6 Integration of Stereo, Shading and Texture

Heinrich H. Biilthoff* and Hanspeter A. Mallot®

'Center for Biological Information Processing, Massachusetts Institute of
Technology, Cambridge, MA, USA*, and * Institut fiir Zoologie 111, Johannes
Gutenberg-Universitdt, Mainz, FRG

INTRODUCTION

Integration of cues is one of the key features of natural vision that underlie its
performance and robustness. In this chapter, we investigate the integration of
various depth cues into different percepts related to three-dimensional structure.

Most of the depth cues known in psychophysics have been formalized in terms of
computational theory and have been implemented as single modules in machine
vision systems. Mutually related studies from psychophysics and computational
theory exist mainly for stereo (Julesz, 1971; Marr & Poggio, 1979; Mayhew &
Frisby, 1981) and shading (Ikeuchi & Horn, 1981; Pentland, 1984; Blake
et al. 1985; Mingolla & Todd, 1986). There are also a number of studies on
depth from texture (Bajcsy & Lieberman, 1976; Kender, 1979; Witkin, 1981;
Pentland, 1986), line drawings (Barrow & Tenenbaum, 1981), surface contours
(Stevens, 1981; Stevens & Brooks, 1987), and structure-from-motion (Ullman,
1979; Longuet-Higgins & Prazdny, 1981; Grzywacz & Hildreth, 1987). Machine
implementations are quite successful for synthetic images but less reliable for
natural images. On the contrary, the human visual system deals much better with
natural images and multiple depth cues than with single depth cues in synthetic
images (¢.g. random-dot stereograms). In order to study the superior performance
of human vision in the integration of multiple depth cues, we developed methods
for quantitative measurement of depth perception with complex yet well-controlled
images.
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Integration of Multiple Depth Cues

The visual system derives a variety of information about the lhrce-dimcns?onul
structure of the environment from different depth cues. This is illustrated in Figure
1 where three pairs of ellipsoids are shown whose axes of clongation are orthogonal
to cach other. The orthogonal orientation is best seen in Figure 1(c), where lg‘(turc
and specular shading provide sufficient 3D information. If texture is used wnl?out
shading (Figure la), the orientation of the objects can usually be perceived
correctly while the objects themselves appear flat. Vice versa, if shading is the only

Texture without shading
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§ Texture with Phong shading

Figure 1. (a-c) Different depth cues provide information about different 3D-descriptors.

cue (Figure 1b), the objects appear nicely curved but it is difficult to see them
orthogonal to each other. We therefore argue that at least at a low level of
abstraction, multiple representations of three-dimensional structure exist, which
will be called 3D-descriptors in this chapter. These 3D-descriptors are sufficient for
simple visual behavior and it is unclear whether a single complete representation of
visible surfaces exists at all.

Our approach is schematically described in Figure 2.

Two Aspects of Integration

Raw data from depth cues such as shading, texture or disparity can be thought of as
a trivial, or zero-order, representation of the spatial structure of a scene. Based on
these data, higher-order descriptors are derived that make interesting spatial
properties of the viewed scene explicit. The question of what an interesting 3D-
descriptor is, has to be answered in the light of the action that it should subserve.
For example, a pointwise depth map is useful for threading a needle, while
curvatures might be sufficient for the recognition of complex 3D shapes (such as
faces). Eventually, this process may or may not lead to a single complete
representation of visible surfaces as was proposed by Marr & Nishihara (1978). In
this framework, integration involves two largely independent processes:

1. Assignment of descriptors to cues. Which cues are relevant to one particular 3D-
descriptor? For example, occlusion contributes more readily to depth ordering
than to surface curvature. Shading contributes more qualitatively to curvature
than quantitatively to a depth map, or texture more to object orientation than
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Figure 2. Integration of depth cues. 3D structure perceived from 2D images can be
represented at different levels of abstraction. The depth cues themselves constitute multiple
zero-order representations. Higher-order representations, ie. the 3D-descriptors, can be
derived from interaction and integration of several of these zero-order representations.
Different psychophysical experiments (much as computer vision tasks) involve various
combinations of the 3D-descriptors. It is not clear whether a unique 3D representation exists
that serves as a common data basis for all types of behavior dealing with the spatial structure
of the environment.

to object form. The latter two cases can be qualitatively verified by observing
Figure 1.

Cue interaction per descriptor. From the computational point of view we can
ask how are the cues contributing to the computation of a particular descriptor
combined? In principle, there are several types of useful interactions which are
not mutually exclusive:

184

(1)  Accumulation. Information from different cues could be accumulated in
different ways such as probability summation or the linear summation model
for the integration of stereo and proximity luminance covariance proposed by
Dosher et al. (1986). A more computational approach to accumulation is joint
regularization, where constraints from different cues are accounted for by
means of a common cost function (Poggio et al., 1985; Terzopoulos, 1986).
(it)  Cooperation. Especially in the case of poor or noisy cues, modules might
work synergistically. Here we think of the non-linear interactions of different
cues which can be treated, for example, with the coupled Markov random field
approach (Marroquin et al., 1987).
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(iii)  Disambiguation. A particular case of a non-linear interaction is the case
where information from one cue is used to locally disambiguate a representa-
tion derived from another one [e.g. stereo can disambiguate shading (Braun-
stein et al., 1986)] or specular highlights can disambiguate the convex-concave
ambiguity of shading (Blake & Biilthoff, 1989).
(iv) Veto. There can be unequivocal information from one cue that should not
be challenged by others.
Most computational approaches to integration have focused on the second
problem, i.e. the combination of different data types in one representation which is
often thought to be unique. In our psychophysical experiments, we addressed both
of the above questions by (a) measuring the contribution of individual cues in
different matching tasks that correspond to certain 3D-descriptors, and (b)
comparing these contributions in each of the matching tasks quantitatively.

Psychophysical 3D Measurements

The perception of three-dimensional scenes relies on many different depth cues and
leads to various descriptions of that scene in terms of distance, surface orientation,
and curvature, shape or form. We addressed various of these 3D-descriptors (depth
map, curvature and object orientation) and depth cues (sterco, shading, highlight,
texture).

3D-descriptors and matching tasks

1. Perceived depth was mapped with a small probe or cursor that was interactive-
ly adjusted to the perceived surface. The depth of this probe was defined by
edge-based stereo disparities and all other cue combinations were compared to
the percept generated by edge-based stereo. All images were viewed binocu-
larly with the depth cursor superimposed. Each adjustment of the probe gives a
graded measurement of distance, or local depth, ie. this experiment corre-
sponds to the 3D-descriptor depth map mentioned in the scheme of Figure 2.

2. Global shapes of two objects with different combinations of depth cues were
compared directly. Since all images showed end-on views of ellipsoids with
different elongation, this mcasurement corresponds to curvature or form as a
3D-descriptor.

3. Object orientation can be measured in a matching task where long ellipsoids of
different orientation have to be compared. While surface orientation is appar-
ently hard to determine for human observers (Todd & Mingolla, 1983;
Mingolla & Todd. 1986), the orientation of entire objects (e.g. orientation of
generalized cylinders) can be measured casily in a matching task.

Depth cues and computer graphics

The relation of shading (with and without highlights), stereo and texture in the 3D
perception of smooth and polyhedral surfaces was studied with computer graphics
psychophysics. For polyhedral and textured objects, stereo disparities were asso-
ciated with localized features, ie. the intensity changes at the facet or texel
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boundaries, while for the smooth surfaces only shading disparities occurred. In
addition, contours such as rings or lines could be drawn on the smooth surfaces to
provide sparse edge information. The objects (ellipsoids of revolution viewed end-
on) were chosen for the following reasons:

1. Asisshown later, in the section on *Images without zero-crossings™, images of
Lambertian shaded smooth ellipsoids with moderate eccentricitics do not
contain Laplacian zero-crossings when illuminated centrally with parallel
light.

2. The surfaces are closed and are naturally outlined by a planar occluding
contour. This contour was placed in the zero disparity plane and did not
provide any depth information.

3. Convex objects such as ellipsoids do not cast shadows or generate reflections
on their own surface. Therefore, shading (attached shadows) could be studied
without interference from cast shadows or mutual illumination.

4. End-on views of ellipsoids can be thought of as a model for the depth
interpolation of a surface patch between sparse edge data.

METHODS

Computer Graphic Psychophysics

Images of smooth- and flat-shaded (polyhedral) ellipsoids of revolution were
generated by either ray-tracing techniques or with a solid modeling software
package (S-Geometry, Symbolics Inc.). The polyhedral objects were derived from
quadrangular tesselations of the sphere along meridian and latitude circles. The
objects were clongated along an axis in the equatorial plane of the tessclated
sphere. Thus, the two types of objects differed mainly in the absence or presence of
edges. As compared to spheres, the objects were elongated by the factors 0.5, 1.0,
2.0, 3.0, 4.0 and 5.0. With an original radius of 6.7 cm, this corresponds to depth
values between 3.3 and 33.3 cm. In the following, all semi-diameters (clongations)
are given as multiples of 6.7 cm. In Experiments 1 and 2, all objects were viewed
end-on, i.e. the axis of rotational symmetry was orthogonal to the display screen. In
Experiment 3, objects could be rotated around a diagonal axis in the display plane.
As an example, the objects displayed in Figure 1 are rotated around that axis by
plus and minus 45°, respectively.

The imaging geometry used in the computer graphics is shown in Figure 3. It
differs from the usual camera geometry in that the image is constructed on a screen
which is not perpendicular to the optical axis of the eyes. Note that the imaging
geometry, and therefore the image itself, does not depend on the fixation point as
long as the nodal points of the two eyes remain fixed at the positions E, and E_,
respectively. Images were computed for a viewing distance of 120 cm and an
interpupillary separation of 6.5 cm. When a point 10 cm in front of the center of the
screen is fixated, Panum’s fusional area of + 10 min of arc (cf. Ardity, 1986)
corresponds to an interval from 4.3 cm to 15.2 cm in front of the screen.

N
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Figure 3. [maging geometry. Projection onto the x-z-planc. Yicwing distance is 120 cm.
¢,, ¢, nodal points of the left and right eye, respectively. The distance between e and e, is
6.5cm. A point p € R* is imaged on the screen at p, for the view from the lefteye and atp, for the
view from the right eye.

For the computation of the smooth-shaded cllipsoids, a ray-tracing operation
was performed.* The illuminant was modeled as an infinite point source (parallel
illumination) centrally behind the observer. For some control experiments, oblique
directions of illumination (upper-left and lower-right) were used. Surface shading
was computed according to the Phong model (Phong, 1975), i.. consisting of an
ambient. a diffuse (Lambertian) and a specular component. For Lambertian
shading, the ambient and specular components were zero, while for specular
shading (sometimes called highlight in the sequel), a combination of 307, ambient,
10, diffuse and 602, specular reflectance (specular exponent 7.0) was chosen.
Since our objects were convex, no cast shadows or repeated reflections had to be
considered.

* We write the equation of the ellipsoid as

a’? 0 0
xTAx = I, A:( 0 b 0 ) )]
o 0 ¢!
where a, b, ¢ denote the semi-diameters. With @ = b = 1, we have an ellipsoid of revolution. For a ray
from e to p',
x=e+up —-eueR", (2)

the ray-tracing amounts to the solution for g of the quadratic equation:
(e + u(p —e)"Ale + u(p’ —e) = 1. 3

The image intensity at point p° was computed from this solution for an ideal Lambertian surface
illuminated by parallel light from the z-direction. Note that for a point x on the surface of the ellipsoid
xTAx — 1. the surface normal is simply Ax/|Ax . The viewing direction and the axis of revolution of the
ellipsoid were aligned.
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Disparity and edge information ( Experiment 1)

In a first series of experiments, we crossed disparity and dense edge information in
shaded images. Four different image types were tested (Figure 4a, b):

1. Flat-shaded ellipsoid with disparity and edge information (D*E™).

2. Smooth-shaded ellipsoid with disparity but without edge information (D"E ™).
Both Lambertian and specular shading were tested.

Flat-shaded ellipsoid without disparity but with edge information (D E™).
Smooth-shaded ellipsoid with neither disparity nor edge information (D" E ™).
Both Lambertian and specular shading were tested.

B

Hlluminant direction ( Experiment 2)

In a second series of experiments, we studied the influence of the illuminant
direction in Lambertian shaded images with and without disparities (D*E~;
D E ). While in the first series illumination was from exactly behind the observer,
we chose upper-left and lower-right directions (+ 14° azimuth and F 13.6” cleva-
tion from the viewing direction).

Edge vs shading disparity ( Experiment 3)

The third series of experiments addressed the interaction of smooth shading and
sparse edge information provided by a small dark ring placed at the tip of the
ellipsoid (contrast 0.11, radius 7.5 mm, covering less than |9, of the ellipsoid’s
image). Disparities of shading and ring were varied independently, leading to the
following combinations (Figure 4c):

1. Disparate ring and disparate shading.

2. Disparate ring and non-disparate shading.

3. Non-disparate ring and disparate shading.

4. Non-disparate ring and non-disparate shading.

5. Disparate ring in front of uniformly grey non-disparate disk.

All experiments were performed with 4-6 different elongations (0.5-5.0) of the
ellipsoids. The elongations were unknown to the obscrvers.

Global shape comparison ( Experiment 4)

The local depth probe technique used in the previous three experiments has some
disadvantages with depth cues which have to be viewed preferably monocularly.
Therefore, we developed a global shape comparison technique which allows the
depth cues to be viewed monocularly and compared with a stereoscopically viewed
shape reference.

Figured4. Flat- and smooth-shaded surfaces. (a), (b) Discontinuous and smooth intensity variations in images of polyhedra
and ellipsoids provide cues for edge-based stereo, shape-from-disparate-shading and shape-from-shading (Experiment 1). (c)
Smooth ellipsoid with sparse edge information has been used in experiments on the interaction of edge-based stereo and

shape-from-shading (Experiment 3). All images could be displayed as stereograms or as pairs of identical images. In image

(c), the disparities of shading and edge token (ring) could be varied independently.
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Experimental Procedure

We displayed either a pair of disparate images (stereo pair) or a non-disparate view
of the object as seen from between the two eyes on a CRT Color Monitor
(Mitsubishi UC-6912 High-Resolution Color-Display Monitor, Resolution
(H x V) 1024 x 874 pixcls; bandwidth + 3 dB between 50 Hz and 50 MHz, short
persistence phosphor). The disparate images were interlaced (even lines for the left
image and odd lines for the right image) with a frame rate of 30 Hz. This technique
allows the left and right views to be displayed at about the same location on the
monitor and therefore treats any geometric distortion of the monitor equally to
both eyes. Non-voluntary disparities are therefore avoided. Both disparate and
non-disparate images were viewed binocularly through shutter glasses (Stereo-
Optic Systems Inc.) which were triggered by the interlace signal to present the
appropriate images only to the left and right eye. The objects were shown in black
and white with a true resolution of 254 grey-levels using a 10-bit D/A-Converter.
The background was uniformly colored in half-saturated blue. The screen was
viewed in complete darkness.

Local depth probe technique

Perceived depth was measured by adjusting a small red square-shaped (4 by 4
pixel) depth probe to the surface interactively (with the computer mouse). This
probe was displayed in interlaced mode together with the disparate images. This is
a computer graphics version of a binocular rangefinder developed by Gregory
(1966), called “Gregory’s Pandora’s Box” by some investigators, with the addi-
tional advantage that the accommodation cue is eliminated. Measurements were
performed at 45 vertices of a Cartesian grid in the image plane in random order.
The initial disparity of the depth probe was randomized for each measurement to
avoid hysteresis effects. Subjects were asked to move the cursor back and forth in
depth until it finally seemed to lie directly on top of the displayed test surface. After
some training sessions, subjects felt comfortable with this procedure and achieved
reproducible depth measurements. Subjects included the authors (corrected vision)
and one naive observer, all with normal stereo vision as tested with natural and
random-dot sterecograms.

Global shape comparison technique

The global shape comparison technique was used mainly for those cues which
required monocular viewing. It is also useful for cues which are processed more
globally and would be hindered by a too focused attention to the local probe.
Depending on the task this technique was used in two different ways. To measure
shape from shading and/or texture with the global probe we displayed a stereo-
scopically viewed reference object in the same orientation as the probe. The task of
the subject was to change the shading or the texture (or both together) in order to
match the shape with the reference object. This could be done almost in real time
by fast recall from computer memory of precomputed images of different shapes
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and/or orientations. The reference object did not contain any shading or texture
cue beside the disparate rings on its surface to avoid any cross-comparison with the
depth cues to be tested.

Data Evaluation

Depth probe technique

The depth probe technique leads to a depth map measured locally at 45 positions
in the image plane. In order to derive a global measure of perceived depth we
performed a principal component analysis on all data scts, treating cach onc as a
point in 45-space. Variance of the perceived shapes was found mainly (94 9;) along
the first principal axis, whose corresponding loading was very close to an idcal
ellipsoid (or sphere). The second component accounted for only 1.4 of the total
variance. We therefore chose the overall elongation, i.e. the coefficient associated to
the first principal component, as a measure of perceived depth for a given cue
combination (Figure 6).

Shape compatison technique

The depth comparison data were averaged over different runs and over 2-4
subjects. The mean number of runs was about 180 and the average correlation
between displayed and estimated shape was 0.83. In order to distinguish easily
between over- or underestimation of depth we give the mean slope for each depth
cue. A slope of 1.0 is naturally the veridical perception and a slope >1 is an
underestimation of curvature (see Figure 10).

RESULTS

Disparity and Edge Information (Experiment 1)

In the first series of experiments 165 measurements were performed, each consisting
of 45 adjustments of the depth probe to the perceived surface. Results were
consistent in all three subjects and were pooled since the differences were noticeable
only in the standard deviation. The 16 plots of Figure 5 show the averaged results
of all subjects for the four types of experiments and four different elongations of
Lambertian shaded ellipsoids.

The perceived elongation in the images with consistent cue combinations
depends on the amount of information available. As can be seen from Figure 6, the
perceived clongation is almost correct when shading, intensity-based and edge-
based disparity information are available (D*E¥). In the case of smooth-shaded
disparate images (D "E ™), the edges are missing and depth perception is reduced.
When shading is the only cue (D™ E ), perceived elongation is much smaller and
almost independent of the displayed clongation. Phong shading (highlights)
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Figure 5. Perccived surfaces (Experiment 1). Each plot shows the average of 6 9 sessions
from three subjects. Perceived depth decreases with the following sequence of cue combina-
tions: disparity. edges and shading (D "E"); disparity and shading but no edges (D*E );
shading only (D E "); contradictory disparity and shading (D~ E"). The elongation of the
displayed objects is denoted by ¢ (depth not drawn to scale).
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Figure 6. Perceived elongation. Depth perception decreases with fewer cues available. The
significant separation between the middle and lower curves (smooth shading with and
without disparity) illustrates the influence of disparity information even in the absence of
edges. Solid lines: Lambertian shading; dashed lines: Phong shading.
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instcad of Lambertian shading did not change perceived depth significantly
(dashed lines).

In experiment D™E ", two identical images (no disparity) of polyhedral ellip-
soids (edges) were shown. Although shading alone provided some depth informa-
tion as shown in experiment D~ E | the fact that edges occurred at zero disparity
was decisive. The perceived depth did not vary with the elongation suggested by the
shading (and perspective) information and took slightly negative values which,
however, were not significantly different from zero.

Depth can still be perceived when no disparate edges are present. This is not
surprising, since shading information was still available. A comparison of the
results (Figure 6) for smooth-shaded images with and without disparity informa-
tion, however, establishes a significant contribution of shading disparities. The
curves for DYE™ and D E ~ are significantly separated for all elongations except
0.5.

Illuminant Direction (Experiment 2)

Since the lighting conditions used in the preceding experiments were degenerate
(no self-shadows) we measured smooth-shaded ellipsoids (D*E~, D"E™) with
oblique directions of illumination. Light sources were placed in the upper-left and
the lower-right in front of the object (4 14" azimuth and F 13.6° elevation towards
the viewer). The results of these experiments (41 measurements, data pooled from
all subjects) are depicted in Figure 7. The slight asymmetries present at elongation
4.0 result exclusively from the fact that no depth values were determined in the dark
(shadowed) parts of the images. The data are in line with those of Experiment 1:
shading disparities produce a significantly stronger depth perception than non-
disparate shading (shape-from-shading). Furthermore, when illumination is from

Stereo Shading

Light source
Upper left

[

Elongation ¢

Figure 7. Perceived surfaces for oblique illuminations (Experiment 2). The data confirm
the relevance of disparate shading and show the independence of the findings of Experiment
1 from the lighting conditions. No depth was measured in the sclf-shadow regions.
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the lower-right, sterco prevents depth inversion which occasionally occurred in the
non-disparate images (cf. negative depth in Figure 7; shading, lower-right).

Edge vs Shading Disparity (Experiment 3)

In contrast to the original measurements with polyhedral objects where edge
information was distributed all over the surface, we now placed a small dark ring at
the tip of the ellipsoid. Altogether, 126 measurements were performed with four
different elongations. Figure 8 shows the results for the ring at zero disparity
combined with non-disparate (a) and disparate shading (b). While the overall
results resemble those of Experiment 1 (D'E~ and D™ E~, respectively), zero
depth is perceived in the vicinity of the ring. The cases with disparate edge
information are summarized in Figure 9: in Figure 9(a), edge and shading
disparities are consistent and the percept is in between the results of D*E" and
D*E~ from Experiment 1. If the disparate ring appears on a non-disparately
shaded ellipsoid, two different perceptions were reported. Especially for large
disparities, some observers saw the ring floating in front of a rather flat surface.
Others fused the edge-token and the surround into one coherent surface passing
through the ring. This surface looked more transparent than those produced by the
other cues and was also perceived as a cone-like subjective surface when a ring
floated in front of a uniformly grey disk (Figure 9b).

Shape-from-shading and zero-disparity edge
Perceived depth: 16%

Intensity-based stereo and zero-disparity edge
Perceived depth: 66%

Figure 8. Zcro-disparity edge token overrides shading (Experiment 3). (a) Shape-from-
shading (n = 7). (b) Shape-from-disparate-shading (n = 6). Only data for clongation 4.0 are
shown.
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(@ (b)

Consistent intensity - and edge-based stereo Stereo edge in front of uniformly grey disk
Perceived depth: 849% Perceived depth: 54 %

(c) (d

Stereo edges in front of ‘shaded” disk {without disparity)
Subjects ISA and HAM: 63%, Subject HHB: 419,

Figure 9. Surface interpolation for sparse edge data (Experiment 3). (a) Shape-from-
disparate-shading plus disparate edge information leads to an almost correct percept
(n = 6). (b) A single edge token in front of a uniformly grey disk yields a cone-like subjective
surface (n = 6). (¢), (d) Shape-from-shading plus disparate edge information leads to an
ambiguous perception (n = 3 + 3). Oaly data for clongation 4.0 are shown.

Shape Comparison (Experiment 4)

All images with single cues lead to large errors in perceived shape. With shading
and texture curvature is underestimated (Figure 10a, b), with a highlight it is
overestimated (Figure 10c). One remarkable result of the comparison technique is
that the shape-from-shading performance is much better with this technique than
with the local depth probe technique. The adjusted shading scales with the
displayed elongation of the stereoscopically displayed ellipsoid and does not level
off as in the case of the depth probe measurements. A highlight on the shaded
surface also seems to have a much larger influence with this technique and leads to
an overestimation of curvature. But the most interesting result is the strong
interaction between shading and texture as shown in Figure 10(d), (e). If shading
and texture cues can be used simultaneously the perceived shape is almost veridical
with a small bias towards under- or overestimation depending on the shading
model [highlight absent (Figure 10d), or present (Figure 10e)].
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Figure 10. Shape comparison technique (Experiment 4). (a), (b) Shape-from-shading and
shape-from-texture lead to an underestimation of shape (slope > 1). (c) If a highlight is
added to the shading (Phong shading) model the shape is overestimated in the adjustment
task. (d) If shading and texture are presented simultaneously the shape is adjusted almost
correctly (slope = 1) with a bias to adjust a larger elongation than necessary. (e) If a
highlight is added the slope stays the same but the bias changes towards an overestimation

of shape.
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DISCUSSION

Images without Zero-crossings

One of the most important constraints in early vision for recovering surface
properties is that the physical processes underlying image formation are typically
smooth. The smoothness property is captured well by standard regularization

(Poggio et al., 1985) and exploited in its algorithms. On the other hand, changes of

image intensity often convey information about physical edges in the scene. The
location of sharp changes in image intensity correspond very often to depth
discontinuities in the scene. Many stereo algorithms use dominant changes in
image intensity as features to compute disparity between corresponding image
points. In order to localize these sharp changes in image intensity, zero-crossings in
Laplacian filtered images are commonly used (Marr & Hildreth, 1980).

The disadvantage of these feature-based stereo algorithms is that only sparse
depth data (along the features) can be computed. This forces an additional stage in
which sophisticated algorithms (Grimson, 1982; Blake & Zisserman, 1987) allow
the interpolation of the surface between data points. In order to test for the ability
of human stereo vision to get denser depth data by using in addition features other
than edges or even a completely featureless mechanism we computed images
without sharp changes in image intensity. We show that for an orthographically
projected image of a sphere with Lambertian reflection function and parallel
illumination, zero-crossings in the Laplacian are missing.

Consider a hemisphere given in cylindrical coordinates by the parametric
equation

z= \/I 2, 4)
In the special case of a sphere, the surface normal simply equals the radius, i.e.
n = (r cos @, rsin ¢, \/l —7ré). (5)

For the illuminant direction [ = (0, 0, 1) and the Lambertian reflectance function,
we obtain the luminance profile

1(r) = Lo(-m) = Iy /1 — r?, (6)

where [ is a suitable constant, i.e. the image luminance is again a hemisphere. For
the Laplacian of I, we obtain

I
V() = ()~ 1) = ~lo _’rz)ﬁ. %)

This is a non-positive function of r, with V2I(0) = 0; i.c. the Laplacian of I has no
Zero-crossings.
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Unfortunately, this result does not hold for ellipsoids with ¢ # 1. A similar
computation for an ellipsoid with elongation ¢ yields

a2
I(r) =1 o (8)

"= -

which reduces to equation (6) for ¢ = 1. In Figure 11(a), where luminance profiles
are plotted for the elongations ¢ = 0.5, 1.0, 2.0 and 4.0, it can be seen that for ¢ > 2
the curves are no longer convex. That is to say that the second derivatives of these
profiles in fact have zero-crossings, and a similar result holds for the Laplacians.
However, when filtering with the Laplacian of a Gaussian or with the difference of
two Gaussians (DOG) is considercd, it turns out that these zero-crossings are
insignificant for the elongations used here. Pixel-based convolutions failed to show
the “edges” unequivocally, and even a Gaussian integration algorithm run on the
complete function rather than on the sampled array produced no zero-crossings
beyond the single-precision truncation error. We therefore conclude that the slight
zero-crossings in the unfiltered Laplacian of our luminance profiles do not
correspond to significant edges. For the oblique illuminations used in Experiment
2, we found numerically that the self-shadow boundary corresponds to a level-
crossing rather than a zero-crossing in the DOG-filtered image.

Independent from our own work, images of ellipsoids may be useful in the study
of the psychophysical relevance of Laplacian zero-crossings. We feel that images of
ellipsoids are superior to the gratings or filtered images often used for this purpose
(Daugman, 1985).

Receptor Non-linearities in Early Vision

Since the visual system does not work directly on image intensities, but on spatially
and temporally filtered and compressed (non-linear) signals, the effects of early
visual processing in the retina have to be taken into account. Signal compression
alone can significantly change image interpretation. Non-linearity in the photo-
receptors, for example, can lead to an illusory motion perception for time-varying
signals that do not entail motion information (Biilthoff & G6tz, 1979). In analogy,
these non-linearities could induce edge information that is not present in smooth-
shaded images. An additional source of zero-crossings not present in our image
arrays is the non-linearity of the color monitor. If arbitrary non-linearities are
considered, zero-crossings can be induced in every non-constant image, however
smooth (e.g. by discretization).

Retinal non-linearities in both vertebrates (Naka & Rushton, 1966; Hemila,
1987) and invertebrates (Kramer, 1975) have been modeled by saturation-type
characteristics of the form

S = (€))

I+ 15
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where [, 5 is a constant, given by the luminance which produces 507% of the
maximal excitation. We repcated experiments D'E” and D E™, ie. those
involving smooth-shaded images, compensating for the compression non-linearity
with the inverse of equation (9). Since I, s depends on the adaptation of the eye,
four different choices of the constant [, s were used. Monitor non-linearities were
compensated as well. Depth perception from disparate shading was not affected
significantly by this procedure.

Figure 11(b) shows the luminance profile for an ellipsoid with elongation 4.0,
and the effect of the non-linearity of equation (9) for the tested values of I, 5. It
turns out that in our experiments, the presumed receptor non-linearities tend to
cancel the shallow zero-crossings rather than to create new ones. This is further
support for our assumption that edges cannot be extracted from the smooth-
shaded images. Mcchanisms relying on zero-crossings in the original image cannot
account for the shape-from-disparate-shading performance found in our experi-
ments. Under the assumption of compression-type non-linearities, this holds also
for the first neural representation of the zero-crossing free images.

Shape-from-Disparate-Shading

The major finding of this study, as far as single depth cues are concerned, is the
strength of depth perception (70 %) obtained from disparate shading under various
illuminant conditions and reflectance functions. In computational theory, most
studies have focused on edge-based sterco algorithms (for review, see Poggio &
Poggio, 1984). This is due to the overall superiority of edge-based stereo which is
confirmed by our finding that edge-based stereo gives a better depth estimate than
disparate shading (Blake et al., 1985). However, in the absence of edges and for
surface interpolation, grey-level disparities appear to be more important than is
usually appreciated.

Grimson (1984) makes explicit use of binocular shading differences for the
interpolation of surfaces between good matches (i.e. between edges). Unfortunate-
ly, his model is not directly comparable to our study for the following reasons.
First. the information that Grimson’s algorithm recovers from shading is the
surface orientation along zero-crossings. In our experiments with smooth ellip-
soids, the only zero-crossing contour is the occluding contour of the object where
the surface orientation does not depend on the total elongation of the object; it is
always perpendicular to the image plane. Second, Grimson’s model requires a
specular component in the reflectance function of the object. Quite to the contrary,
we did not find significant differences between Lambertian or Phong shading.
From this we may conclude that a mechanism different from the one proposed by
Grimson is involved.

Shape-from-Disparate-Shading: Is it Localized or Distributed?

Are there features other than zero-crossings which can account for the shape-from-
disparate-shading performance found in our experiments? Possible candidates
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Figure 11. Luminance and simulated brightness profiles. (a) Luminance profiles of
ellipsoids with different clongations. Note that for clongations larger than 2.0 inflections
occur. (b) Brightness profiles for the ellipsoid with elongation 4.0 (the one with the
pronounced inflections in Figure 11a). The non-linear compression (Equation 9) tends to
cancel the inflections which might give rise to zero-crossings, rather than to enhance them.

include the intensity peak as proposed by Mayhew & Frisby (1981) and level-
crossings in the DOG-filtered image which, according to Hildreth (1983), might
account for Mayhew & Frisby’s (1981) data as well.

In order to distinguish between a localized (feature-based) and a distributed
mechanism for shape-from-disparate-shading we tested the effect of a small
disparate token displayed in front of a non-disparate background (Figure 9). Our
data show that for large elongations, a single stereo feature (ring) is not sufficient to
produce the same percept as full disparate shading [compare Figure 9(a) with
Figures 9(b)-(d)]. For small elongations (0.5-2.0; not shown in Figure 9) the
differences were not pronounced. We therefore conjecture that disparate shading
does not rely on feature matching and thus can be used for surface interpolation
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when edges are sparse. This view is well in line with the finding that edge
information, whenever present, overrides shape-from-disparate-shading (Figure 8).

Note, however, that we do not propose the naive idea of pointwise intensity
matching as a mechanism for shape-from-disparate-shading because of its sensitivi-
ty to noise in both the data and in neural processing. Even in the absence of image
noise, intensity-based algorithms (e.g. Gennert, 1987) can lead to severe matching
errors when run on our stimuli.

Surface Interpolation and Subjective Surfaces

In the experiments with sparse edge information ‘Figure 9b-d), an interpolated
surface was measured directly with the depth probe technique. If the depth
separation between the ring and the shaded ellipsoid was large (elongation 4.0) an
ambiguous perception was experienced. One interpretation consisted of a solid
base at about the depth perceived from shape-from-shading alone with the ring
floating in front of it (Figure 9d). The other interpretation was a transparent
subjective surface onto which the ring was drawn (Figure 9c¢). In this case, the depth
of the entire surface was pulled towards the ring. Surprisingly, a subjective surface
could also be perceived when the token was floating in front of a uniformly grey
disk (Figure 9b). An interaction between shape-from-shading and edge-based
stereo is therefore not necessary to perceive subjective surfaces.

Shape-from-Shading: Algorithms and Psychophysics

A computational theory for shape-from-shading is presented by Ikeuchi & Horn
(1981). As an example, they discuss the image of a sphere with Lambertian
reflectance function, illuminated by parallel light trom the viewing direction. This
example can be directly compared to our Experiment 1 (D~ E ™) where about 259,
of the correct depth was perceived by the observers. Interestingly, the algorithm of
Ikeuchi & Horn underestimates depth if the input lata are noisy. The distortion of
shape in their algorithm depends on a regularization parameter A. For a large value
of 4, which would be appropriate for noisy image data, the smoothing of the surface
leads to a considerable underestimation of depth On the other hand, the iterative
scheme becomes unstable if the value of 4 is reduced too much. For an approach
which avoids smoothing by a regularization term, see Horn and Brooks (1985).

The algorithm of Ikeuchi & Horn also shows other types of errors when the light
source position and the reflectance properties of the surface are not known exactly.
The types of errors reported from numerical experiments are asymmetric distor-
tions for false assumptions of the light source position and overestimation of depth
when false reflectance functions are assumed. In our psychophysical studies, these
errors did not occur. Asymmetric deformations as reported by Tkeuchi & Horn are
not present even for the obliquely illuminated objects (Figure 7). Whether this
corresponds to a correct judgement of the illuminant direction by the human
observer is currently under investigation. Also, varying the reflectance function did
not change the shape-from-shading performance as measured with our depth
probe technique in Experiment 1 (Figure 6, dashed lines).
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How Useful is Shading as a Cue for Depth?

Todd & Mingolla (1983) and Mingolla & Todd (1986) used psychophysical
techniques to investigate how observers analyze shape by use of shading cues.
According to their results, the human observer underestimates surface curvature by
over 50 %, when using shading information. A similar result has been reported by
Barrow & Tenenbaum (1978), showing that shading of a cylindrical surface can
deviate substantially from natural shading before a change in the perceived shape
can be detected. This is well in line with our psychophysical findings which suggest
that non-disparate shading is a poor cue to depth. It is, however, in contrast to the
intuition of artists who use shading as a primary tool to depict objects in depth.

Is it possible that we are not asking the right question when we try to analyze
shape with the local depth probe? Obviously everybody can describe the shape of a
vase in a photograph even without any texture on it. In principle, the information
that can be obtained from shape-from-shading is surface orientation rather than
absolute depth. However, as Todd and Mingolla have shown, the surface normal
on simply shaded bodies is difficult to estimate in psychophysical experiments, and
even after a training phase subjects make a lot of errors. A precise measurement of
surface slant and tilt does not seem to be necessary for shape perception.

In the study reported here, we tried to measure the perceived depth directly with
a stereoscopically viewed depth probe. This seems to be a much simpler task for the
subjects, and indeed we did not need a long training phase to obtain consistent
depth measurements. It is not obvious that this method worked for shading cues
alone, since it involves a cross-comparison of supposedly more or less independent
modules as well as a comparison of local (depth probe) and global (shading)
information. Since our depth probe is defined by stereopsis it requires binocular
viewing even for non-disparate images (pure shape-from-shading). To avoid this,
we developed a paradigm to measure shape-from-shading monocularly (Biilthoff &
Mallot, 1988). With this paradigm we can also analyze other cues, e.g. texture
gradients and occluding contours, which would show similar problems with a local
stereo depth probe.

Integration of Depth Modules

Concrete predictionﬁ of the types of interactions that should occur between
different depth cues are still difficult to obtain from computational theory.
Therefore, we hope that psychophysical studies will in turn provide useful hints for
computational investigations into the integration of depth information.
Accumulation is a simple type of interaction that can be implemented in a
number of different ways. Depth information can be collected from different cues
and performance should improve as more information becomes available. Our
data show that it is not the reliapility which improves, but the perceived depth
which increases. This result hints at regularization as the mechanism for the
observed accumulation. Given a stereo contour surrounding a surface patch, the
most conservative estimate would be a smooth interpolation as performed by
computer vision algorithms (Grimson, 1982; Marroquin, 1984; Terzopoulos, 1986).
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In our stimuli, the smoothest interpolation is a flat disk. In a tradeoff with the
smoothness constraint, the visual system seems to use the available information to
the extent of its rcliability. This might explain why depth perception increases as
more information becomes available.

Conflicting cues were presented in Experiments 1 and 3. Whenever visible, edge-
based disparities were decisive for the perceived depth (Figure 5, D"E ", Figures 8
and 9). Except for the subjective surface (see the section on “Surface interpolation
and subjective surfaces™) the “veto effect™ was restricted to a vicinity of the edge as
can be seen from the sparse edge data in Figures 8 and 9. Edge-based stereo thus
overrides both shape-from-shading and shape-from-disparate-shading. It is possi-
ble, however, that this veto relationship occurs only in the locally derived depth
map. The global percept of the polyhedral ellipsoid in Experiment 1 (D “E*) is not
flat but convex. A conflicting cue combination of shape-from-shading and shape-
from-disparate-shading was presented in the experiment with smooth-shaded non-
disparate images (D~ E7). In this case, shape-from-shading is not vetoed by the
lack of shading disparities but leads to a reduced depth perception of about 259,
An inhibitory interaction between the two cues may account for this poor shape-
from-shading performance and the ceiling effect in Figure 6.

Asymmetric types of interaction, such as veto or disambiguation, can be
expected from models of surface interpolation that start with reliable but sparse
depth information typically obtained from disparate edges or occluding contours.
Interpolation between the sites of the edges could rely on a smoothness constraint

L Edge-based stereo
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Figure 12. Integration of depth cues. The size of the boxes and interaction channels reflects
the contribution of the different depth cues for the overall perceived depth (accumulation).
In contradictory cases, shape from both disparate and non-disparate shading is vetoed by
edge-based sterco. An inhibitory influence of shape-from-disparate-shading on shape-from-
shading is discussed in “Integration of depth modules™.
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(Grimson. 1982) or on additional cues such as shading (Ikeuchi & Horn, 1981;
Blake et al.. 1985) and binocular shading of specular surfaces (Grimson, 1984). Its
distributed mechanism and the veto relationship to edge-based sterco make shape-
from-disparate-shading especially suitable for surface interpolation in human
vision. The interactions of different depth cues (as derived from our depth probe
experiments) in consistent and contradictory cases are summarized in Figure 12.
Another summary of our data which includes both depth probe and shape
comparison techniques is shown in Figure 13. This representation is based on the
idea (sketched in Figure 2) that the integration of different 3D-cues can Icad to the
perception of different 3D-descriptors (range, shape, orientation). The contribution
of single monocular cues is different for the 3D-descriptors. Object orientation is
best recovered from texture cues (Biilthoff & Mallot, 1988) while surface curvature
(shape) can be inferred more easily from shading. With binocular shading
(Lambertian or Phong shading) range perception is rather strong (70 %). It is even
stronger for the perception of shape (100%,). The addition of a highlight to a
shaded surface has no effect in the range matching task while a strong effect was
found in the shape comparison task. Highlights always led to an overestimate of
shape while dull surfaces (Lambertain shading) were judged to be flat.

Recently, Poggio (1985) proposed a new formalism for the integration of
different vision modules, based on a probabilistic approach (Marroquin, 1984;
Marroquin et al., 1987). The advantage of this coupled Markov random fields

Range

Texture
[ J

Stereo
L

Binocular shading
Binocuiar highlight

Shading Texture +shading

[ ]
Texture + highlight

e
Highlight

/

Shape Orientation

Figure 13. Depth triangle. This representation of our depth probe and shape comparison
data shows the relative importance of depth cues (stereo, shading, texture) for different 3D-
descriptors (range, shape, orientation); see also Figure 2. Shading has a stronger influence
on the perceived shape, while texture seems to be more important for orientation (compare
with Figure 1). Sterco is of equal importance for all 3D-descriptors because the shape,
orientation and distance to an object (range) can be easily derived from a complete depth
map.
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approach over regularization theory lics in the possibility of simultaneous segmen-
tation and (piecewise) smoothing of the image. As far as the experiments discussed
here are concerned, the results should not be significantly different from those of
regularization. However, if other cues such as occlusion are considered, more
complex types of interaction are to be expected from the coupled Markov random
field approach.
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