
Bayesian Models for Seeing Shapes and Depth 

We review coniputational models of shape and deprh perception and relate them 
to visual psychophysics. The Bayesian approach to vision provides a fruitful the- 
oretical framework both for modeling individual modules, such ils stcrco, shading, 
tcxturc, and o c c l u ~ i ~ n .  and for intcgrating thcir informatiom. In this formalism we 
represent depth by one, o r  more, surfaces with prior probabilities for surface shape, 
corresponding to natural constraints, in order to avoid the ill-posedness of vision. 
O n  theoretical grounds. the less information available to the module (and the less 
accurate i t  is), then the more important the priors bccomc. This suggcsrs that visual 
illusions, and biascd perceptions, will arise for scenes for which the priors are not 
appropriate. We describe psychophysical experiments that are consistcnt with these 
ideas. For integration of different modules we advocate strong coupling, so that 
the modules can interact during computation and the priors can be modified. This 
framework is rich enough to accommodate straightforwardly both consonant and 
contradictory cue integration and different psychophysical experiments can be 
understood within the Bayesian approach. 

INTRODUCTION 

When modeling the brain it is currently impossible to study the 
billions of neurons and describe their individual activities. It seems 
better to model at a more abstract level and see what computations 
need to be done guided by psychophysical experiments and ex- 
perience in designing computer vision systems [I]. 

Abstract mathematical theories, independent of their possible 
implementations in neural hardware, specify precisely what the 
problems are, what information is available, and what assumptions 
need to be made. These models can give predictions that can 
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stimulate further psychophysical and neurophysiological experi- 
ments. 

Visual depth perception is an interesting area in which to study 
the brain. There have been many psychophysical experiments and 
much experience building robot vision systems. I t  is current prac- 
tice to break down the problem into manageable subunits, or mod- 
rtles [I ] ,  which are believed to be semi-independent. Examples are 
binocular stereo, shape from shading, and shape from texture. 

Because of the ill-posedness of vision, these modules need to 
add constraints. or make prior assumptions, about the scene. If 
these assumptions are incorrect for a specific scene, then visual 
illusions andlor biased perceptions will result. We will describe 
experiments [2,3] showing biased perceptions for shape from shad- 
ing and shape from stereo. These experiments support the plausible 
idea that the strength of the bias decreases with the amount of 
accurate information in the scene. 

Modules are often treated as being independent both in human 
psychophysics and in computer vision systems. There is, however, 
some psychophysical evidence of interaction and this interaction 
is certainly computationally desirable. 

Several psychophysicists have categorized these interactions into 
two broad classes: one in which the cues are cotlsorznnt and the 
other in which they are contradictory. For example, consider view- 
ing a golf ball with both eyes. There will be consistent, or con- 
sonant, depth information from stereo, shadmg, and texture cues. 
Viewing an image of the same golf ball in a photograph, however, 
puts the stereo cues (which give constant depth for the entire 
photograph) into conflict with shading and texture; hence the cues 
are now contradictory. 

People have attempted to deal with the first case by taking 
weighted linear combinations with some success [4, 51. Some ex- 
periments [ 2 ] ,  however, do not seem consistent with such a model. 
A qualitative demonstration of this is given in Figure 1, in which 
the integration of shading and texture gives a much more vivid 
and accurate depth perception than the individual module alone. 

The case of conflicting cues seems to require significant nonlin- 
earity and is usually assumed to require a different, and inde- 
pendent, mechanism. For example, this case is explicitly excluded 



in the statistical framewo~-k for fusion of depth i r i l 'o~-ni ;~~io~i  pro- 
posed by Maloncy and Landq' [6]. 

Workers in computer vision have tcnclcd to use an i ~ l t c r n a r i ~ c  
viewpoint. A recent book on scnsol- fusion [7]  ~?rojxwcl  21 distinc- 
tion between 1 1 w k  methuds in which modules compute clcptll ill- 

dependently and  combine their results (u,itIi lineill- combin;~~ion as 
a special case) and srrong mcthods in which two modulcs interact 
during co~nputa t ion.  usually i n  a w r y  l ion linear \cay. They stress 
that. because of (he ill-posednt.\s of \,ision. individual modules 
must make assumptions about thc world and ma! not 1.x \.alicl. 
Weak c o ~ ~ p l i n g  may fail because individual ~iiodules may bc u i n g  
inconsistent assumption.;. Strons cuuplitig is usually prefcrablc bc- 
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cause i t  ~nvolves mod~fying the assumptions of the modules being 
fused to make them consistent. These theories also allow for adap- 
tive weighting of different cues depending on the relative reliab~lity 
of the cues and seem rich enough to encompass both categories 
defined by psychophysicists. 

From this viewpoint some cues that appear conflicting might 
instead become consonant, prov~ded strong coupling is used. Other 
cases of conflicting cues, transparency for example, can be dealt 
with in this formalism using binary decision units [S]. 

These methods are expressed in a Ba>esian framework that can 
be used both for describing the individual modules and for their 
integration. Although there are man1 other methods for dealing 
with individual modules, the Bayesian approach subsumes a nurn- 
ber of these methods by isolat~ng the key assumptions used by 
these theones. 

BAYESIAN MODELS FOR INDIVIDUAL MODULES 

In this section we concentrate on individual, noninteracting, mod- 
ules. We describe the need for natural constraints and psycho- 
physical demonstrations for biased perception. We introduce the 
Bayesian approach and show that it gives a natural explanation of 
these biases. 

The Need for Constraints: Why We Do Not See 
Depth Correctly 

Vision is ill-posed. There is insufficient information in the retinal 
image to uniquely determine the visual scene. The brain must make 
certain assumptions about the real world to resolve this ambiguity 
[I] ,  and visual illusions can result when these assumptions are 
invalid. 

Psychophysicists design situations where the human visual sys- 
tem has a limited number of depth cues, usually from n single 
module. It is easy to produce situations of this type for which 
humans will get wrong shape or depth perception. An example 
would be photographs of the moon for which the perception of 
crater or hill depends on the assun~ption we make about the light 



source direction. It is plausible that assumptions such as "light 
comes from above" are innately built into our  perceptual system 
PI. 

Biilthoff and blallot [2] used a shape probe to measure quan- 
titatively the shape and depth perception for singular or  nlultiple 
depth cues. For example, a subject viewed a shaded object (el- 
lipsoid of rotation viewed end on with one eye) and manipulated 
the shading of the object in real time in order to match the 3D 
appearance of a reference shape (without shading) viewed with 
both eyes (stereoscopically). The results show a systematic tend- 
ency to underestimate shape from shading, compared to shape 
from stereo; in other words, the perception is biased toward the 
frontoparallel plane. The same holds true for other depth cues, 
e.g.. shape from texture (see Figure 2) .  

This result can be interpreted as saying that the visual system 
has prior assumptions about the surfaces. The weaknesses of the 
shading information, discussed in the next section, mean that the 
perception is significantly biased by these prior assumptions. 

An Example of Ill-Posedness: Shape from Shading 

Shape from shading assumes a relat~onship.  described by the re- 
flectarlce model (see Reference [lo]), between the geometry of the 
surface being viewed and the image intensity. 

A standard model, Lambertian Reflectance. assumes that: 

where I (%) is the intensity at a point i in the image corresponding 
to a point on the surface with surface normal ii(2). and < is the 
direction to  the light source. 

The viewer receives the input I ( < )  and needs to determine the 
surface normal fi(ji).  There are several reasons why this problem 
is ill-posed: ( 1 )  the viewer will not know what reflectance function 
to assume unless the viewer already has information about the 
object (although Lambertian might be a good default assun~ption):  
(2) the viewer does not know the direction of the source s ;  thcrc 
may often be several sources and multiple reflections frvm othcr 





objects; and (3) even assuming that (1) and (2) are solved, Eq. 
(2) is only one  equation for the two components of ii(2). Although 
because of technical properties of surface normals. there is suffi- 
cient information to solve Eq.  (2). in some cases [lo]. it is not 
clear exactly how robust the solution is. 

T o  make shape from shading well posed, it is usually assumed 
that the reflectance function and the light source direction are 
known and that the surface normal ii(x) varies smoothly with 2: 
in other words, that the surface is smooth. Moreover, the surface 
normal is typically assumed to be known at the boundaries of the 
object. This last assumption is fairly weak because unless the sur- 
face normal is discontinuous at the boundary it can be deduced 
from the silhouette. 

There is a common paradigm for enforcing smoothness for shape 
from shading, using energy functions [lo]. The basic ~ d e a  is to 
minimize a function E[iilI] with respect to n(2). Using the Gibbs 
distribution [l l] ,  we can define a corresponding probabilistic model 
(see Appendix I )  so that minimizing the energy function with re- 
spect to  ii is equivalent to maximizing the probability distribution. 
In the next section we interprete this in a Bayesian framework. 

A typical energy function for shape from shading is of the form: 

where S is a differential operator that causes the second term to 
penalize nonsmooth surfaces and A controls the amount of smooth- 
ing. Minimizing E[ii 1 I ]  will, therefore, give a compromise between 
fitting the data (the first term) and giving a smooth surface (second 
term). It is usually not desirable to fit the data perfectly, because 
of noise effects. The measure of smoothness is typically viewpoint 
dependent,  although it is often chosen to be an approximation to 
a viewpoint-independent measure, such as the curvature of the 
surface. This viewpoint dependency results in biases toward the 
frontoparallel plane for many commonly used smoothness niea- 
sures. In the probabilistic interpretation the smoothness term cor- 
responds to the prior (see Appendix I) .  

A consequence of this paradigm, and in particular the smooth- 
ness constraint, is typically to bias the surface toward the fronto- 
parallel plane. The amount of this bias is determined by the pa- 



rameter A and depends on the amount of information in the data 
term and its degree of accuracy. The less information available 
and the less accurate i t  is. the more the need for the prior as- 
sumptions and the greater the bias in the perception. 

This bias agrees qualitatively with that found by Biilthoff and 
Mallot [2] (see Figure 2). These experiments showed that this bias 
is severe. Perhaps (because of the ill-posedness discussed above) 
the visual system puts relatively little weight on the data term and 
puts more faith in smoothness, an n priori assumption about the 
surface. It is interesting that i f  the reflectance function of the 
viewed object is modified to include a specular component. then 
the observer overestin~ates the depth (or curvatilre of the ellipsoid) 
[12]. A possible explanation for this overestimation is that the 
observer assumes a Lambertian reflectance model for the surface 
as a default. A specular highlight would, therefore, cause curvature 
overestimation. This suggests further experiments to determine 
the prior assumptions for surface reflectance functions. 

A Way to Impose Constraints: The Bayesian Approach 

How are natural constraints imposed in vision systems? For ex- 
ample, Marr [ l ]  proposes that the visual system uses smoothness 
of surfaces as a natural constraint. But there are many possible 
definitions of smoothness and ways to incorporate it into the the- 
ory. The Bayesian formulation gives an elegant way to imposc 
constraints in terms of prior probabilistic assumptions about the 
surfaces and, moreover. requires us to specify precisely what 
smoothness is. In general the choice of priors can be guided by 
psychophysical experiments and experience building computer vi- 
sion systems. 

The Bayesian approach is based on Bayes formula [13] and for 
surfaces can be written as: 

In words: the probability of the surface $2) given the data I(%) is 
the product of the probability of I(1) given ii(2). P(l(%)jn(%)), 
times the a yriori probability of $2). P(ii(%)), divided by a nor- 
malization constant. 

For shape from shading P(l(%)lii(2)) is specified by the reflec- 



tance model, which can be thought of as synthesizing an image 
knowing the shape. P(ii(ji)) specifies the prior assumptions and 
natural constraints. The most probable interpretation is obtained 
by maximizing P(ii(i)lI(ji)). We can get specific forms for these 
distributions using the energy function defined in the previous 
section and the Gibbs distribution (see Appendix I). 

The prior probability distribution is needed to ensure that 
P(ii(ji)II(i)) has a unique and robust global minima, rather than 
a degenerate global minimum due to the ill-posedness of vision. 

The Bayesian formulation, as is well known, can incorporate 
and extend previous theories. such as regularization [14] and the 
energy function minimization paradigm [lo]. It is more general 
than regularization theory. because. for example. it can include 
decision units (so the answer does not have to depend smoothly 
on the input data-as regularization theory requires). Moreover, 
the Bayesian approach contains a far larger class of constraints 
than those that can be imposed by regularization techniques. For 
these reasons it seems rich enough to deal with the integration of 
both consonant and conflicting cues. 

T H E  BAYESIAN APPROACH T O  CUE INTEGRATION 

This section describes the need for cue integration and how it can 
be accomplished within the Bayesian framework. 

The Need for Integration: Why One  Module Is Not Enough 

By restricting the set of depth cues, psychophysicists can easily 
construct situations where depth is incorrectly perceived, as seen 
in the previous section. In natural scenes, however, more cues are 
available and humans tend to do better. Figure 2,  from Biilthoff 
and Mallot [16], shows how the integration of shading and texture 
information gives a significantly more accuratc depth perception. 

It is generally believed that, in most situations, the integration 
of different depth cues will improve the accuracy of the perception 
(more information is available so there will be less need for priors). 
The accuracy may also be improved by recognition processes (rec- 



ognizing an object as a baseball strongly suggests that it is spherical). 
For some natural scenes, however, integration and recognition may 
not be sufficient to obtain the correct interpretation. For example, 
they will not get us out of the Ames room 1151. It is not known 
how veridical dcpth perception has to be in order to solve the 
principal visual tasks of recognition and navigation. True accuracy 
may only be needed for a few tasks, such as threading a needle. 
Nevertheless. most visual tasks require some depth estimation and 
integration should improve task performance. 

Integration raise a number of important issues: What informa- 
tion does one get from a depth module? How accurate is it? How 
robust is it to errors in measurement? How much does i t  depend 
on its assuniptions, which will not always be correct? 

Clearly a theoretical basis, which can dcal with these questions, 
is necded for the integration of modules. In recent years the Baye- 
sian approach has been proposed as a promising formulation for 
both individual modules and their integration. Clark and Yuillc 
[2] in their book on sensor fusion describe such a fornlulation and 
review previous theories. 

A Bayesian Formulation for Integration 

The Bayesian approach gives an elegant way for combining infor- 
mation from different modules. Suppose we have two sources of 
depth information f(2)  and g(x).  Then we can write: 

with P(I(?i)) as a normalization constant. I f  these sources are in- 
dependent then we can write: 

This corresponds to weak coupling (as defined in Clark and 
Yuille, [7]). This contrasts with strong coupling that occurs when 
the sources are dependent and Eq. (4) is not satisfied. 



The more independent depth cues there are. the less the neecl 
for prior constraints. In  some situations P( f(%))ln(%)) P(p(%))Iii(i)) 
may have a well-defined global minima and the P(n( i ) )  will he 
unnecessary. 

The Bayesian formulation using the Gibbs distribution (see Ap- 
pendix I )  and weak coupling by the addition of quadratic energy 
functions leads naturally to a linear role for combining depth in-  
formation (because minimizing a quadratic energy function Ieacls 
to a linear equation). There are a number of psychophljsical cs- 
periments on cue integration that are consistent with this linear 
rule [4. 51. Maloney and Landy [(I] for example. propose such n 
theory for integrating consonant cues (because they propose an 
adaptive way of estimating the relative importance of cues their 
approach is a special case of an adaptive Bayesian method.) 

However, even for weak coupling, cues neecl not be combined 
linearly either hecause quadratic energy functions may not be used 
or because the prior for the combined system may differ froni 
those of the individual modules. Because more inlormation is i ~ ~ > i i l -  
able in the combined situation we might expect the prior to becoinc 
less important, in certain situations, and the perception to be morc 
accurate. 

This is supported by the following experiment [12. 161. which 
shows coupling between shading and texture. The underestimation 
of depth by about 50% for individual cues (shading or texture) 
and the almost veridical perception for both cues combined (Figure 
2) is inconsistent with the linear rule. 

This experiment might still be cxplairied by weak coupling. though 
with modified priors. 'The combined shading and texture system 
will need weaker priors than the individual systems. hecausc morc 
information is available. Hence there is both less bias towi~rci the 
frontoparallel plane froni the priors and more bias to\vard the 
correct perception from the shading and texture cues. The two 
modules would combine more than i f  a linear rule were used. 
Strong coupling, however. will allow even stronger i~lteractioris. 

A theoretical example of strong coupli~lg occurs i n  the work oC 
Geiger and Yuille [17j combining stereo information with mon- 
ocular depth cues, obtained from small head or eye movements. 
These monocular depth cues can be used to help solve the cor- 
respondence problem of stereo. 'This gives a highly nonlinear in- 



teraction between the monocular and the stereo cues. In contrast, 
a weak coupling method would solve the stereo correspondence 
problem without the use of the monocular cues. Note that the 
monocular cues need not localize the depths of the features pre- 
cisely; they need only be accurate enough to disambiguate the 
stereo correspondence problem. 

T o  illustrate the difference consider the following "Gedanken 
Experiment," which demonstrates how contradictory cues can be- 
come consonant if strong coupling is used. Suppose we have a 
random dot stereogram with monocular depth cues. The stereo- 
gram is set up so that it would appear to  be flat, if the n~onocular 
cues are suppressed. It is straightforward to design such a ster- 
eogram, because there is a severe correspondence problem for the 
random dots that is resolved by using the smooth surface assump- 
tion for stereo [ I ] .  We now arrange the monocular cues so that 
the surface is very jagged. If we try to couple the stereo weakly 

w i t h  the monocular cues, then the cues are contradictory. The 
problem lies in the smooth surface assumption used by the stereo 
algorithm. For strong coupling, as in Geiger and Yuille [17] the 
smoothness assumption is not needed. and the stereo and mon- 
ocular information complement each other. The cues are now con- 
sonant. 

This example illustrates several key features of the strong cou- 
pling approach: (1) the interaction between modules can become 
highly nonlinear, (2) cues that contain little. or inaccurate, infor- 
mation may nevertheless significantly strengthen the performance 
of another module provided the inaccuracy can be quantified, (3) 
the dependence on priors is reduced when more cues are available, 
and (4) strong coupling is particularly important for situations that 
require decisions, such as stereo correspondence o r  transparency. 

Another example of strong coupling can be found in the work 
of Blake and Bulthoff I181 o n  specular stereo. They show that the 
human visual system can use the information about the 3D position 
of highlights in order to resolve the convex/concave ambiguity of 
shape from shading. 

A BAYESIAN FORMULATION O F  S T E R E O  

In this section we introduce a theoretical formulation for stereo in 
terms of the Bayesian approach to vision. We briefly describe 



techniques from statistical physics which allow us to relate our 
theory to different existing theories and to develop fast heuristic 
algorithms. 

The  geometry for stereo is illustrated in Figure 3 assuming a 
pinhole camera model. If the correspondence problem is solved, 

FIGURE 3 Stereo geometry: Matching corresponding points on the two retina is 
difficult because, in principle. any point in the left eye (LE)  could match any other 
point in the right eye (RE) .  Only 4 of the 16 niatching possibilities are correct 
(filled circles) and correspond to projections of 4 points in space. Without further 
constraints (priors on surfaces) the inverse optics problem of stereopsis cannot be 
resolved. One constraint that reduces the matching possibilities is the epipolar line 
constraint, illustrated in the lower part. A point on the left retina (L,)  can only 
be matched to a point on the right retina ( R , )  on the corresponding epipolar line 
which is given by the geometry of the optics. 



allowing us to match features between the two eyes, then depth 
can be determined by triangulation, assuming the eye directions 
are known. Although if  there is any uncertainty in the positions 
of the image features, there will be uncertainty in the depth per- 
ception. 

The epipolar line constraint ensures that a given feature in either 
eye can only match features lying on a specific line in the other 
eye; this line can be determined if  the orientation of the camcras 
is known. It can be shown, to a first-order approximation, that the 
depth of a feature relative to the fixation depth is proportional to 
the relative distance between the images of the feature in the two 
eyes, the dispariv.  It is usually more convenient to describe stereo 
theories in terms of disparity rather than depth. 

The fundamental issues of stereo are: (1) what primitives are 
matched between the two images; (2) what a priori assumptions 
are made about the scene to determine the matching and thereby 
compute the depth; and (3) how is the geometry and calibration 
of the stereo system determined. For this section we assume that 
(3) is solved, and so the corresponding cpipolar lines between the 
two images arc known. Thus we use the epipolar line constraint 
for matching; some support for this is discussed in the next section. 

The Bayesian approach suggests using prior assumptions about 
the surface to solve the correspondence problem and to compute 
the disparity. Intuitively the correspondence problem is solved to 
give the disparity field that best satisfies the a priori constraints 
about the surface. This differs from some previous theories of 
stereo that first solved the correspondence problem and then con- 
structed a surface by interpolation [19]. 

For this section we will restrict ourselves to priors given by 
quadratic sn~oothness measures, sometimes with line processes [20] 
used to break the smoothness constraint. This class of priors seems 
adequate for the psychophysics described later. The formalism, 
however, is not restricted to this class of priors [21]. 

Our framework combines cues from different matching primi- 
tives to obtain an overall perception of depth. These primitives 
can be weighted according to their robustness. For example, depth 
estimates obtained by matching intensity are sometimes unreliable, 



because small fluctuations in intensity (due to illumination or de- 
tector noise) might lead to large fluctuations in depth; hence they 
are less reliable than estimates from matching edges. The formal- 
ism can also be extended to incorporate information from other 
depth modules. 

We will introduce the model by the simplest version, referred 
to as the Level 1 theory. The theory uses the epipolar line con- 
straint to reduce the problem to one dimension. Ways to extend 
this to a two-dimensional theory are discussed in Yuille et al. [21]. 

The Energy Function for the Level 1 Theory 

The basic idea is that there are a number of possible primitives 
that could be used for matching and that these all contribute to a 
disparity field d ( x ) .  This disparity field exists even where there is 
no source of data. The primitives we will consider here are features, 
such as edges in image brightness. Edges typically correspond to 
object boundaries, and other significant events in the image. Other 
primitives, such as peaks in the image brightness or texture fea- 
tures, can also be added. We will describe the theory for the one- 
dimensional case. 

We assume that the edges and other features have already been 
extracted from the image in a preprocessing stage. The matching 
elements in the left eye consist of the features x, , ,  for i, = 1, . . . . 
N,. The right eye contains features xnN, for a[< = 1. . . . , N r .  We 
define a set of binary matching elements V,LUH7 the matching field, 
such that V,,, ,  = 1 if point i ,  in the left eye corresponds to point 
a, in the right eye, and V,,,, = O otherwise. A compatibility field 
A,,,, is defined over the range [0, 11. For example. it is small i f  
i, and a, are compatible (i.e., features of the same type), and 
large if  they are incompatible (an edge cannot match a peak). 

We now define a cost function E ( d ( x ) ,  V,,,,) of the disparity 
field and the matching elements. This can define a probabilistic 
model by thc Gibbs distribution which we can interpret in terms 
of Bayes' theorem. The probabilistic formalism has two important 
advantages over the energy formalism: ( 1 )  we can use it to show 
relationships between different theories, and (2) i t  suggests good 



methods to compute desired quantities. 

The  first term gives a contribution to the disparity obtained from 
matching i, to a,. The  second term imposes a smoothness con- 
straint on the disparity field imposed by a smoothness operator S .  

Minimizing the energy function with respect to d ( l )  and V,,,,, 
will cause the matching that results in the smoothest disparity field. 
The  V,,,,, must satisfy global constraints to ensure that each feature 
usually has only one match. We  discuss ways of doing this min- 
imization subject to these global constraints later. 

The coefficient y determines the amount of ( I  priori knowledge 
required. If all the  features in the left eye have only one compatible 
feature in the right eye then little a priori knowledge is needed 
and y may be small. If all the features are  compatible, then there 
is matching ambiguity which the a priori knowledge is needed to 
resolve, requiring a larger value of y and hence more smoothing. 

- This is consistent with the psychophysics described in the next 
section. 

Finally, and perhaps most importantly, we must choose a form 
for the smoothness operator S .  As discussed previously Marr [ l ]  
proposes that the human visual system assumes that the world 
consists of smooth surfaces. This suggests that we should choose 
a smoothness operator that encourages the disparity to vary smoothly 
spatially. We will, therefore, use S = d/ds as a default choice for 
our theory. 

Compatibility is enforced multiplicatively in the first term of Eq. 
(1). A n  alternative would be to  choose 

In most situations we will want to  allow the smoothness con- 
straint t o  break, for example, at  the boundaries of objects. This 
is done in the next section. 



In some cases stereo data cannot be fit to smooth surfaces even 
with discontinuities. Some examples are: (1) really jagged surfaces 
such as Bryce Canyon, (2) discontinuous surfaces such as the bris- 
tles on a hair brush or the railings in  a picket fence. maybe with 
an object behind the fence, or  (3) overlapping transparent surfaces 
such as a face behind a window. 

The first example is a situation in which compatibility constraints 
are far more important than prior surface assumptions. Fortu- 
nately, the more jagged the surface the more structure there will 
be in the image. The last two cases may be thought of as examples 
of conflicting cues (as defined in the introduction), some of which 
correspond to one surface and some to the other. It is even more 
complicated, however, because the correspondence problem must 
be solved first before a conflict becomes apparent. These ideas 
are discussed further in Biilthoff and Yuille 1221. 

The Level 2 Theory: Adding Discontinuity Fields 

The Level 1 theory is easy to analyze but makes the a priori as- 
sumption that the disparity field is smooth everywhere, which is 
false at object boundaries. The Level 2 theory introduces a dis- 
continuity process to break the smoothness constraint [20,23,24]. 
Our energy function becomes: 

We use the formulation of Mumford and Shah [24] to enforce 
smoothness only within the domains M - C but not across the 
boundaries C of the domains. The third term gives a cost M ( C )  
for the creation of the boundaries. 

The Level 3 Theory: Adding Intensity Fields 

The Level 3 theory incorporates information from the intensity 
fields L ( x )  and R ( s )  in the left and right eyes. It adds a term that 



attempts to match points in the two eyes with similar intensity 
values. 

If certain terms are set to zero in Eq. (8), it reduces to previous 
theories of stereo. If the second and third terms are kept, without 
allowing discontinuities, it is similar to work by Gennert [25] and 
Barnard [26]. If we add the fourth term and allow discontinuities, 
we get connections to some work described in Yuille 1271 (done 
in collaboration with T. Poggio). Keeping the first, third, and 
fourth terms gives a theory somewhat similar to the disparity gra- 
dient limit theories [28, 291. 

Stereo with Monocular Cues 

Suppose we have a set of monocular measurements (XI, d f ,  u j )  
and (x:, d:, cr;) and a depth from stereo function d,(x;, x;) with 
standard deviation u,(i, a )  (which is a measure of the uncertainty 
of the value of the depth obtained with the stereo module). Here 
x j  is a point in the left image with a depth estimate dj ,  given by 
eye movements or focus changes or some other monocular cue, 
and u j  is the standard deviation of this estimate. Similarly, x: is a 
point in the right image (a possible match to XI) that also has a 
depth estimate. d:, associated with it obtained from some mon- 
ocular (single view) method, having a standard deviation given by 
u;. 

If we know that points i correspond to points a,, the best mean 
squared estimate of the depth d(x,), assuming gaussian errors, is 
obtained by minimizing: 



Because the correspondence is usually unknown. we can define 
binary matching elements VCli as before and an energy function: 

W e  set V,, = 1 if point a in one eye is matched to point i in the 
other eye; otherwise Val = 0. If the correct or optimal matching 
is known o r  given a priori this cost function reduces to the previous 
cost function. This energy function should be minimized over the 
set of all V,, satisfying the global constraints. Note that Eq. (9) is 
asymmetric between thc left and right eyes; it assumes we are 
matching from right to left. 

Once again we can also include a priori terms in the energy 
function, typically smoothness terms allowing discontinuities. These 
terms are not needed to give the energy function a unique mini- 
mum, but they are required to give dense depth values. Because 
they are not needed to solve the correspondence problem they will 
give little perceptual bias. 

Statistical Mechanics, Mean Field Theory, and 
Marginal Distributions 

An additional advantage of using the probabilistic formalism is 
that we can use techniques from statistical physics and probability 
theory to: (1) design algorithms to calculate the estimators, and 
(2) relate existing theories. 

There are a variety of stochastic and deterministic algorithms 
that can be used to calculate the statistical estimators. Perhaps the 
most famous is simulated annealing [20, 301. but to guarantee 
convergence it requires considerable computer time. 

More recently a number of other techniques from statistical 
physics have been adapted [31-351, which lead to fast heuristic 
algorithms. They can be thought of as deterministic annealing and 
lead to good empirical results. 

These techniques allow two alternative methods for imposmg 



the global constraints on the matching fields V .  One can impose 
the constraints softly by including additional cost terms in the en- 
ergy function such as h@,,(Z,,V,,,, - 1)' + X,,(XrLVIL,, - 
An alternative is to sum only over configurations that satisfy the 
global constraints when computing the marginal probability dis- 
tributions. This is referred to as hard constraitits [33, 34, 351 and 
leads to far more efficient deterministic algorithms than soft con- 
straints. 

These techniques can also be used to show relations between 
different theories. For example, by computing the marginal prob- 
ability distribution P,,,(V) = C,,P(V, d )  of the theory described 
earlier, we can show a relation between a version of our theory, 
using soft constraints, and the cooperative stereo algorithms of 
Dev [36] and Marr and Poggio [37]. Applying a similar approach 
to Eq. (10) gives a relation to the theory of House [38] for the 
fusion of stereo and accommodation depth cues. 

STEREO PSYCHOPHYSICS AND THE 
BAYESIAN FRAMEWORK 

We now describe two different experiments on depth from stereo 
that seem consistent with the Bayesian approach. 

Perceived Depth Scales with Disparity Gradient 

In the experiments of Biilthoff and Fahle [39] subjects were asked 
to estimate the disparity of stereo stimuli relative to a set of ref- 
erence lines. The stimuli were either lines at various angles or pairs 
of dots or other features. The perceived depth was plotted as a 
function of the true disparity and the true disparity gradient. These 
were calculated, assuming features at .r,, x2(x ,  > x z )  and y , .  yz(yl  
> y,) in the left and right eyes, using the formulae [40] for: (1)  
disparities d l  = (s, - y , ) ,  ri, = (x, - y , ) ,  (2) the binocular 
disparity d, = d ,  + d,, and (3) the disparity gradient d,,,, = 

d b t { ( ~ y l  + Y I )  - ( ~ 2  + ~ 2 ) ) .  
The experiments showed that the perceived disparity decreased 

as a function of the disparity gradient. This effect was: (1) strongest 
for horizontal lines. (2) strong for pairs of dots or similar features, 



(3) weak for dissimilar features. and (4) nonhorizontal lines (Figure 
4). 

Our explanation assumes these effects are due to the matching 
strategy and is based on the Level 2 theory, with energy function 
given by Eq. (7). The idea is that the smoothness term (the third 
term) is required to give unique matching but that its importance, 
measured by y ,  increases as the features become more similar. If 
the features are sufficiently different (perhaps preattentively dis- 
criminable) then there is no matching ambiguity, so the correct 
disparities are obtained. If the features are similar, then smooth- 
ness (or some other a priori assumption) must be used to obtain 
a unique match, leading to biases toward the frontoparallel plane. 
The greater the similarity between features, the more the need for 
smoothness and hence the stronger the bias toward the fronto- 
parallel plane. Smoothness is only imposed between the two points. 

disparity gradient 

Symbols 90" 
Symbols 45" 

Symbols O" 
Polnts 900 

Poinls 0" 

Lines 90" 

Lines 45' 

Lines 0' 

FIGURE 4 Disparity gradient and matching ambiguity: Perceived depth in percent 
of displayed depth as a function of depth gradient for points. lines, and large symbols 
in horizontal (0 deg). oblique (45 deg), and vcrtical orientation (90 deg). Each 
data item represents the mean of nine different disparities (3 - 27 arc min) tested 
with 10 subjects. The standard errors of the means are in the order of the symbol 
size. Redrawn from Biilthoff and Fahle 1391. 



Thus the two points are considered the boundaries of a n  object 
and only the object itself is smoothed. 

An analysis [21] of the Level 2 theory shows that it predicts the 
falloff of perceived disparity with disparity gradient. provided the 
smoothness operator is chosen to be the first derivative of the 
disparity. The change of rate of falloff for different types of features 
is due to varying y as described above. 

The results are  not consistent with several possible choices of 
the smoothness operator. such as the second derivative of the 
disparity a2dla,v2. I t  is straightforward to calculate that this choice 
does not bias toward the frontoparallel plane. It is likely that the 
smoothness operator S must contain a illas term to ensure the 
observed frontoparallcl bias. 

Edgc Versus Intensity-Based Stereo 

'The experiments of Biilthoff and blallot [2 .  411 compared the 
relative effectiveness uf image intensity and edges as matching 
primitives. Thc stimuli were chosen to give a three-dimensional 
perception of an ellipsoid. The observer used a stereo depth probe 
tn make a pointwise estimate of the perceived shape. 

The experiments showed that depth could be derived froni irn- 
ages with disparate shading even in the absence of disparate edges. 
T h e  perccived dcpth. however, was weaker for shading disparities 
(70% of the true depth). Figure 5 shows the perception of depth 
as a function of the stimuli. 

Putting in edges o r  features helped improve the accuracy of the 
depth perception. But in some cases these additional features ap- 
peared to decouple from the intensity and were perceived to lie 
above the depth surface generated from the intensity disparities. 

These results are again in general agreement with our model 
using the Level 3 theory. The edges give good estimates of disparity 
and so little a prior-; smoothness is required and an accurate per- 
ception results. The disparity estimates froni the intensity. how- 
ever, are far less reliable (small fIuctuations of intensity might yield 
largc fluctuations in the disparity). Therefore, more n yr-iori 
smoothness is required to obtain a stable result. This gives rise to 
a weaker perception of depth.  

The use of the peak as a matching feature is vital (at least [or 



Displayed e longa t lon  

FIGURE 5 Edge versus intensity-based stereo: Ellipsoidal surfaces with or  without 
edge information (facet o r  smooth shading) wcre stereoscopically displayed on a 
CRT monitor. Perceived elongation of the ellipsoids was measured with a local 
stereo depth probe as a function of displriyed elongation. Less reliable inlormrition 
(smooth surfaccs without edges) puts more weigh1 on surl'acc priors and l e d s  to 
a frontoparallel bias of surface pcrceptlon. Redrawn from Uiilthof'f and tvlallot 121. 

the edgeless case) because i t  ensures that the image intensity is 
accurately matched (some stereo theories based purely on intensity 
give an incorrect match for these stimuli (&I. Gennert. personal 
communication). For these images, however. the peak is difficult 
to localize and depth estimates based on it are not very reliable. 
Thus the peak is not able to pull the rest of the surface to the true 
depth. 

Biilthoff and Mallot [2] found that pulling up did occur for the 
edgeless case if a dot were added at the peaks of the images. This 
is consistent with our theory, because, unlike the peaks, the dots 
are easily localized and matching them would give a good depth 



estimate. Our present theory, however, is not consistent with a 
perception that sometimes occurred for this stimulus. In some cases 
the dots were perceived as lying above the surface rather than 
being part of it. This may be explained by the extension of our 
theory to transparent surfaces [8]. 

Ongoing Issues in Transparency and Strong Coupling 

Strong coupling will be particularly important for situations that 
require decisions, such as stereo correspondence and transparency. 
These ideas are developed further in Biilthoff and Yuille [22]. It 
can be shown that transparency can be modeled by having two or 
more surfaces, and we describe psychophysical experiments [48] 
on transparency, which seem consistent with strong coupling. Pre- 
liminary experiments are reported suggesting that strong coupling 
might also be able to speed up stereo correspondence. This is 
related to the importance of compatibility for stereo matching. 
Other interesting experiments on transparency that seem consist- 
ent with strong coupling are described in Nakayama and Shimoyo 
[42l. 

DISCUSSION: WHY BAYESIAN INTEGRATION? 

The Bayesian approach offers a framework in which many prob- 
lems in low level and high level vision can be addressed. To make 
it into a theory, specific priors, sensor models, and methods for 
computing the statistical estimates must be specified. Two classic 
examples of successfuly implemented theories derivcd in this way 
include the work of Geman and Geman [20] on image segmentation 
(low level) and the work of Grenander [43] and his collaborators 
on object recognition. Much work on Markov Random Field models 
[44, 451 falls within this framework. 

Many people have found this framework stimulating and a good 
basis for constructing theories. However, as in statistics, others 
have doubted its validity andlor usefulness. In this section we will 
discuss some arguments for and against this approach. 

Computational vision [I]  suggests that when studying a specific 
vision problem, one should abstract out the assumptions necessary 



to solve the problem, independent of implementation issues (and 
algorithms). Bayesian models extend this idea by providing a 
framework within which these assumptions need to be specified 
more precisely, as prior probabilities. For example, Marr proposed 
the smoothness constraint to solve stereo correspondence, but there 
are many different ways of imposing this. A precise formulation 
of smoothness as a prior probability on the surface should make 
it clear exactly what type of smoothness was being imposed and 
hence to determine for which situations the constraint would be 
appropriate. In fact the specific implementation of "smoothness" 
in Marr and Poggio's cooperative stereo algorithm [37j biases the 
system more to  frontoparallel surfaces (surfaces of constant depth) 
than to smooth curved surfaces. 

Thus as  required by computational theories, Bayesian models 
force one to be specific about models and prevent assumptions 
from being smuggled in. This specification tells us under which 
situations the specific model should work, without bothering with 
the implementation issues. It is often harder to determine this from 
theories specified purely as algorithms or  differential equations. 

An advantage for those interested in constructing a theory of 
low level vision is that the Bayesian approach can be applied to 
most problems in early vision. There is hence no need for inde- 
pendent hacks for separate problems. Although the probability 
models would have to be specified for each problem, these models 
may well be applied to different problems. and the Bayesian ap- 
proach may allow us to  distill out the assumptions used by vision 
algorithms developed by trial and error, or evolution. For example, 
the Geman and Geman [20] idea of using line processes to cut 
smoothness constraints for image segmentation can be related to 
[32] the graduated nonconvexity algorithm of Blake and Zisserman 
[45] for visual reconstruction. Moreover a number of non-Bayesian 
theories for vision reconstruction and stereo can be approximated 
by Bayesian theories [21, 32.461 allowing their relative probability 
assumptions and their effectivenesses to  be compared. The  Baye- 
sian approach can also be related to ideal observer theory [47]. 

As discussed earlier the Bayesian approach offers a nice method 
for fusing different sources of information. Higher level infor- 
mation, if available, about the objects being viewed can also be 
incorporated [43]. Moreover, learning these models can be at- 



tractively framed as estimating the probabilities both for low level 
vision [48] and for high level vision [49]. 

Finally, the Bayesian is philosophically attractive, because it is 
nice to think of vision as providing the most probable estimate of 
a scene given the data and prior assumptions. 

On the other hand, the Bayesian approach can be criticized on 
a number of grounds. A criticism of the use of these models in 
statistics depends on how the priors should be specified unless 
there is an objective way of determining them. This is a particularly 
serious problem in vision, because it is by no means clear what 
the priors should be, e.g. which precise smoothness assumption 
should be used for stereo (see above). One can further question 
whether the human visual system uses surfaces as a basic repre- 
sentation and whether it is appropriate to put priors on them. To 
some extent these are experimental issues. There is, for example, 
some evidence [50] that surfaces are, indeed, represented. More- 
over, although its may be possible to determine the general form 
of natural constraints, for example, surface smoothness or object 
rigidity, by "Gedanken Experimente," the precise form of the 
constraints may require learning. trial and error experimentation, 
or quantitative psychophysics. If the domain of application of the 
vision system can be modeled precisely, then the probabilities can 
be determined from this model [43]. Thus, the increased sophis- 
tication of computer graphics models of real world scenes may also 
help. 

An alternative approach [51] suggests that there is no real theory 
of vision, but only a bag of tricks perhaps developed over the 
course of evolution [52] .  However, a number of the tricks suggested 
by Ramachandran and Anstis [Sl ]  can be derived as special cases 
of the constraints used in computational vision theories [53, 541. 
For a bag of tricks to be a useful theory, it must specify which 
tricks are used and how the vision system decides to use them. 
This, however, is precisely what computational theories try to 
achieve. It does raise the interesting point that maybe the visual 
system has a set of possible prior constraints and adaptively uses 
different constraints in different circumstances [7]. Theories of this 
type are difficult to implement as Markov models, but can still fall 
within the Bayesian framework. 

The Bayesian approach uncritically used may lead to rather 



mindless theories of sensor fusion by merely writing an  enormous 
energy function, without specifying how the statistical estimates 
can be calculated o r  how the relative weighting of terms can be 
decided (in the same way, as Feynman joked, that one  can produce 
a unified theory of physics in one  equation by summing the squares 
of all the individual laws [53]). It is important to analyze the sit- 
uation carefully and estimate the dependence and robustness of 
different cues. If energy functions are used, then the relative 
weighting of terms should depend on  their reliability [7, 561. 

O n e  can also question the precise form of the probabilities used 
in these theories, particularly if the correct model is only approx- 
imately known. Robust statistics [57] proposes a number of tech- 
niques to make reliable estimates of quantities when the underlying 
model is only partially known and where there may be outliers in 
the data that d o  not fit the  model. The  usefulness of these types 
of techniques has been suggested for computational vision [58,59] 
and the use of some of these methods might significantly strengthen 
the Bayesian approach. I t  is interesting that some of these tech- 
niques can be straightforwardly adapted into the Markov Random 
Field formalism [8]. Other  relevant statistical ideas include minimal 
length encoding [60] but, although controversial, this can also be 
interpreted as Bayesian if the lengths of the encodings are  consid- 
ered as prior assumptions. 

CONCLUSION 

The  theoretical ideas outlined in this paper emphasize that when 
fusing information from different vision modules one must pay 
careful attention to the assun~ptions used by the modules. the 
reliability, and robustness of their information and the degrce o f  
independence of the information they supply. Strong coupling be- 
tween modules is usually desirable. This leads to a Bayesian frame- 
work,  which seems rich enough to deal with both consonant and 
contradictory depth cues. 

The psychophysical experiments reported here seem consistent 
with this framework. In particular. they suggest that the weaker 
and less accurate the information, the more the n priori assump- 



tions are used. The experiments on stereo integration and on trans- 
parency seem to require explanations based on strong coupling. 

Following Penrose, in his recent best seller [61], we can classify 
scientific theories into three categories: superb, useful, and ten- 
tative. 

We believe that the Bayesian approach falls within the second 
category. It is general enough to be somewhat flexible, but it also 
suggests a way of thinking about vision problems that captures 
their crucial features. The arguments for and against it are dis- 
cussed earlier. It seems to offer a promising framework for com- 
puter vision and is good for stimulating psychophysical experi- 
ments. Whether i t  turns out to be useful for modeling biological 
vision systems is an experimental question. 

We do not, however, agree completely with Popper's falsifica- 
tion principle for Science. The visual system is very complex, and 
it is inevitable that our initial attempts to model it are going to be 
simplistic and unable to deal with all its aspects. Thus, if the theory 
succeeds in capturing the important aspects it should not be dis- 
carded for failing to deal with others; at least not unless a better 
theory is found. 
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APPENDIX I. STATISTICAL MODELS AND T H E  
BAYESIAN FORMULATION 

We can define a statistical theory from any energy function model 
(see, for example, [20]). Given the energy E(ii :  I )  specified in Eq. 
(2), then (using the Gibbs distribution [ l l ] )  we can define an 
associated probability distribution by: 

where p is a parameter (which can be interpreted, by analogy to 
physics, as the inverse of the temperature) and Z is a normalization 
constant (or partition function in physics terminology). 

This implies that every state of the system has a finite probability 
of occurring. The more likely ones are those with low energy. This 
statistical approach is attractive because the P parameter gives us 
a measure of the uncertainty of the model temperature parameter 
T = llp At zero temperature ( p  + x )  there is no uncertainty. 
In this case the only state of the system that has nonzero proba- 
bility. hence probability 1, is the state that globally minimizes 
E ( n :  I ) .  

We can now interpret minimizing the energy E(iil1) as maxi- 
mizing the probability. Thereby giving the most probable (assum- 
ing our model) interpretation i~ of the data I, this is referred to as 
the MAP (maximum a posteriori) estimator. 

There are alternative estimators that are often preferable to the 
MAP. One possibility is the mean field solution: 

which is more general and reduces to the MAP as T + 0. It 
corresponds to defining the solution to be the mean fields; the 
averages of the n field over the probability distribution. This en- 
ables us to obtain different solutions depending on the uncertainty. 



In this paper we concentrate on the mean quantities of the field. 
A justification to use the mean field as a measure of the fields 
resides in the fact that it represents the minimum variance Bayes 
estimator [62]. 

Observe that we can write E(ii :  I )  = E ,,,, (ii: I )  + E ,,,,,,, (ii) 
where E ,,,, and E s,c,,,,,, correspond to the first and second terms 
on the right hand side of Eq .  (2 ) .  This addition of terms in the 
energy function space corresponds to multiplication of nrobabili- 
ties. Thus we can write: 

- l%lddli: 1 )  -PE,ml.llh(Ii; where P,,,,,,(ii : I )  = e /ZI ad Pw,oolt,(fi) = e /Z2. 
where Z, and Z, are normalization constants. 

This equation is reminiscent of Bayes theorem Eq.  (3). Relating 
the two equations we identify P, , , , ( i : l )  with P(I1ii) and 
P ,,,,,,, (ii) with P(i i ) .  Thus,  the data term corresponds. ideally, to 
a model of how the image I should appear given an object with 
surface normal ii (i.e.. o reflectance function and a model of noise). 
Similarly. the smoothness term corresponds to the m priori prob- 
ability of a surface before we receive any data (i.e.. our assump- 
tions about the world). 
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