15

Group Report: Vision—A Case
Study in Brain Function

or
“It’s a Brain-damaged Group that Can’t Recognize a Horace from a Wolf”
—L. Segel, 1991

A.C. HURLBERT, Rapporteur

H.H. BULTHOFF, D.A. GLASER, K. HEPP,
N. LOGOTHETIS, K.A.C. MARTIN,
JH.R. MAUNSELL, D.B. MUMI'ORD,
W. SINGER, O. SPORNS, S. ULLMAN,
C. VONDER MALSBURG

In the act of seeing, we segment the world into objects. Inherent in this are two
processes, inextricably linked: demarcation and grouping together of parts or features
that consitute an object, and recognition of the object. Here we will discuss the state
of our understanding of how the human visual system performs these formidable tasks.
What little understanding we have of these processes exists on several levels, in the
form of experimental data and theoretical models. The data come largely from studies
of the electrophysiological behavior and anatomical connections of individual cells in
the visual systems primarily of monkey and cat, and from the performance of normal
and brain-lesioned humans on visual tasks. Some models have been formulated
explicitly to be implemented on a computer connected to a camera and thereby to
equip a machine with vision; others attempt to collate and explain biological data. The
distinctions between the two classes are not always precise: some computational
models also serve as a test for assumptions about the constraints under which the
human visual system may work and some models designed to explain biological data
may be tested by computer simulations. The purpose of this workshop was to bring
together theoreticians and experimentalists who were willing to blur the boundaries
between their approaches in order to sharpen our understanding of vision.
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OBJECT RECOGNITION

The Viewpoint of Machines

Artificial visual systems are capable of impressive recognition tasks, despite the fact
that we understand very little of how the human visual system recognizes objects.
Most models of object recognition make the obvious assumption that the visual system
(of man, monkey or machine) stores representations of objects and that recognition
occurs when a representation is matched to an incoming stimulus. This assumption
raises two questions: what is the nature of the stored representation?; and how is
matching achieved?

In machine vision, object representations take several forms. Objects may be
represented pictorially, as the initial image itself, whole or in part, or as a contour map
of the initial image. On increasing levels of abstraction, objects may be represented
as lists of features extracted from the image. The features may simply be corners,
blobs, or line terminators, or they may be areas, moments, or other descriptors designed
to be invariant under certain translocations or transformations that the object might
undergo. In other models, objects are decomposed into 3D parts such as cylinders,
cones, and cubes and represented by descriptions of the structural relations between
these parts. In all these representations, there is an obvious prejudice for geometric
form. Indeed, most computational models assume that the shape of an object is the
critical feature for its recognition. Additional features such as color or texture, or more
generally, the material properties of the object, play a small role in object recognition
by vision machines. This bias reflects the primacy of shape in the phenomenology of
object recognition by humans.

Perhaps the most striking support for this bias comes from studies of agnosic
patients who not only fail to recognize unique faces but also cannot recognize certain
objects at a nonunique level (Damasio et al. 1990a; Damasio et al. 1990b). Although
these are usually natural objects such as animals (a wolf, raccoon, and dachsund might
each be identified only as a “kind of dog™), and these patients typically have no trouble
identifying man-made objects such as tools or trucks, the underlying explanation for
this pattern may not lie in the distinction between natural and man-made. It appears
to lie instead in the similarity of shapes: many four-legged animals share similar
shapes, but a hammer is geometrically different from a wrench. No prosopagnosiac,
however damaged, ever fails to recognize an elephant (whose closest relative, inciden-
tally, is the rock hyrax of Africa, a rabbit-sized mammal). Another way to describe
the primacy of shape might be to say that it is most important for categorizing objects
on the basic level (dog, horse) whereas material properties and other features are often
more important in subordinate-level categorization (my pet Labrador). Color is often
more critical in determining individuality than shape, for example, when a red Ford
Escort must be found in a crowded parking lot. Recently machine vision algorithms
have been developed that exploit the material properties of objects for recognition. In
a new method destined for such applications as identifying fruits and vegetables at
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supermarket check-out counters, color, not gecometric form, is used as an index (Swain
and Ballard 1991). The advantage of color lies specifically in the fact that it is not
sensitive to viewing angle, object orientation, etc. It can even be made robust under
illumination changes when algorithms for color constancy are incorporated. Studies
of human vision also suggest that color can serve as a cue to recognition, especially
when other cues are sparse or subliminal (Kumar et al. 1992).

In machine vision, the problem of how to match images of new objects to the stored
representation depends largely on how complete, specific and robust the repre-
sentation is. A single rigid template will not match all samples of an object whose
images vary substantially with viewpoint or illumination or in more idiosyncratic ways
(e.g., a face that can smile or frown). Two different solutions have been proposed to
circumvent this obstacle. The first uses a small set of fixed templates (see the next
section and Poggio and Girosi, this volume; see also Turk and Pentland 1991 for a
related technique, that of averaging pictorial templates). The second relies on a single
elastic template that can be deformed to match each new exemplar. Its elasticity may
be controlled by varying geometric parameters (Fischler and Elshlager 1973; Yuille
et al. 1989) or allowing arbitrary small shape deformations (Grenander et al. 1990). A
related approach is to organize the templates into a graph, in which the nodes represent
feature points or surface elements each visible from many — but not all — viewpoints
and the edges provide geometrical relationships of contiguity. Each view of the object
is given by a subset of nodes that groups the presently visible surface elements
(Koenderinck 1984). In Reiser’s fusion graph model (Reiser 1991), many 2D views
of one object are fused into a single template. New 2D views are recognized by elastic
matching with the appropriate part of the fusion graph. Despite their advantages over
rigid templates, even elastic template models may become unwieldably large when
used for complex 3D objects. Most elastic template models also incur large overheads
at run time, because the energy minimizations involved in elastic matching are

computationally greedy.

Invariant from Any Angle

The majority of computational models are further focused on a specific sub-problem
of object recognition: viewpoint invariance. A single 3D object can generate a large
number of 2D views, each of which should trigger recognition in a robust system. This
is an exemplary problem in computational vision, illustrating both the difficulty of the
computational problems underlying object recognition and the sort of implications
computational models may have for human vision.

In general, solutions to the problem of viewpoint-invariance can be classified in
terms of whether or not they require an explicit 3D representation of the object under
scrutiny. A single 3D model of an object can be rotated and projected to generate 2D
views for matching, thus economizing on storage space while luxuriating in compu-
tational burden. Recently several schemes have been proposed that are relatively
inexpensive in terms of both computation and memory. These schemes require only



208 A.C. Hurlbert et al.

a small collection of 2D views of each object to generate novel 2D views of the same
object for matching. A model proposed by Ullman and Basri (1990) (see also Ullman,
this volume) relies on the proof that any orthographically projected 2D view can be
obtained by a linear combination of three distinct 2D views (provided features are
conserved between views); the generalized radial basis functions (GRBF) network
described by Poggio, et. al. (1990) (see Poggio, this volume) performs a nonlinear
interpolation between a larger set of perspectively projected 2D views to generate
novel views for matching. (The GRBF network is not restricted to representations of
geometric form alone. The input vector can consist of features other than spatial
locations of contours.) Like elastic template models, which can also achieve view-
point invariance, schemes that combine 2D views rely on a set of templates to
overcome the problem posed by single rigid template. The degree of viewpoint
invariance and the level of recognition attained depend on what the model is designed
to do. A GRBF network “trained” to recognize a single specific object from any view
can readily distinguish it from other objects, even when the two objects are very
similar, for example, two bent paper clips (Poggio and Edelman 1990). In this sense
it achieves subordinate-level recognition, but not basic-level recognition, since it
cannot register the difference between any other paper clip and a coffee cup. A scheme
whose templates include object features that might be common to many objects of the
same class (e.g., the elastic template scheme of Reiser 1991) in general could
distinguish between objects on the basic level, but not on the subordinate level.

Object Representations in Man and Monkey

These models address a specific question on the nature of the stored representation of
the geometric form of objects, leaving aside the larger issue of how information from
different modules or modalities is integrated in object representation or recognition.
Yet nonetheless these schemes have important implications when taken as models of
human vision. They underscore the notion that the brain does not need to create and
store 3D representations of objects in order to recognize novel 2D views but that
instead a small collection of 2D views will suffice. More specifically, any recognition
scheme that interpolates between 2D views makes a prediction that can be directly
tested against human performance: novel views taken from within the range of training
views will be better recognized than views taken from outside the range. This
prediction has in fact been confirmed in comparisons between human and GRBF
network performance on wire-frame and solid objects (Biilthoff, chapter 11).

The objects used in these experiments, mangled paper clips or globular masses with
multiple protrusions, are arguably “nonsensical” (Gerhardstein and Biederman 1991)
and not the type that humans would naturally encounter (unless perhaps in certain
histological specialties). To avoid artifacts due to past experience and to ensure that
there are measurable variations in performance, the objects must necessarily be novel
and difficult to recognize. Thus although the result suggests that humans do not use
explicit 3D representations to recognize novel views of novel objects, it does not
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exclude the possibility that 3D models are used for other types of objects or for other
purposes. For example, 3D models may play a role in tasks more diffjlcult than fast
recognition, involving the detection of mirror symmetry or mental rotation (She.phc.rd
and Metzler 1971; Biilthoff, this volume), although the evidence for this role is still
inconclusive (Tarr and Pinker 1989, Edelman and Weinshall 1991).

The swiftness of recognition of familiar objects (at least at the basic level) could
be explained by prior exposure to, and fast interpolation between, a multiplicity of
natural views. But an alternative explanation is that most natural objects have struc-
turally well-defined parts that permit viewpoint-invariant representations, unlike
“nonsense” objects (Biederman 1987). Objects with bilateral symmetry, such as faces,
or objects with a dominant axis, such as bones, trees, and many tools, may be
represented in different ways and recognized by other strategies. In contrast to r‘csults
obtained on “nonsense” objects, observers trained on three-quarter views of previously
unfamiliar faces recognized them more readily when they were subsequex.nly
presented in frontal views (Carey and Etcoff, pers. comm.). These results are.partlcu-
larly interesting in light of a scheme recently proposed by which a novel view (?f a
bilaterally symmetric object may be recognized from a single nonfrontal model view
(Poggio and Vetter 1992). This scheme is closely linked to 2D view interpolation
models. Thus it is possible, although only a speculation, that if the visual system
employs distinct strategies for distinct recognition tasks, these strategies might be
special instances of a more general mechanism.

Grandmothers or Old Ladies?

A key question concerning biological object representations is: are they local or
distributed?

The extreme version of a local representation is the grandmother cell (Barlow
1972). In caricature, the grandmother cell is one that responds scle_cﬁvely tp a
particular view of grandmother wearing a particular expression and sporting a pzfrtlcu'-
lar coiffure. Such specificity of neuronal response is biologically implausible, since it
would quickly lead to a combinatorial explosion. But the grandmother cell in this
form is only a “straw woman,” portrayed as such largely for the benefit of arguments
in favor of distributed representations.

Indeed the grandmother cell first proffered by Barlow (1972) was not nearly so
exclusive. This more robust cell signals the presence of grandmother, regardless of
her expression or pose, and therefore responds to “all views of grandmother’s face™
(Barlow 1972). It is only one in a collection of cells that together signal the aggregate
of features specific to grandmother, but it or a small subset of similar cells always fire
when grandmother comes into view. .

2D view-interpolation schemes like the GRBF network discussed in the previous
section enable such kinder, gentler alternatives to the strict grandmother-cell hypo-
thesis. The grandmother-detector cell might simply register the output of a GRBF-like
network trained to recognize Granny from any viewpoint. Whereas the strict grand-
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mother cell model would require a specific, sharply tuned neuron for each 2D view
of an object, the GRBF network requires only a few neurons, which could be quite
coarsely tuned, each responding maximally to a specific view but substantially to
similar views as well. The strict grandmother cell hypothesis corresponds to interval
coding, whereas the GRBF or “old lady” cell model corresponds to population coding.

Thus, view-interpolation schemes make the specific prediction that objects may be
encoded by a small population of coarsely-tuned neurons. Exactly this sort of speci-
ficity has been found in “face” cells of monkey inferotemporal cortex: Perrett et. al.
(1985) report cells there that are selectively responsive to face view and the direction
of eye gaze; Young and Yamane (1991) found that combinations of the coarsely-tuned
responses of only 40 cells in inferotemporal cortex were sufficient to encode a set of
27 faces.

Segmenting the Visual Image

The question of how objects are represented bypasses the more crucial question of
how the image is initially segmented into parts or features constituting the object to
be represented. The problems encountered in machine vision have hammered home
the difficulty of segmenting an image without prior information. If a vision machine
is told exactly where the face is in a cluttered image, the problem of recognizing that
face is in principle far more tractable than when the machine must discover for itself
which of the many blobs is a nose. In machine vision, image segmentation is
traditionally relegated to early vision and starts with decomposing the image into
uniform or homogeneous regions and grouping together parts that have, for example,
similar color, texture, or motion, but are spatially disconnected. The gap between low
level models of image segmentation and higher level models is still mostly unbridged.
Some models do address the problem of image segmentation (see, for example, the
saliency network described by Ullman, this volume) but those that deal with object
recognition usually start with images already segmented into objects.

In human vision, the problem comes under several headings: figure/ground dis-
crimination, grouping, and binding. But whatever the problem is called, the human
visual system has solved it. The visual system “knows” which blobs to group together
into a face. It can perceive as coherent wholes objects that are partially occluded by
other objects or obscured by visual noise. Some of the cues that aid in determining
figural unity are: spatial contiguity, conformity of movement or depth, and uniformity
of color and texture (see e.g., the Gestalt laws in Wertheimer 1923). For example, in
a field of black dots moving randomly on a white screen, a subset of nearby dots that
each move in the same direction with the same velocity will emerge as a coherent
figure. Segmentation models for machine vision draw heavily on these Gestalt
criteria.

A natural question that arises is: does the human visual system exploit higher-level
information when it segments images into objects? Or: is figure/ground discrimination
driven by top-down processes? Is grouping solely a bottom-up procedure? Here, the
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notion of a hierarchical visual system is hard to escape, imbedded in the distinction
between top-down and bottom-up. But top-down influences here have a clear defini-
tion: they are the processes responsible for changing the perception of a retinal
stimulus that is, at bottom, unchanging.

Figure/ground discrimination in flies and infants seems to be (a) bottom-up and (b)
primarily dependent on motion. In flies, the physiological mechanism underlying their
ability to detect and orient towards an object that differs from its background only by
relative motion is now well understood (Reichardt et al. 1983). It is mediated by
specific “figure-detection” cells (Egelhaaf, 1990) that receive input only from lower-
level motion-sensitive cells. In more developed organisms {both phylogenetically and
ontogenetically), there is more evidence for the influence of top-down processes on
segmentation. Prior knowledge can affect the perception of an image that on first view
is ambiguous or unstructured. For conditioned observers, the Dalmatian dog emerges
instantly from its speckled background in an otherwise ambiguous photograph
(Gregory 1970). Other reversals of perception can be triggered by prior knowledge
or conscious effort: for example, the back/front alternations of depth of the Necker
cube (Gregory 1986); or the concave/convex reversals of 3D shape perceived through
the kinetic depth effect (Cumming et al. 1991).

Yet other figure/ground discriminations resist the influence of higher-level knowl-
edge. The fragments of a population of letter “B”s are clearly seen as such when a
connected black blob obscures their missing parts, but when the occluder is made
invisible, the letters are extremely difficult to recognize (Nakayama and Shimojo
1990). A face partially occluded by horizontal stripes is easily recognized when its
parts lie in a depth plane behind the stripes, as if seen through a fence, but not when
its parts lie in front of the stripes (Nakayama and Shimojo 1990). Grouping by depth,
even when assisted by prior knowledge, is not enough to regenerate the whole percept
from its parts.

The Gestalt laws in themselves do not explain how the visual system implements
them. Spatial contiguity, for example, may be a criterion for grouping line clements
into a single continuous contour, but it is only a rule, not an explanation for how line
elements are signalled as being spatially contiguous. This is the problem generally
called binding: what is the physiological mechanism that links together the activity
of cells representing image features that are perceptually grouped? Within vision,
binding can occur within cortical areas (when, for example, cells encoding the
different hues of a multi-colored object must be linked) or between areas (when the
color of an object must be linked to its motion). Binding can also occur between
modalities, as when a voice is linked with a face to form a more complex representation
of a person.

The Binding Problem

Rosenblatt (1961) proposed a hypothetical vision machine to illustrate the “binding”
problem. Imagine a machine that views a screen on which can appear a square or
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triangle, say, in either the top or bottom part of the screen. Now imagine that the
machine has only 4 neurons, two that encode spatial location (one responds to the
presence of any visual stimulus in the top part of the screen; the other to any stimulus
in the bottom part of the screen) and two that encode geometric form (one specific for
triangles, the other for squares). When the triangle appears in the lower part of the
screen, an unambiguous pair of neurons is activated. When a triangle appears in the
lower part, simultaneously with a square in the upper, all four neurons are activated.
Their response is now ambiguous, as the same four neurons would be activated by a
triangle in the upper part of the screen appearing together with a square in the lower
part. The machine confronts the binding problem: how does it link the response of the
cell encoding a specific spatial location with that encoding a specific shape?

Atone extreme, the machine could resort to the “grandmother cell,” to bind together
the responses of two cells in the more selective response of yet another cell. The
machine could create by convergent inputs from the existing cells a new cell respon-
sive only to a triangle located in the lower half of the screen, another responsive only
to a square in the upper half, and so forth. This would double the number of cells in
the machine’s brain, using Rosenblatt’s design. If carried to its logical extreme in a
machine required to recognize as many objects in as many contexts as does a human,
this accretion of specialized cells would lead to a combinatorial explosion.

A more parsimonius solution would be to label the activity of each of the original
four cells with a temporal code identifying the group to which it belongs. The triangle
neuron and the upper field neuron would carry the same code to signify a triangle in
the top half of the screen. Temporal synchrony has been proposed as the optimal
method for segregating the activities of simultaneously active, distinct cell groups (von
der Malsburg 1992; von der Malsburg and Schneider 1986). Cells responding to
features that should be linked together would synchronize their firing, while cell
groups responding to distinct objects would desynchronize.

Yet the binding problem as defined by Rosenblatt arises from the ambiguity
built into the system at its lowest level. Feature-specific cells generalize over
position and spatial registry is therefore lost. Whether the architecture of the
primate visual system enables it to escape Rosenblatt’s binding problem is still an
unanswered question, but some physiologists would argue that the problem could
never arise in the primate visual system because spatial registration is supplied by
the precise topography of the early visual areas. A 4-neuron network with topo-
graphically organized square and triangle detectors could perform flawlessly in its
limited world without need for an overt binding mechanism. If the machine were
required to recognize more objects, it could possibly avert a combinatorial explo-
sion by resorting to “old-lady cells.” As discussed above, this alternative would
require population coding, in which a given object is represented by the weighted
combination of activities of broadly-tuned cells.

Rosenblatt’s statement of the binding problem also assumes that the visual system
would need to signal more than one object simultaneously. This need could thwart the
straightforward use of a population code if spatially intermingled populations are
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simultaneously active. Again, some additional means of distinguishing between the
populations must come into play.

One such proposed mechanism, selective attention, answers this problem by
assuming that the visual system cannot signal more than one object simultaneously.
This mechanism labels the activity of a group of cells signifying one object by
selectively enhancing that cell group and suppressing the irrelevant activities of others.
Coactivation is therefore sufficient to signal coherence. The “spotlight of attention”
may further tie an object to a specific spatial location by gating the low-level signals
that arrive from different regions of the image. Cells in higher visual areas without
explicit topography, such as inferotemporal cortex, may continually update informa-
tion about the spatial location of line segments, for example, merely by being
simultaneously active with the appropriate constellation of cells in lower areas.
Evidence that such an attentional mechanism exists and can be disrupted lies in the
occurrence of “illusory conjunctions,” percepts of combinations of features ascribed
to a location or object in which they do not actually exist. These illusions occur when
the observer’s attention is overloaded or diverted (Treisman and Schmidt 1982). By
definition, only one object can be spotlighted at a time, so the problem of disentangling
simultaneously active distinct cell groups dissolves.

Binding mechanisms that require temporal synchrony might be placed in the same
class as selective attention. Both are temporal mechanisms for segregating neuronal
responses. But there is a crucial distinction between mere coactivation and specific
synchronization of neuronal firing.

Von der Malsburg (1992) first put forward a general theory for sensory segmenta-
tion based on this latter form of temporal synchrony (“spike synchronization”) and
later applied it to the auditory system (von der Malsburg and Schneider 1986). In this
network model of a “neural cocktail-party processor,” cells stimulated by sounds with
similar amplitude modulations synchronize their activities; cells stimulated by dis-
similar sounds desynchronize. Inhibitory subsystcms prevent the nctwork from falling
into global synchrony. Short-term synaptic changes act to stabilize connections
between synchronized cells, and decay quickly when activity ceases.

Spoms et. al. (1989; 1991) proposed a similar model for segmentation by the visual
system. In this model, sensory space is represented by a set of cells selective for distinct
visual features, e.g., edge orientation, color, or motion. The Gestalt criteria for figural
unity are represented by two sets of connections: between cells that refer to the same
point in visual space irrespective of feature type, and between cells of the same feature
type irrespective of position. The signals from active cells are allowed to fluctuate
spontaneously. When stimulated by a coherent figure, groups of cells responding to
its distinct features synchronize their activities. The activity of cells that respond to
background elements are not correlated with cells that respond to figure elements,
even when these elements are of the same feature type.

A model of object recognition designed according to general characteristics of
cortical organization and implemented on an artificial neural network illustrates how
synchronous acitivities may arise in the stabilization of a distributed representation
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(Koerner and Boehme, 1991). Interestingly, this model also requires top-down sequen-
tial processing to halt the proliferation of inappropriate parallel representations. Bauer
and Krey (1990) demonstrate how artificial neural networks constructed from simple
threshold units can learn, recognize and sustain periodic sequences of patterns, which
are encoded by collective oscillations at distinct frequencies.

The models of binding by temporal synchrony typically are applied to stimuli with
intrinsic temporal patterns (e.g., moving figures in vision, sound spectra in hearing).
For these temporally dynamic stimuli, temporal synchrony may emerge naturally as
a binding mechanism, or even as merely an epiphenomenon. (But it should be noted
that in some models, e.g., Sporns et. al. 1989, the synchronous activity that emerges
is not locked to the temporal pattern of the stimulus.) Is temporal synchrony also a
natural means for other grouping tasks, such as linking together the spatially dis-
tributed but stationary features of the face behind the fence (Nakayama and Shimojo
1990)? There may be an evolutionary argument that justifies the more general use of
temporal synchrony. If we assume that coexistence in time of different features is the
most primitive evidence of an object and that visual motion analysis is the most
primitive perceptual ability, then we may argue that temporal synchronization was
initially used as the only grouping criterion and mechanism, and later evolved to
implement other, more complex, grouping criteria.

A remaining question is whether selective attention or temporal synchrony is in
itself sufficient to implement the grouping rules evident in visual perception. In the
model of Sporns, et. al. (1991), connections between cells serve as the substrate for
the Gestalt grouping criteria. It is only within this structural framework that the
intrinsic dynamic variability of neuronal groups acts to synchronize related cells and
to desynchronize unrelated cells and that temporal synchrony thereby serves to
implement the Gestalt grouping rules. A related question is whether the structural
requirements for temporal synchrony as a general-purpose binding mechanism can be
met on the scale of the primate visual system.

Another open question is whether the temporal code requires a deciphering
mechanism. If so, this mechanism would probably require appropriate efferent
connections from the synchronized cell group. Indeed, one of the arguments for
the efficacy of temporal synchrony is that temporally synchronous neurons may
elicit a larger response from another neuron or group of neurons onto which they
commonly converge (see e.g., Sporns et. al. 1992). But postulating an output
neuron or group of neurons (which might be, for example, effector neurons in
another modality) could reintroduce the “grandmother cell” problem. At least, it
might obviate the need for the temporal code. The temporal code might be
necessary to ensure activation of an output neuron that is selectively responsive to
the phases of its inputs. But perhaps equally plausible is an output neuron selec-
tively responsive to the amplitudes of its roughly cotemporaneous inputs. This
latter possibility would not require a temporal code in the strict sense discussed
here. These are possibilities that remain to be examined in light of the known
functional architecture of the primate visual system.
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Experimental Evidence for Binding by Temporal Synchrony

What evidence is there that the visual cortex uses a temporal code to segregate
functionally distinct, distributed clusters of neuronal activity? What form might
this code take and how might it vary between animals? These are questions which
are just beginning to be addressed. There is general agreement that a temporal
code must involve temporal synchronization of neuronal responses on some time
scale. Whether this requires phase-locked periodic firing or synchronization of
aperiodic bursts or merely roughly simultaneous co-activation is still debated. The
argument for the physiological efficacy of temporal synchrony is strong: it would
seem to (1) increase the probability of firing of neurons that receive convergent
input from synchronized cells and (2) increase the probability of inducing changes
in synaptic strength, particularly as plastic processes have high activation thre-
sholds (Artola et al. 1990). It can be argued further that periodicity, or more
generally, predictability of inter-burst intervals, could aid in establishing syn-
chrony, particularly in the face of often considerable conduction delays in coupling
connections. Although periodicity in itself is neither necessary nor sufficient to
establish a binding code, the visual system might exploit intrinsic periodic beha-
vior to signal coherent activity.

The recent discovery of stimulus-specific oscillations supports the arguments for
periodicity of the temporal code. In anesthetized cat visual cortex, neighboring and
distant cells of like specificity (Gray and Singer 1989; Tso et al. 1986; Gray et al. 1989)
tend to respond to optimal stimuli with synchronized oscillatory discharges peaking
around 40 Hz, most evident in correlograms of local field potentials (LFPs) and
multi-unit activities (MUAs). The strongest indication that the observed oscillatory
activity in anesthetized cat is functionally significant comes from a recent study by
Engel et al. (1991), in which broadly-tuned orientation-specific cells with overlapping
receptive fields synchronized their oscillatory discharges when stimulated with a
single light bar, but split into groups determined by orientation preference when
stimulated simultaneously with two bars of distinct orientations. Within the groups,
cell firing was synchronized, whereas between groups it was not.

These and other reports of neuronal response oscillations at similar frequencies in
other animals generated enthusiasm specifically for 40 Hz oscillations as the neuronal
binding mechanism and even as the substrate of consciousness (Crick and Koch 1990).
Yet subsequent investigations have indicated a lesser role for 40Hz oscillations,
particularly in monkeys. Newsome and Koch (pers. comm.) analyzed single neuron
responses in area MT of alert monkeys performing the task of detecting motion of a
group of coherently moving dots against a background of randomly moving dots. The
monkey’s performance, which improves with the percentage of coherently moving
dots, can be predicted from the response curves of single cells. Yet there was no
correlation between power at 40 Hz, or in any other narrow band, in autocorrelograms
of single cells and the monkey’s performance. A small percentage of cells, most of
which also tended to burst, did exhibit an increase in power at around 40 Hz, but this
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was not necessarily related to the stimulus. Although this result suggests that narrow-
band oscillations do not subserve perceptual tasks requiring attention and grouping,
it is based on single cell autocorrelograms, in which sampling problems may obscure
evidence of oscillations and which could not in any case demonstrate synchrony
between cells.

Young et al. (1992) found no evidence for stimulus-related oscillations in autocor-
relograms of MUAs and power spectra of LFPs in monkey V1 or MT, using stimuli
and anesthesia conditions very similar to those under which oscillations were revealed
in the cat. A small proportion of MUA autocorrelograms (2/50) from IT in an alert
monkey performing a face discrimination task did show power around 40 Hz, but only
one such response was associated with stimulation. Different results are found in
nonvisual cortex. In sensorimotor cortex of an alert monkey performing a difficult
motor task, Murthy and Fetz (1991) found a higher proportion of transient oscillatory
synchronizations in LFPs. Young et al. further suggest that previous estimates of up
to 68 % for the percentage of oscillatory responses found in cat visual cortex may have
been inflated by over-tolerant acceptance criteria, and that the true proportion may lie
between 10 and 35 % (as in Toyoma et al. 1981; Ghose and Freeman 1990). These
data illuminate the necessity for standard experimental and statistical procedures to
be applied in classifying temporal response patterns.

An unexplained gap still remains between the prevalences of periodic neuronal
responses in cat and monkey, which suggests the existence of fundamental differences
between cortical structure in the two animals. Clues to the crucial differences lie in a
simulation of a cortical neural network (Bush and Douglas 1991) in which the addition
of global feedback inhibition was found necessary to synchronize the activity of
intrinsically bursting, mutually excitatory cells. Koch and Schuster (1991) found that
synchronized bursting in a similar artificial network produced as epiphenomena
damped oscillations in cross-correlograms. The structure of cortical connections may
be different in cat (Toyoma et al. 1981; T’so et al. 1986) and monkey (Gochin et al.
1991). Reasoning from population dynamics, Young (pers. comm.) concludes that
two factors alone may determine where the intrinsic group behavior of cortical neurons
falls in the range from periodic to chaotic: the reach of inhibitory connections and the
average time delay between inhibition and excitation. In the monkey, synchronized
group behavior may lie well beyond the periodic domain.

These observations emphasize the need to shift the focus of the search for temporal
patterning away from narrow-band oscillatory activity and towards evidence of more
subtle mechanisms of synchronization. Kreiter et al. (1991), for example, report fewer
regular oscillations than in cat but nonetheless strong evidence for prominent syn-
chronization in the superior temporal sulcus of alert monkeys. Recent experiments
by Vaadia et al. (1991) suggest that correlations between neurons may contribute to
the execution of a behavioral task. These authors observed neurons in prefrontal cortex
of an alert monkey that synchronized their activity for a short period of time (roughly
200 msec) when the animal initiated a behavioral response. The mean level of
discharge of the neurons remained unchanged.
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If recurrent bursting underpins temporal synchrony, as some models would suggest,
and if the interburst intervals vary widely, autocorrelograms may reveal only broad
power spectra of the sort reported in monkey (Young et al. 1992). Cross-correlograms
between burst-synchronized neurons may show only single peaks centred on zero time
lag. The challenge to experimentalists would then be to demonstrate that this peak
does not result merely from common input to the correlated cells, its traditional
interpretation.

Binding Levels into Models

Models of the brain and specifically of the visual system have grown dramatically
both in number and acceptance since the Dahlem conference in 1977 on “Function
and Formation of Neural Systems” where there was only one pure theoretician
amongst a large group of experimental neuroscientists. Yet there is still debate on what
sort of models are most useful in brain science, on how to evaluate models, and even,
on whether models are capable of characterizing a system that might just be a “bag of
tricks” (Ramachandran 1985). (Of course, one must remember that “a trick used twice
is a method,” as a physics professor once admonished students who complained that
the solution to an exam problem required memorization of a trick employed in an
earlier demonstration (quoted by D. Glaser).)

The primary demand made of a model of the brain is that it be useful; it should
either collect and compress data into a comprehensible framework, make specific
predictions, or otherwise motivate new experimentation or modeling. Some neuros-
cientists also believe that the understanding of the brain can only be complete when
it encompasses all levels of investigation, from single-cell physiology to neuropsy-
chology to computational analyses, and that therefore the worth of a model can also
be judged by the number of levels it spans. Yet even models restricted to single levels
may provide powerful insights. In physics, the laws of thermodynamics are on a
phenomenological level relative to statistical mechanics. Thermodynamics describes
the relationship between the pressure and volume of a gas, for example, without
offering an explanation of why a gas exerts pressure. As a phenomenological theory,
thermodynamics allowed the behavior of molecules to be exploited before molecules
were even known to exist. Of course, the equations of statistical mechanics are
themselves phenomenological when formulated in the framework of quantum mech-
anics; where to draw the line between phenomenological and reductionistic theories
is not always clear-cut.

Some would argue, however, that biology is fundamentally different from physics,
and whereas a simple, self-consistent model may be accepted by physicists, it would
rightly be shunned by biologists. In biology, “Occam’s razor can cut the throat”
(quoted by L. Segel).

Computational theories of vision arising from the tradition of Artificial Intel-
ligence, for example, have justified themselves with the assumption that the level on
which they exist is common to any computing machine, regardless of its components,
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including the human brain. Yet the realization underlying more recent computational
theories is that perhaps such a level does not exist, because the properties of the
components of a machine constrain the very computations it can perform. The storage
capacity, temporal resolution, information transmission rate, and sheer number of
neurons available for a given task affect the computational capability of even a
symbolic neural network.

The models discussed in this workshop highlight the necessity of incorporating
biological data into theoretical models and computer simulations. Take, for example,
the historical caricature of the grandmother cell, cited as evidence against local
representations. When modeled as part of the entire visual system, the “grandmother
cell” is usually allocated to the top slot in a strict hierarchy of levls. At each successive
level, cells perform an increasing abstraction of the input stimulus and receive ever
more convergent input from lower levels. The levels are assumed to interact in a strictly
feedforward fashion, beginning with a retinal stimulus and culminating in the activity
of a cell representing, say, grandmother viewed straight-on at eye level. This model
is at best incomplete as an explanation of the visual system, even as an analogy,
because it fails to incorporate critical anatomical and physiological data. These are
data that illustrate the abundance of lateral and feedback connections (e.g., Felleman
and Van Essen 1991; Rockland and Lund 1982). The possible functions of the
numerous reciprocal (reentrant) pathways have been explored in several computa-
tional models (e.g., Finkel and Edelman 1989). The mere existence of feedback
connections between visual areas suggests an anatomical conveyance for the top-down
processes hypothesized to play a role in segmentation and object recognition.

Damasio’s model of the visual system (see Damasio and Damasio, chapter 17) ties
down the idea of a dynamic, distributed representation to specific cortical areas and
connections. While based on anatomical and physiological data, it impacts on the study
of the brain at a higher level, by predicting the behavioral consequences of lesions in
specific brain areas. The phenomenology of object recognition described by Dama-
sio’s model includes evidence from prosopagnosiacs that correlates preserved levels
of categorization within recognition with undamaged anatomical structures. A patient
with bilateral mesial occipital lesions (including areas 18 and 19), sparing left-sided
primary visual cortex, retains recognition of faces only at the basic-level. He can
distinguish a face from a foot, but only rarely a man’s face from a woman’s, and he
cannot recognize facial expressions at all (Tranel et al. 1988). Patients with lesions
sparing extrastriate visual cortex on a least one side can recognize facial expressions
and gender but cannot identify individual faces or certain man-made objects. A patient
with a lesion sparing much of left-sided inferotemporal cortex and mesial occipital
cortex on both sides can recognize some faces on a unique level, albeit slowly and by
relying on strategies such as recognition-by-parts. Patients with bilateral lesions of
inferotemporal cortex cannot recognize faces on a nonunique level but can identify
facial expressions and gender. Thus, it seems that anterior temporal cortices are
essential for recognizing the identity of faces, while early extrastriate cortices are
required for distinguishing physical categories of faces.
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Damasio’s framework for object recognition (Damasio 1989) collects this and other
evidence and combines it with neuroanatomical data on cortico-cortical connections.
His model postulates that objects are represented by the coactivation of neurons
distributed across many areas and levels of the visual, association, and limbic cortices,
and linked by a network of feedforward and feedback connections that resist being
labelled with a single direction of sequential processing. No single neuron or group
of neurons in a single area has conferred upon it the entire structure of an entire object.
In particular, neurons in so-called “integrative” areas such as inferotemporal cortex
do not re-represent the elementary features registered by primary sensory areas. Thus
the loss of inferotemporal cortex does not result in a breakdown of perception in the
way that lesions to areas 18 and 19 may disrupt, say, stereopsis.

This framework is consistent with neurophysiological data on single neuron
responses, since no cells have been discovered in monkey inferotemporal cortex, or
elsewhere, that are specific for individual faces. The behavioral pattern of deficits
supports the hypothesis derived from GRBF-like models of object recognition that
individual faces may be encoded by the population activity of cells broadly tuned to
particular views (Perrett et al. 1985) or to facial prototypes (Young and Yamane 1991).

These results underscore the theoretical and practical difficulties in determining
the response specificities of neurons in the visual pathway. That prosopagnosiacs have
similar deficits in the recognition of other objects suggests that extrapolating from
faces to objects is valid and that cells specific for other objects may be found in
inferotemporal cortex. “Hand” cells indeed were reported there even before “face”
cells (Gross et al. 1972). But all the evidence suggests that cells with specificities as
clear-cut as simple cells in primary visual cortex are not to be found in more anterior
visual areas. Cells in these areas are more complex, at least in that they are far more
difficult to excite. Analyses will have to be made very carefully of both stimulus
properties and population responses. Indeed, given the anatomical connections be-
tween the inferotemporal cortex and limbic areas, it may be misguided to investigate
the responses of an inferotemporal cell with purely visual stimuli (see e.g., Sakai and
Miyashita 1991).

UNANSWERED QUESTIONS

Many of the models discussed in this workshop did indeed raise questions that could
motivate new experiments. Some of the critical points put forward were:

[. Temporal synchrony for binding: The question arises of temporal resolution.
Can the functional capabilities of individual cells support their group behavior?
Because of saccades, microsaccades and drift, even a static image may send a
rapidly changing signal within which different patterns must be distinguished
by different temporal codes. Given the biophysical properties of neurons, is
this feasible? To date only moving stimuli have been used in physiological
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experiments to elicit temporal synchrony. These have an intrinsic temporal
structure that could elicit temporal patterning of neuronal responses. It remains
to be shown that temporal synchrony occurs in the binding of stationary
features. Specific stimuli used to probe figure/ground discrimination abilities
in humans have been proposed: for example, the noisy circle depicted by
Ullman (this volume). Do the amplitudes of or temporal relations between
responses of individual cells or cell groups alter when randomly scattered
segments are rearranged to form a circular contour? How would the temporal
synchrony model of binding account for the obscrved ability to group together
features of a moving object, that would necessarily activate a continuously
shifting set of cells? Can experimental evidence be found for temporal syn-
chrony in the representation of such a stimulus? Specifically, is there a dif-
ference in correlation of activity between two cells stimulated simultaneously
by two lines oriented in the same direction and moving in the same direction
depending on whether the line segments have been moving coherently or not
across previously stimulated receptive fields? On the psychophysical level,
can the Gestalt-criteria-governed patterns of figure/ground discrimination be
disrupted by an externally imposed temporal code?

2. 2D View Interpolation Schemes : These would predict that in an awake
monkey learning to discriminate novel views of a wire-frame object, cells
more or less broadly tuned to the 2D training views would be found,
probably in inferotemporal cortex. We still have little idea of what actually
happens during the 200 msec between stimulation of the retina and the
initiation of a behavioral response, sufficient time for activity to travel all
the way from retina to inferotemporal cortex and back to the earliest stages
of cortical processing. For example, what does the stretch of cortex between
V4 and inferotemporal cortex do? Following what guidelines might the
neurophysiologist select the optimal stimuli for relatively unexplored visual
areas? Given the impossibility of employing an infinite set of stimuli from
simple bars to complex shapes, the neurophysiologist can never claim that
any one stimulus is optimal for a given cell. In this new age of cell groups,
what new information can the single cell recording reveal? Will our under-
standing of the visual system stagnate until new high-resolution technology
for multiple-site recording appears?

One notion pervades almost all models of the visual system: that of a hierarchical
structure. In computational vision, processes are relegated to “early” or “late” vision;
in psychophysics, they are described as “low” or “high level.” Physiology and
anatomy have taught us that these distinctions make some sense: the retina is the first
to receive the light signal, and cortical areas removed from it by a greater number of
synapses tend to have more abstruse visual functions. But as “higher” visual areas are
explored in more detail, the hierarchy that labels them may itself tumble to make way
for a different sort of vision.
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