.

Theoretical Predictions

The theories discussed above make different predictions about the effect of factors
such as object orientation and the presence of depth information on the accuracy of
recognition and on the amount of time it takes under the various conditions mentioned
above. Roughly speaking, theories that rely on viewpoint-invariant representations
predict no systematic effect of orientation cither on the response time or on the error
rate, both for familiar and for novel test views, provided that the representation
primitives (i.e., invariant features or generic parts) can be readily extracted from the
input image. In comparison, theories that involve viewpoint-dependent repre-
sentations naturally predict viewpoint-dependent performance. The details of the
predictions vary according to the recognition method postulated by each particular
theory and are discussed below.

Viewpoint-independent 3D Representations

A recognition scheme based on object-centered 3D representations may be expected
to perform poorly only for those views which by an accident of perspective lack the
information necessary for the recovery of the reference frame in which the object-cen-
tered description is to be formed (Biederman 1987). In a standard example of this
situation, an elongated object is seen end-on, causing a foreshortening of its major axis
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and an increased error rate, due presumably (o a failure to achieve a stable description
of the object in terms of its parts (Marr and Nishihara 1978; Biederman 1987). In all
other cases this theory predicts independence of response time on orientation and a
uniformly low error rate across different views. Furthermore, the error rate should
remain low even for deformed objects as long as the deformation does not alter the
make-up of the object in terms of its parts and their interelationships.

Viewpoint-dependent 3D Representations

Consider next the predictions of those theories that explicitly compensate for viewpoint-
related variability of apparent shape of objects, by normalizing or transforming the object
to a standard viewpoint. A system that represents an object by one or more of its views
and uses an incremental transformation process for viewpoint normalization is expected
to exhibit a response time that will depend monotonically on the misorientation of the test
view relative to one of stored views. This pattern of response times will hold for many of
the familiar, as well as for novel test views, since the system may store selectively only
some of the views it encounters for each object and may rely on normalization for the
recognition of other views, either familiar or novel. In contrast to the expected dependence
of response time on orientation, the error rate under the viewpoint normalization approach
will be uniformly low for any test view, either familiar or novel, in which the information
necessary for pose estimation is not lost.

Linear Combination of Views

The predictions of the LC scheme vary according to the particular version used. The
basic LC scheme predicts uniformly successful generalization to those views that
belong to the space spanned by the stored set of model views. It is expected to perform
poorly on views that belong to an orthogonal space. In contrast, the mixed-basis LC
(MLC) is expected to generalize perfectly, just as the 3D object-centered schemes do.
Furthermore, the varieties of the LC scheme should not benefit significantly from the
availability of depth cues because they require that the views be encoded as lists of
coordinates of object features in 2D and cannot accomodate depth information.
Regarding the recognition of deformed objects, the LC method will generalize to any
view that belongs to a hyperplane spanned by the training views (Ullman and Basri
1990). For the LC+ scheme (that is, LC augmented by quadratic constraints verifying
that the transformation in question is rigid), the generalization will be correctly
restricted to the space of the rigid transformations of the object, which is a nonlinear
subspace of the hyperplane that is the space of all linear transformations of the object.

View Interpolation

Finally, consider the predictions of the view interpolation theory. First, no effect of
orientation on response time is expected, except as a byproduct of a specific implemen-
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tation.2 Second, a lower error rate is predicted for familiar than for novel test views,
depending on the distance to the nearest stored view. Similarly, some variation in the
error rate among the familiar views is also possible, if the stored prototypical views
form a proper subset of the previously seen ones (in which case views that are the
closest to the stored ones will be recognized more reliably than views that have been
previously seen, but were not included in the representation). For deformed objects,
generalization is expected to be as significant as for novel views produced by rigid
transformations. Furthermore, better generalization should be obtained for test views
produced by the same deformation method used in training.

COMPUTER GRAPHICS PSYCHOPHYSICS

The possibility of directly testing the intricate implications of the different computa-
tional theories surveyed above depends critically on the availability of a sufficient
variety of stimuli that are, on one hand, easily controlled, and, on the other, complex
enough to yield results relevant to real-world situations. Until recently, this dilemma
placed severe limitations on experimental work in visual object recognition. Clearly,
its resolution depended on the emergence of new psychophysical paradigms. We have
addressed this need for a new approach by developing experimental techniques that
use state-of-the-art computer graphics to create and display 3D objects (see Fig. 11.2)
with the following attributes under full software control:

* Novelty: An unlimited number of novel objects can be produced to a given set
of specifications. In addition to interactive manipulation of objects in a graphics
environment, we use a powerful 3D graphics language (Symbolics S-Geometry
based on object-oriented programing in Lisp) to generate arbitrary large object
sets under complete program control. This makes the study of perceptual
learning possible, which otherwise is difficult to do with real-world objects
because of the effects of the subject’s previous exposure.

* Shape: The set of possible shapes is only limited by the imagination of the
experimenter; the Symbolics S-Geometry system is a flexible and versatile tool
for the generation of arbitrary 3D shapes.

*  Features: Both local features and global properties can be precisely controlled.
Texture mapping or albedo manipulation facilitates the inclusion of nongeome-
tric features.

2 Nole that both the prediction of a monotonic increase in response time with misorientation relative to a
stored view made by the normalization theories, and the prediction of constant response time made by the
view interpolation theory, are weak because of their potential dependence on implementation details. In
the first case, the monotonic increase in response time will disappear if the transformation mechanism is
“one-shot” instead of incremental. In the other case, response time will depend on orientation if the
interpolation involves a time-consuming spread of activation in a distributed implementation.
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Figure 11.2 Wires and Amocebae. The appearance of a 3D object can depend strongly on the
viewpoint. The image in the center represents one view of a computer graphics object (wire- or
amocba-like). The other images are derived from the same object by + 75° rotation around the
vertical or horizontal axis. The difference between the images illustrates the difficulties
encountered by any straightforward template matching approach to 3D object recognition. Thin
wire-like objects have the nice property that the negligible amount of occlusion provides any
rccognition system with equal amount of information forany view. Arealistic recognition system
has to deal with the morc difficult situation of self-occlusion as demonsirated with the
amoeba-like objects.

*  Depth cues: The simulated objects can be given surface texture and realistic
shading. In addition, they can be displayed with a variable amount of binocular
disparity using a StereoGraphics 3Display system.

*  Motion: The stimuli can be shown to the subject in simulated motion (to engage
the structure from motion mechanisms) or statically. Even complicated objects
with many polygons can be rendered in real-time on a graphics mini-super-
computer (GS1000, Stardent Inc.).

*  Deformation: Controlled distortions can be introduced into the shape of the
simulated objects. This facilitates the study of phenomena hitherto excluded
from the psychophysical repertoire (e.g., the dependence of the recognition of
deformable objects such as human faces on the amount and the nature of the
deformation).

In addition to allowing us extensive control over stimulus presentation, the new
paradigm presents some unique opportunities for analyzing the experimental data. In
particular, we compare the subjects’ performance with the performance of detailed
computational models of recognition in simulated experiments involving the same
stimuli and exposure conditions, made possible by the computer graphics environ-
ment.

We now turn to survey the experimental findings concerning the recognition of 3D
objects, starting with a review of the four main characteristics of object recognition
that emerge from previous studies: the distinction between classification and identifi-
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cation, the existence of canonical views, the phenomenon resembling mental rotation,
and the limited ability of subjects to identify objects from novel viewpoints.

PSYCHOPHYSICAL BACKGROUND

Basic vs. Subordinate-level Recognition

Numerous studies in cognitive science (for a review, see Rosch et al. 1976) reveal that
in the hierarchical structure of object categories there exists a certain level, called basic
level, that is the most salient according to a variety of criteria (such as the ease and
prefereice of access). Taking as an example the hierarchy “quadruped, mammal, cat,
Siamese,” the basic level is that of “cat.” Objects whose recognition implies more
detailed distinctions than those required for basic-level categorization are said to
belong to a subordinatc level. The pattern of response times and error rates in
recognition experiments appears to be intluenced to a large extent by the category
level at which the distinction between the different stimuli is to be made. Specifically,
if the subjects are required to classify the stimulus (that is, to determine its basic-level
category), they normally exhibit near-zero error rate, independently of the stimulus
orientation (except when the 3D structure of the object is severely distorted, e.g., due
to foreshortening; see Biederman 1987). In contrast, if the task is to identify a given
stimulus (that is, to distinguish it from other, similar stimuli belonging to the same
basic category), the subjects’ performance is strongly dependent on the viewpoint.

Canonical Views

Commonplace objects such as houses or cars are recognized faster or more slowly,
depending on the attitude of the object with respect to the observer. Palmer, Rosch,
and Chase (1981) found that human subjects consistently labeled certain views of such
objects as subjectively “better” than other, random views. In a naming task, subjects
tended to respond quicker when the stimulus was shown from a good or canonical
perspective, with the response time increasing monotonically with misorientation
relative to a canonical view (determined independently in a subjective judgement
experiment). At the basic level, canonical views are largely a response time phenome-
non (the error rate for basic-level naming, as found by Palmer et al., was very low,
with the errors being slightly more frequent for the worst views than for others). In
comparison, at the subordinate levels canonical views are apparent in the distribution
of error rates as well, where they constitute strong and stable evidence in favor of
viewpoint-dependent nature of object representations (see section below on Canoni-
cal Views and Their Development with Practice).

Mental Rotation and Its Disappearance with Practice

The body of evidence documenting the monotonic dependency of recognition time on
the object’s attitude relative to a canonical view has been interpreted recently (Tarr
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and Pinker 1989, 1990) as an indication that objccts are represented by a few specific
views, and that recognition involves viewpoint normalization or alignment (Ullman
1989) to the nearest stored view, by a process related to mental rotation (Shepard and
Cooper 1982). A number of researchers have shown the differences in response time
among familiar views to be transient, with much of the variability disappearing with
practice (see, e.g., Jolicoeur 1985; Koriat and Norman 1985; Tarr and Pinker 1989).
Tarr and Pinker (1989) investigated the effect of practice on the pattern of response
times in the recognition of novel objects, which are particularly suitable for this
purpose because they offer the possibility of complete control over the subjects’ prior
exposure to the stimuli. They have found that the monotonic dependency of response
times on the stimulus attitude, which disappeared after repeated exposure to the same
set of test views, reappeared for “surprise” test views, only to fade away again as these
novel views became familiar to the subjects.

Limited Generalization

The pattern of error rates in recent experiments by Rock and his collaborators (Rock
and DiVita 1987) indicates that when the recognition task can only be solved through
relatively precise shape matching (such as required for subordinate-level recognition),
the error rate reaches chance level already at a misorientation of about 40° relative to
a familiar attitude (Rock and DiVita 1987; see also Fig. 11.5). A similar limitation
seems to hold for people’s ability to imagine what an object looks like from an
unfamiliar viewpoint (Rock et al. 1989).

PSYCHOPHYSICS OF SUBORDINATE-LEVEL RECOGNITION

Previously published psychophysical works left many of the questions vital to com-
putational understanding of recognition unanswered. First, it was unclear whether the
canonical views phenomenon reflected basic viewpoint dependence of recognition or
was due to particular patterns of the subjects’ exposure to the stimuli. Second, the
existing data were insufficient to test the predictions of the different theories concern-
ing generalization to novel views and across object deformations. Third, the role of
depth cues in recognition remained largely unknown. The experiments described in
this section were designed to address those issues, concentrating on subordinate-level
identification, which, unlike basic-level classification (Biederman 1987), has been
relatively unexplored.

The experiments described below consisted of two phases: training and testing. In
the training phase subjects were shown an object defined as the target, usually as a
motion sequence of 2D views that led to an impression of 3D shape through the kinetic
depth effect. In the testing phase the subjects were presented with single static views
of either the target or a distractor (one of a relatively large set of similar objects). The
subject’s task was to press a “yes”-button if the displayed object was the current target
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and a “no”-button otherwise, and to do it as quickly and as accurately as possible. No
feedback was provided as to the correctness of the response.

Canonical Views and Their Development with Practice

To explore the first issue raised above, that of the determinants of canonical views,
we tested subjects’ recognition of views all of which have been previously seen as a
part of the training sequence (for further details see Edelman and Biilthoff 1992,
experiment 1). Our stimuli proved to possess canonical views, despite the fact that in
training all views appeared with equal frequency. We also found that the response
times for the different views became more uniform with practice. The development
of canonical views with practice is shown in Fig. 11.3 as a 3D stereo-plot of response
time vs. orientation, in which local deviations from a perfect sphere represent devia-
tions of response time from the mean. For example, the difference in response time
between a “good” and a “bad” view in the first session (the dip at the pole of the sphere
and the large protrusion in Fig. 11.3, top) decreases in the second session (Fig. 11.3,
bottom). The pattern of error rates, in comparison, remained largely unaffected by
repeated exposure.

Role of Depth Cues
Depth Cues and the Recognition of Familiar Views

We next explored the role of three different cues to depth in the recognition of familiar
views (for details, see Edelman and Biilthoff 1992, experiment 2). Whereas in the
previous experiment, test views were 2D and the only depth available cues were
shading of the objects and interposition of their parts, we now added texture and
binocular stereo to some of the test views and manipulated the position of the simulated
light source to modulate the strength of the shape from shading cue (cf. Biilthoft and
Mallot 1988; Pentland 1989).

The stimuli were rendered under eight different combinations of values of three
parameters: surface texture (present or absent), simulated light position (at the simu-
lated camera or to the left of it), and binocular disparity (present or absent). Training
was done with maximal depth information (oblique light, texture and stereo present).
Stimuli were presented using a noninterlaced stereo viewing system (StereoGraphics
3Display). A fixed set of views of each object was used, both in training and in testing.
We found that both binocular disparity and, to a smaller extent, light position affected
performance. The error rate was lower in the STEREO compared to MONO trials (11.5%
as opposed to 18.0%) and lower under oblique lighting than under head-on lighting
(13.7% compared to 15.8%).

Depth Cues and the Generalization to Novel Views

We then proceeded to probe the influence of binocular disparity (shown to be the
strongest contributor of depth information to recognition) on the generalization of
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View-sphere visualization of RT = f(viewangle)
Session 1

Session 2

Figure 11.3 Canonical views and practice: the advantage of some views over othcrs, as
manifested in the pattern of response times (RT) to different views, is reduced with repeated
exposure. The spheroid surrounding the target is a 3D stereo-plot of response time vs. aspect
(local deviations from a perfcct sphere represent deviations of response time from the mean).
The 3D plot may be viewed by tree-fusing the two images in each row, or by using a stereoscope.
Top: Target object and response time distribution for session 1. Canonical aspects (e.g., the
broadside view, corresponding to the visible pole of the spheroid) can be easily visualized using
this display method. Bottom: The response time difference between views are much smaller in
the second session. Note that not only did the protrusion in the spheroid in session 1 disappear
but also the dip in the polar view is much smaller in session 2.

recognition to novel views (for details, see Edelman and Biilthoff 1992, experiment
4). The subjects were first trained on a sequence of closely spaced views of the stimuli,
then tested repeatedly on a different set of views, spaced at 10 intervals (0° to 120°
from a reference view at the center of the training sequence).

The mean error rate in this experiment was 14.0% under MONO and 8.1% under
STEREO. In the last session of the experiment, by the time the transient learning effects
had disappeared, the error rate under MONO approached the error rate under STEREO,



152 H.H. Biilthoff and S. Edelman

except for the range of misorientation between 50° and 80°, where MONO was much
worse than STEREO. Notably, error rate in each of the two conditions in the last session
was significantly dependent on misorientation.

Generalization to Novel Views

Our next experiment used an elaborate generalization task to distinguish among three
classes of object recognition theories mentioned earlier: alignment, LC of views, and
view interpolation by radial basis functions (HyperBF). Specifically, we explored the
dependence of generalization on the relative position of training and test views on the
viewing sphere (for details, see Biilthoff and Edelman 1992).

We presented the subjects with the target from two viewpoints on the equator of
the viewing sphere, 75° apart. Each of the two training sequences was produced by
letting the camera oscillate with an amplitude of £15° around a fixed axis (Fig. 11.4).

1 = TRAIN (view sequences)

O = interpolation | game
meridian TEST
(static views)

[J = extrapolation

[\ = ortho meridian

=
!

Meridian 2

Meridian 1
View-0

VIEWING SPHERE

(centered at the object)

Fig. 11.4 Generalization to novel views: An illustration of the INTER, EXTRA, and ORTHO
conditions, Computational theories of recognition outlined in the first section (COMPUTATIONAL
THEORIES OF OBJECT RECOGNITION) generate different predictions as to the relative degree of
generalization in each of the three conditions. We have used this to distinguish experimentally
between the different theories.
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Target test views were situated either on the equator (on the 75° or on the 360° — 75°
= 285° portion of the great circle, called INTER and EXTRA conditions), or on the
meridian passing through one of the training views (ORTHO condition; see Fig. 11. 4).

The results of the generalization experiment, along with those of its replica
involving the HyperBF model, appear in Fig. 11.5 (see also the summary in Table
11.1). As expected, the subjects’ generalization ability was far from perfect. The mean
error rates for the INTER, EXTRA, and ORTHO view types were 9.4%, 17.8%, and 26.9%,
respectively. Repeated experiments involving the same subjects and stimuli, as well
as control experiments under a variety of conditions yielded an identical pattern of error
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Figure 11.5 Generalization to novel views. Top left: Error rate vs. misorientation relative to the
reference (“view-0” in Fig. 11.4) for the three types of test views—INTER, EXTRA, and ORTHO,
horizontal training plane. Top right: performance of a HyperBF model in a simulated replica
of this experiment. Bottom left and right: same as above, except vertical training.
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Table 11.1. Generalization to novel views: error rate for novel views, by condition, as predicted
by the different theories of object recognition outlined in the first scction (COMPUTATIONAL
THEORIES OF OBIECT RECOGNITION). The reciprocal of the error rate is an indicator of gencrali-
zation. The last line describes human performance (error rate in percent).

Condition — Train in Horizonta! Plane Train in Vertical Plane
Theory | INTER EXTRA ORTHO INTER EXTRA ORTHO
Alignment Low Low Low Low Low Low

LC Low Low High Low Low High
CLC Low Medium High Low Medium High
MLC Low Low Low Low Low Low

HyperBF Low Medium High Medium High Low
Humans 13.3 22.0 48.3 179 35.1 217

rates. The order of the mean errorrates was changed, however, when the training views
lay in the vertical instead of the horizontal plane. In this case, the means for the INTER,
EXTRA, and ORTHO conditions were 17.9%, 35.1%, and 21.7%, respectively.

The experimental results fit most closely the predictions of the HyperBF scheme
and contradict theories that involve 3D object-centered models or viewpoint normal-
ization. The differences of generalization performance between the horizontal and the
vertical arrangements of training views (compare the figures in the last line of Table
11.1 for the two <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>