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Introduction: The Project and Its Goals 

Computer vision has developed algorithms for several early vision processes, 
such as edge detection, stereopsis, motion, texture, and color, which give 
separate cues as to the distance from the viewer of three-dimensional sur- 
faces, their shape, and their material properties. Biological vision systems, 
however, greatly outperform computer vision programs. I t  is clear that 
one of the keys to the reliability, flexibility, and robustness of biological 
vision system in unconstrained environments is their ability to integrate 
many diEerent visual cues. For this reason, we continue the development 
of a Vision Machine system to explore the issue of intagration of early 
vision modules. The s m  a h  serves the purpose of developing paral- 
lel vision algorithms, because its main computational engine is a parallel 
superwmputer, the Connection Machine. 

The idea behind the V i i n  Machine is that the main goal of the iu- 
tagration stage ia to compute a map of the visible discontinuities in the 
scene, somewhat similar to a cartoon or a linedrawing. There are several 
m n s  for this. Fit, experience with existing model-based recognition 
algorithms suggest that the critical problem in this type of recognition is 
to obtain a reasonably good map of the scene in terms of features such as  
edges and comers. The map does not need to be perfect (human recogni- 
tion works with noisy and occluded line drawings) and, of course, it cannot 
be. But it should be significantly cleaner than the typical map provided by 
an edge detector. Second, discontinuities of surface properties are the most 
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important locations in a s m e .  Third, we have argued that discontinuities 
are ideal for integrating idormation from different visual cues. 

It is a h  clear that there are m a l  dBerent approaches to the prob- 
lem of how to integrate visual cuea. Let us list some of the obvious poasi- 
bilities: 

1 There is no active integration of visual processes. Their individual out- 
puts ate "integrated" at the stage a t  which they are used, for example 
by a navigation system. This is the approach advocated by Brooks 
[1987]. While it makes sense for automatic, insectlike, visuo-motor 
tasks such as tracking a target or avoiding obstacles (for example, the 
fly's visuo-motor system Wchardt & Poggio 1976]), it seems quite 
unlikely for visual perception in the wider sense. 

2 The visual modules ate so tightly coupled that it is impossible to con- 
sider visual modules as separate, even to a first order approximation. 
This view is unattractive on epistemological, engineering, and psy- 
chophysid grounds. 

3 The visual modules are coupled to each other and to the image data 
in a parallel fashion--each pro- represented as an array coupled to 
the arrays associated with the other processes. This point of view is 
in the tradition of Marr's 2 i-D sketch, and especially of the "intrinsic 
images" of Barrow and Tenenbaum (19781. Our present scheme is of 
this type, and exploits the machinery of Markov Random Field (MRF) 
models. 

4 Integration of different vision modalities is taking place in a task- 
dependent way at specific locations--not over the whole image-and 
when it is needed-therefore not a t  all times. This approach is sug- 
gested by wychoplu.sical data on visual attentiin and by the idea of 
visual routines [UIlman 19841 (see also Hurlbert and Poggio [1986], 
Mahoney 119871, and ~uithoff and Mallot 119881). 

We are presently exploring the third of these approaches. We believe that 
the last two approaches are compatible with each other. In particular, vi- 
sual routines may operate on maps of discontinuities such as thwe delivered 
by the present Vision Machine, and therefore be h a t e d  after a paraUel, 
automatic integration stage. In real life, of course, it may be more a mat- 
te of coexistence. We believe, in fact, that a control structure baaed on 
specific knowledge about the properties of the various modules, the s p d c  
scene and the specific task will be needed in a later version of the V i o n  
Machine to overview and control the MRF integration stage itself and its 
parameters. It is poasible that the integration stage should he much more 
goal-directed than what ow present methods (MRF baaed) allow. The 
main goal of our work is to find out whether this is true. 

The V i n  Machine project has a number of other goals. It provides 
a focus for developing parallel vision algorithms and for studying how to 
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organize a real-time vision system on a massively parallel supercomputer. 
It attempks to alter the usual paradigm of computer vision rich over the 
past years: choose a specific problem, for example stereo, find an algorithm, 
and test it in isolation. The Vision Machine allows us to develop and test 
an algorithm in the context of the other modules and the requirements of 
the overall visual task, above all, visual recognition. For this reason, the 
project is more than an experiment in integration and parallel processing: 
it is a laboratory for ow theories and algorithms. 

Finally, the ultimate goal of the Vision Machine project is no less than 
the ultimate goal of vision rtwarch: to build a vision system that adiievea 
human-level performance. 

The Vision Machine System 

The overall organization of the system is shown in figure 1. The image(s) 
are processed in parallel through independent algorithms or modules corre- 
sponding to different visual cues. E d p  are extracted using Canny's edge 
detector. The stereo module computes disparity from the left and right im- 
ages. The motion module estimates an approximation of the optical Bow 
from pairs of images in a time sequence. The texture module computes 
texture attributes (such as density and orientation of textons ~oorhses  
19871). The color algorithm provides an estimate of the spectral albedo 
of the surfaces, independently of the effective illumination, that is, illumi- 
nation gradients and shading effects, as suggested by Hurlbert and Poggio 
(see Poggio and Staff 119851). 

The measurements provided by the early vision modules are typically 
noisy, and possibly sparse (for stereo and motion). They are smoothed 
and made dense by exploiting known constraints within each process (for 
instance, that disparity is smooth). This is the stage of appmzimalion and 
natmtion of data, performed using a Markov Random Field model. Si- 
multaneously, d i i n t i n u i t i i  are found in each cue. Prior knowledge of the 
behavior of discontinuities is exploited, for instance, the fact that they are 
continuous lines, not isolated points. Detection of discontinuities is aided 
by the information provided by bright- edges. Thus each cue, di9parity, 
optical Bow, texture, and color, is coupled to the edges in brightness. 

The full scheme involvea finding the var im types of phys'lcal discon- 
tinuities in the surfaces, depth discontinuities (extremal edges and blades), 
mientation discontinuities, @r edges, olbedo edges (or marks), and 
shadow edges, and coupling them with each other and back to the dis- 
continuities in the visual cues, as illustrated in figure 1 (and suggested 
by Gamble, Geiger, Poggio, and Weinshall [1989]). So far we have imple- 
mented only the coupling of brightness edges to each of the cues provided 
by the early algorithm. As we will discuss later, the technique we use to 
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physical discontinuities 

Figure 1. Overall organization of the Vion Mschine. 

approximate, to simultaneously detect discontinuities, and to couple the 
difierent proeesaes, is based on MRF modeis. The output of the system is 
a set of labeled discontinuities of the surfaces around the viewer. Thus the 
scheme-an instance of inverse optiar--computes arrjace pmperties, that 
is, attributes of the physical world and not anymore of the images. Note 
that we attempt to find discontinuities in surface properties and therefore 
qualitative surface properties: the inverse optics paradigm does not imply 
that physical properties of the surfaces, such as depth or reliectance, should 
be extracted pncisely, nreryuhm. These bntimuities, taken tcgether, 
represent a "cartoon" of the original scene which can be used for reeogni- 
tion and navigation (along with, interpolated depth, motion, texture, and 
color fields). As yet we did not integrate our ongoing work on grouping in 
the Vision Machine. We expect to use a saliency operation on the output of 
the edge detection process poaaibly before the use of intensity edges by the 
MRF stage. The grouping based on T-junctions peymer 19891 should tske 
place on the intensity edges at  the same level as the MRF stage. Initial 
work in recognition has been integrated in the system. The Vision Ma- 
chine has been demonstrated working form images to recognition through 
the integration of visual cues. 
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The plan of this chapter is as follows. We will first review the current 
hardware of the Vision Machine: the eye-bead system and the Connection 
Machine. We will then describe in some detail each of the early vision 
algorithms that are presently running and are part of the system. M e r  
this, the integration stage will be discussed. We will analyae some &ts, 
and illustrate the merits and the pitfalls of our present system. The last 
section will discuss a real-time visual system, and some ideas on how to 
put the system into VLSI circuits of analog and digital type. 

Hardware 

The Eye-Head system 

Because of the scope of the Vision Machine project, a general purpose 
image input device is required. Such a device is the eye-head system. Here 
we discw its current and future configurations. 

The eye-head system consists of two CCD cameras, which act as eyes, 
mounted on a variabkattitude platform, which acts as the head. Inspired 
by biology, the apparatus is configured such that the head m o w  the eyes 
as a unit, while allowing the eyes to point independently. Each eye is 
equipped with a motorized mom lens (F1.4, focal length from 12.5 to 
75mm), allowing control of the iris, focus, and focal length by the host 
computer (currently a Symbolica 3600 Lisp Machine). Other hardware 
allows for repeatable calibration of the entire apparatus. 

Because of the size and weight of the motorized lenses, it would be 
impractical to achieve eye movement by pointing the camera/Iens assem- 
blies directly. Instead, each assembly is mounted rigidly on the head, with 
eye movement achieved indirectly. In front of each lens is a pair of front 
surfsce mirrors, each of which can be pivoted by a galvanometer, providing 
two degreea of freedom in aiming the cameras. At the expease of a more 
complicated imaging geometry, we get a simple and fast pointi i  system 
for the eyes. 

The head is attached to its mount via a spherical joint, allowing head 
rotation about two orthogonal axes (pan and tilt). Each axis is driven by 
a stepper motor coupled to its drive shaR through a harmonic drive. The 
latter providea a k g e  gear ratio in conjunction with very little mechanical 
backlash. Under control of the stepper motors, the head can be panned 
Is0 degreea from left to right, and tilted 90 degrees (from vertical-down 
to horizontal). Each of the stepper motors is provided with an optical 
shaft encoder for shatt position feedback (a closed-loop control scheme is 
employed for the stepper motors). The shaft encoders also provide an index 
pulse (one per revolution) which is used for joint calibration in coqjunction 
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with mechanical limit switches. The latter also protect the head from 
damage due to excessive travel. 

The overall control system for the eye-head system is distributed over 
a micro-processor network (UNET) developed at the MIT A1 Laboratory 
for the control of vision/robotics hardware. The UNET is a "multi-drop" 
network supporting up to 32 micros, under the control of a single host. The 
micros normally function as network slaves, with the host acting as the 
master. In this mode the micros only "speak when spoken to," responding 
to various network operations either by receiving information (command 
or othenvise) or by transmitting information (such as status or results). 
Associated with each micro on the UNET is a local 16-bit bus (UBUS), 
which is totally under the control of the micro. Peripheral devices such as 
motor drivers, galvanometer drivers, and pulse width modulators (PWMs), 
to name a few, which can be interfaced at this level. 

At present, three micro-processors are installed on the eye-head UNET. 
one each for the galvanometers, motorized lenses, and stepper motors. The 
processors currently employed are based on the Intel 8051. Each of these 
micros has an assortment of UBUS peripherals under its control. By mak- 
ing these peripherals sufficiently powerful, each micro's control task can 
remain simple and manageable. Code for the micros, written in both as- 
sembly language and C, is facilitated by a Lisp-based debugging environ- 
ment. 

O u r  computational engine: T h e  Connection Machine 

The Connection Machine is a powerful fine-grained parallel machine which 
has proven useful for implementation of vision algorithms. In implement- 
ing these algorithms, several different models of using the Connection Ma- 
chine have emerged, because the machine provides several different com- 
munication modes. The Connection Machine implementation of algorithms 
can take advantage of the underlying architecture of the machine in novel 
ways. We describe here several common, elementary operations which recur 
throughout the following discussion of parallel algorithms. 

0 T h e  Connection Machine 

The CM-2 version of the Connection Machine [Hillis 19851 is a parallel 
conlputing machine with between 16K and 64K processors, operating un- 
der a single instruction stream broadcast to aU processors. It is a Single 
Instruction Multiple Data (SIMD) machine; all processors execute the same 
control stream. Each processor is a simple 1-bit processor, currently with 
64I< bits of memory, optionally with a floating point arithmetic accelerator, 
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shared among 16 (or 32) processors. There are two modes of communica- 
tion among the processors: the NEWS network and the router. The NEWS 
network (so-called because the connections are in the four cardinal direc- 
tions) provides rapid direct communication between neighboring processors 
in an rectangular grid of arbitrary dimension. For example, 64K processors 
could be configured into a twedimensional 256 x 256 grid, or into a four- 
dimesional64 x 64 x 4 x 4 grid. The second mode of communication is the 
router, which allows messages to be sent from any processor to any other 
processor in the machine. The processors in the Connection Machine can 
be envisioned as being the vertices of a 16dimensional hypercube (in fact, 
it is a 12-dimensional hypercube; at each vertex of the hypercube resides a 
chip containing 16 processors). Each processor in the Connection Machine 
is identified by its hypercube address in the range 0.. .65535, imposing 
a linear order on the processors. This address denotes the destination of 
messages handled by the router. Messages pass along the edges of the 
hypercube from source processors to destination processors. The Connec- 
tion Machine also has facilities for returning to the host machine the result 
of various operations on a field in all processors; it can return the global 
maximum, minimum, sum, logical AND, and logical OR of the field. 

The floating-point arithmetic accelerator, which may optionally be 
added to the Connection Machine, provides a significant increase in the 
speed of both single and double precision computations. One floating-point 
processor chip serves a pair Connection Machine processor chips with 32 
total processors in a pipelined fashion, and can produce a speed-up of more 
than a factor of twenty. 

To allow the machine to manipulate data structures with more than 
64K elements, the Connection Machine supports virtual processors. A sin- 
gle physical processor can operate as a set of multiple virtual processors 
by serializing operations in time, and by partitioning the memory of each 
processor. This is otherwise invisible to the user. Connection Machine 
programs utilize Common Lisp syntax, in a language called *Lisp, and are 
manipulated in the same fashion as Lisp programs. 

0 Powerful primitive operations 

Many vision problems must he solved by a combination of communication 
modes on the Connection Machine. The design of these algorithms takes 
advantage of the underlying architecture of the machine in novel ways. 
There are several common, elementary operations used in this discussion 
of parallel algorithms: routing operations, scanning, and distance doubling. 

Routing. Memory in the Connection Machine is associated with proces- 
sors. Local memory can be accessed rapidly. Memory of processors nearby 
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in the NEWS network can be accessed by passing it through the processors 
on the path between the source and the destination. At present, NEWS ac- 
cesses in the machine are made in the same direction for all processors. The 
router on the Connection Machine provides parallel reads and writes among 
processor memory at arbitrary distances and with arbitrary patterns. It 
uses a packet-switched message routing scheme to direct messages along the 
hypercube connections to their destinations. This powerful communication 
mode can be used to reconfigure completely, in one parallel write operation 
taking one router cycle, a field of information in the machine. The Con- 
nection Machine supplies instructions so that many processors can read 
from the same location or write to the same location, but because these 
memory references can cause significant delay, we will usually only consider 
exclusive read, exclusive write instructions. We will usually not allow more 
than one processor to access the memory of another processor at one time. 
The Connection Machine can combine messages a t  a destination by various 
operations, such as logical AND, inclusive OR, summation, and maximum 
or minimum. 

Scanning. The scan operations [Blelloch 19871 can be used to simplify 
and speed up many algorithms. They directly take advantage of the hy- 
percube connections underlying the router, and can be used to distribute 
values among the processors and to aggregate values using associative op- 
erators. Formally, the scan operation takes a binary associative operator 
$, with identity 0, and an ordered set [ao, a l ,  . . . , a,-I], and returns the 
set [ao, (ao $ al), . . . , (ao $ a1 $ . . . $ a,-l)]. This operation is sometimes 
referred to as the data independent prefi operation [Kruskal et al. 19851. 
Binary associative operators include minimum, mazimum, and plus. 

The four scan operations plus-scan, maz-scan, min-scan, and copy- 
scan are implemented in microcode, and take about the same amount of 
time as a routing cycle. The copy-scan operation takes a value at the first 
processor and distributes it to the other processors. These scan operations 
can take segment bits that divide the processor ordering into segments. 
The beginning of each segment is marked by a processor whose segment 
bit is set, and the scan operations start over again at the beginning of each 
segment. 

The scan operations also work using the NEWS addressing scheme, 
termed grid-scans. These compute the sum, and quickly find the maximum, 
copy, or number values along rows or columns of the NEWS grid. 

For example, grid-scans can be used to find, for each pixel, the sum of a 
square region with width 2m+l centered at the pixel. This sum is computed 
using the following steps. First, a plus-scan operation accumulates partial 
sums for all pixels along the rows. Each pixel then gets the result of the 
scan from the processor m in front of it and m behind it; the difference 
of these two values represents the sum, for each pixel, of its neighborhood 
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along the row. We now execute the same calculation on the columns, 
resulting in the sum, for each pixel, of the elements in its square. The 
whole process only requires a few scans and routing operations, and runs in 
time independent of the size of m. The summation operations are generally 
useful to accumulate local support in many of o w  algorithms, such as stereo 
and motion. 

Distance Doubling. Another important primitive operation is distance 
doubling [Wyllie 1979; Lim 19861 which can be used to compute the effect of 
any binary, associative operation, as in scan, on processors linked in a list 
or a ring. For example, using m u ,  distance doubling can find the extremum 
of a field contained in the processors. Using message-passing on the router, 
distance doubling can propagate the extreme value to all processors in the 
ring of N processors in O(log N) steps. Each step involves two send opera- 
tions. Typically, the value to be maximized is chosen to be the hypercube 
address. At termination, each processor in the ring knows the label of the 
maximum processor in the ring, hereafter termed the principal pmcessor. 
This labels all connected processors uniquely, and nominates a processor as 
the representative for the entire set of connected processors. At the same 
time, the distance from the principal can be computed in each processor. 
Each processor initially, at step 0, has the address of the next processor in 
the ring, and a value which is to be maximized. At the termination of the 
ith step, a processor knows the addresses of processors 2' +1 away, and the 
maximum of all values within 2'-' processors away. In the example, the 
maximum value has been propagated to  all 8 processors in log8 = 3 steps. 

Early Vision Algorithms and their Parallel 
Implementation 

Edge detection 

Edge detection is a key first step in correctly identifying physical changes. 
The apparently simple problem of measuring sharp brightness changes in 
the image has proven to be difficult. It is now clear that edge detection 
should be intended not simply as finding "edges" in the images, an ill- 
defined concept in general, but as measuring appropriate derivatives of the 
brightness data. This involves the task-dependent use of different two- 
dimensional derivatives. In many cases, it is appropriate to mark locations 
corresponding to appropriate critical points of the derivative such as max- 
ima or zeroes. In some cases, later algorithms based on these binary fea- 
tures (presence or absence of edges) may be equivalent, or very similar, to 
algorithms that directly use the continuous value of the derivatives. A case 
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in point is provided by our stereo and motion algorithms, to be described 
later. As a consequence, one should not always make a sharp distinction 
between edge-based and intensity based algorithms; the distinction is more 
blurred, and in some cases it is almost a matter of implementation. 

In our current implementation of the Vision Machine, we are using two 
different kinds of edges. The first consists of zero-crossings in the Laplacian 
of the image filtered through an appropriate Gaussian. The second consists 
o f  the edges found by Canny's edge detector. Zero-crossings can be used 
by our stereo and motion algorithms (though we have mainly used Canny's 
edges a t  fine resolution). Canny's edges (at a coarser resolution) are input 
to the MRF integration scheme. 

Because the derivative operation is ill-posed, we need to filter the resultant 
data through an appropriate low-pass filter [Torre & Poggio 19841. The 
filter of choice (but not the only possibility!) is a Gaussian at a suitable 
spatial scale. An interesting and simple implementation of Gaussian con- 
volution relies on the binomial approximation to the Gaussian distribution. 
This algorithm requires only integer addition, shifting, and local commu- 
nication on the 2D mesh, so it can be implemented on a simple 2D mesh 
architecture (such as the NEWS network on the Connection Machine). 

The Laplacian of a Gaussian is often approximated by the difference 
of Gaussians. The Laplacian of a Gaussian can also be computed by convo- 
lution with a Gaussian followed by convolution with a discrete Laplacian; 
we have implemented both on the Connection Machine. To detect zero- 
crossings, the computation at each pixel need only examine the sign bits 
of neighboring pixels. 

0 Canny edge detection 

The Canny edge detector is often used in image understanding. It is based 
on directional derivatives, so it has improved localization. The Canny edge 
detector on the Connection Machine consists of the following steps: 

Gaussian smoothing 
Directional derivative 
Non-maximum suppression 
Thresholding with hysteresis. 

Gaussian filtering, as described above, is a local operation. Computing 
directional derivatives is also local, using a finite difference approximation 
referencing only local neighbors in the image grid. 

N o b m a x i m u m  Suppression. Non-maximum suppression selects as ed- 
ge candidates those pixels for which the gradient magnitude is maximal 
in the direction of the gradient. This involves interpolating the gradient 
magnitude between each of two pairs of adjacent pixels anlong the eight 
neighbors of a pixel, one forward in the gradient direction, and one back- 
ward. However, it may not be crucial to use interpolation, in which case 
magnitudes of neighboring values can be directly compared. 

Thresholding with Hysteresis. Thresholding with hysteresis elimi- 
nates weak edges due to noise, using the threshold, while connecting ex- 
tended curves over small gaps using hysteresis. Two thresholds are com- 
puted, low and high, based on an estimate of the noise in tbe image bright- 
ness. The non-maximum suppression step selects those pixels where tbe 
gradient magnitude is maximal in the direction of the gradient. In the 
thresholding step, all selected pixels with gradient magnitude below low 
are eliminated. All pixels with values above high are considered as edges. 
All pixels with values between low and high are edges if they can be con- 
nected to a pixel above high through a chain of pixels above low. All others 
are eliminated. 

This is a spreading activation operation; it propagates information 
along a set of connected edge pixels. The algorithm iterates, in each step 
marking as edge pixels any low pixels adjacent to edge pixels. When no 
pixels change state, the iteration terminates, takmg O(m) steps, a num- 
ber proportional to the length m of the longest chain of low pixels which 
eventually become edge pixels. The running time of this operation can be 
reduced to O(logm), using distance doubling. 

Noise Estimation. Estimating noise in the image can be done by an- 
alyzing a histogram of the gradient magnitudes. Most computational im- 
plementations of this step perform a global analysis of the gradient magni- 
tude distribution, which is essentially non-local; we have had success with 
a Connection Machine implementation using local histograms. The thresh- 
olds used in Canny edge detection depend on the final task for which the 
edges are used. A conservative strategy can use an arbitrary low thresh- 
old to eliminate the need for the costly processing required to accumulate 
a histogram. Where a more precise estimate of noise is needed, it may 
be possible to find a scheme that uses a coarse estimate of the gradient 
magnitude distribution, with minimal global communication. 

Stereo 

The Drumheller-Poggio parallel stereo algorithm (Drumheller & Poggio 
19881 runs as  part of the Vision Machine. Disparity data produced by the 
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algorithm comprise one of the inputs to the MRF-based integration stage of 
the Vision Machine. We are exploring various extensions of the algorithm, 
as well as the possible use of feedback from the integration stage. In this 
section, we will review the algorithm briefly, then proceed to a discussion 
of current research. 

The stereo algorithm runs on the Connection Machine system with 
good results on natural scenes in times that are typically on the order of 
one second. The stereo algorithm is presently being extended in the context 
of the Vision Machine project. 

0 T h e  Drumheller-Poggio s tereo algorithm 

Stereo matching is an ill-posed problem (see Bertero et al. [1988]) that 
cannot be solved witllout taking advantage of natural constraints. The 
continuity constraint (see, for instance, M a n  and Poggio [1976]) asserts 
that the world consists primarily of piecewise smooth surfaces. If the scene 
contains no transparent objects, then the uniqueness constraint applies: 
there can be only one match along the left or right lines of sight. If there 
are no narrow occluding objects, the ordering constraint [Poggio & Yuille 
1984) holds: any two points must be imaged in the same relative order in 
the left and right eyes. 

The specific a priori assumption on which the algorithm is based is 
that the disparity, that is, the depth of the surface, is locally constant in 
a small region surrounding a pixel. I t  is a restrictive assumption which, 
however, may be a satisfactory local approximation in many cases (it can 
be extended to more general surface assumptions in a straightforward way, 
but at a high computatiollal cost). Let EL(x, y) and En(+, y) represent the 
left and the right image of a stereo pair, or some transformation of it, such 
as filtered images or a map of the zercl-crossings in the two images (more 
generally, they can be maps containing a feature vector at each location 
(x, y) in the image). 

We look for a discrete disparity d(x, y) a t  each location z, y in the 
image that minimizes 

IIEL(X,Y) -En($ + d(x,?~)>~)ll~atch, (1) 

where the norm is a summation over a local neighborhood centered at each 
location (z, y); d(x) is assumed constant in the neighborhood. The previous 
equation implies that we should look a t  each (z, y) for d(z, y) such that 

( ~ r l x , u ) ~ a ( x  + d i x . y ) , ~ ) ) ~ d ~ d v  
parch, 
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The algorithm that we have implemented on the Connection Machine 
is actually somewhat more complicated, because it involves geometric con- 
straints that affect the way the maximum operation is performed (see 
Drumbeller and Poggio [1986]). The implementation currently used in the 
Vision Machine at the Artificial Intelligence Laboratory uses the maps of 
Canny edges obtained from each image for EL and ER. 

In more detail, the algorithm is composed of the following steps: 

1 Compute features for matching. 

2 Compute potential matches between features. 

3 Determine the degree of continuity around each potential match. 
4 Choose correct matches based on the constraints of continuity, nnique- 

ness, and ordering. 

Potential matches between features are computed in the following way. 
Assuming that the images are registered so that the epipolar lines are hor- 
izontal, the stereo matching problem becomes onedimensional: an edge in 
the left image can match any of the edges in the corresponding horizontal 
scan line in the right image. Sliding the right image over the left image 
horizontally, we compute a set of potential match planes, one for each hor- 
izontal disparity. Let p(x, y, d) denote the value of the (I, y) entry of the 
potential match plane at disparity d. We set p(x, y,d) = 1 if there is an 
edge at location (z,y) in the left image and a compatible edge a t  location 
(x-d, y) in the right image; otherwise, set p(x, y, d) = 0. In the case of the 
DOG edge detector, two edges are compatible if the sign of the convolution 
for each edge is the same. 

To determine the degree of continuity around each potential match 
(I, y, d), we compute a local support score s(x, y, d) = CPotch p(x, y, d), 
where patch is a small neighborhood of (x,y,d) within the dth potential 
match plane. In effect, nearby points in patch can "vote" for the disparity 
d. The score s(x, y, d) will be high if the continuity constraint is satisfied 
near (x, y,d), that is, if patch contains many votes. This step corresponds 
to the integral over the patch in the last equation. 

Finally, we attempt to select the correct matches by applying the 
uniqueness and ordering constraints (see above). To apply the unique- 
ness constraint, each match suppresses all other matches along the left and 
right lines of sight with weaker scores. To enforce the ordering constraint, 
if two matches are not imaged in the same relative order in left and right 
views, we discard the match with the smaller support score. In effect, each 
match suppresses matches with lower scores in its forbidden zone [Yuille & 
Poggio 19841. This step corresponds to choosing the disparity value that 
maximizes the integral of the last equation. 
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0 Improvements 

Using this algorithm as a base, we have explored several of the following 
topics: 

Detection of Dep th  Discontinuities. The Marr-Poggio continuity 
constraint is both a strength and a weakness of the stereo algorithm. Favor- 
ing continuous disparity surfaces reduces the solution space tremendously, 
but also tends to smooth over depth discontinuities present in the scene. 
Consider what happens near a linear depth discontinuity, say a point near 
the edge of a table viewed from above. The square local support neighhor- 
hood for the point will be divided between points on the table and points 
on the floor; thus, almost half of the votes will be for the wrong disparity. 

One solution to this problem is feedback from the MRF integration 
stage. We can take the depth discontinuities located by the integration 
stage (using the results from a first pass of the stereo algorithm, among 
other inputs) and use them to restrict the local support neighborhoods so 
that they do not span discontinuities. In the example mentioned above, the 
support neighborhood would be trimmed to avoid crossing the discontinuity 
between the table and the floor, and thus would not pick up spurious votes 
from the floor. 

We can also try to locate discontinuities by examining intermediate 
results of the stereo algorithm. Consider a histogram of votes versus dis- 
parity for the tableffloor example. For a support region centered near the 
edge of the table, we expect to see two strong peaks: one a t  the disparity of 
the floor, and the other a t  the disparity of the table. Therefore a bimodal 
histogram is strong evidence for the presence of a discontinuity. 

These two ideas can be used in conjunction. Discontinuity detection 
within stereo can take advantage of the extra information provided by the 
vote histograms. By passing better depth data (and perhaps candidate 
discontinuity locations) to the integration stage, we improve the detection 
of discontinuities at the higher level. 

Improving t h e  Stereo Matcher. The original Drumheller-Poggio algo- 
rithm matched DOG zero-crossings, where the local support score counted 
the number of zero-crossings in the left image patch matching edges in the 
right image patch at a given disparity. We have modified the matcher in a 
variety of ways. 

1 Canny edges. The matcher now uses edges derived by a parallel imple 
mentation of the Canny edge detector [Canny 1983; Little ct al. 19871 
rather than DOG zero-crossings, for better localization. 

2 Gradient direction constraint. We allow two Canny edges to match 
only if tile associated brightness gradient directions are aligned within 

a parameterized tolerance. This is analogous to the restriction in 
the Marr-Poggio-Grimson stereo algorithm [Grimson 19811 where two 
zero-crossings can match only if the directions of the DOG gradients 
are approximately equal. Matching gradient orientations is a tighter 
constraint than matching the sign of the DOG convolution. Further- 
more, the DOG sign is numerically unstable for horizontally oriented 
edges. 

3 The scores are now normalized to take into account the number of 
edges in the left and right image patches eligible to match, so that 
patches with high edge densities do not generate artificially high scores. 
We plan to change the matcher so that edges that fail to match would 
count as negative evidence by reducing the support score, but this has 
not yet been implemented. 

In the near future, we will explore matching brightness values as well as 
edges, using a cross-correlation approach similar to that of Little, for m 5  
tion estimation. 

Identifying Areas t h a t  are Outside of t h e  Matcher's Disparity 
Range. The stereo algorithm searches a limited disparity range, selected 
manually. Every potential match in the scene (an edge with a matching 
edge at some disparity) is assigned the in-range disparity with the highest 
score, even though the correct disparity may be out of range. How can we 
tell when an area of the scene is out of range? The most effective approach 
that we have attempted to date is to look for regions with low matching 
scores. Two patches that are incorrectly matched will, in general, produce 
a low matching score. 

0 Memory-based registration a n d  calibration 

Registration of the image pair for the stereo algorithm is done by presenting 
to the system a pattern of dots, roughly on a sparse grid, at the distance 
around which stereo has to operate. The registration is accomplished using 
a warping computed by matching the dots from the left and right images. 
The dots are sparse enough that matching is unambiguous. The matching 
defines a warping vector for each dot; at other points the warping is com- 
puted by bilinear interpolation of the two components of warping vectors. 
The warping necessary for mapping the right image onto the left image is 
then stored. Prior to stereo-matching, the right image is warped according 
to the pre-stored addresses by sending each pixel in the right image to the 
processor specified in the table. 

The warping table corrects for deformations, including those due to 
vertical disparities and rotations, those due to the image geometry (errors 
in the alignment of the cameras, perspective projection, errors introduced 
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by the optics, etc.) We plan to store several warping tables for each of 
a few convergence angIes of the two cameras (assuming symmetric con- 
vergence). We conjecture that simple interpolation can yield sufficiently 
accurate warping tables for fixation angles intermediate to the ones stored. 
Note that these tables are independent of the position of the head. Ab- 
solute depth is not the concern here (we are not using it in our present 
Vision Machine), but it could easily be recovered from knowledge of the 
convergence angle. Note also that the whole registration scheme has the 
flavor of a learning process. Convergence angles are inputs and warping 
tables are the outputs of the modules; the set of angles, together with the 
associated warping tables, represent the set of input-output examples. The 
system can "generalize" by interpolating between warping tables and pro- 
viding the warping corresponding to a vergence angle that does not appear 
in the set of "examples." Calibration of disparity to depth could be done 
in a similar way. 

Motion 

The motion algorithm [Biilthoff et al. 1989) computes the optical flow field, 
a vector field that approximates the projected motion field. The procedure 
produces sparse or dense output, depending on whether it uses edge fea- 
tures or intensities. The algorithm assumes that image displacements are 
small, within a range (f 6, f 6). It is also assumed that the optical flow is 
locally constant in a small region surrounding a point. This assumption 
is strictly only true for translational motion of 3D planar surface patches 
parallel to the image plane. It is a restrictive assumption which, however, 
may be a satisfactory local approximation in many cases. Let Et(x, y) and 
Et+At(x,y) represent transformations of two discrete images separated by 
time interval At, such as filtered images, or a map of the brightness changes 
in the two images (more generally, they can be maps containing a feature 
vector at each location (I, y) in the image) [ICass 1986; Nisbihara 19841. 

We look for a discrete motion displacement y = (v,, v,) at each loca- 
tion z ,y in the image that minimizes 

IJEt(x,y) - Et+at(x +v.At,y +v,At)llpata, = min (3) 
where the norm is a summation over a local neighborhood centered at 
each location (x, y); y(x, y) is assumed constant in the neighborhood. The 
previous equation implies that we should look a t  each (I, y) for y = (v,,v,) 
such that 

/ ( 4 ( x .  y) - Et+nt(z + v.At.y + urAt))'dxd~ 
patch, 

(4) 

is minimized. Alternatively, one can maximize the negative of the in- 
tegrated result. The last equation represents the sum of the pointwise 
squared differences between a patch in the first image centered around the 
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location (I, y) and a patch in the second image centered around the location 
(z  +v,At,y + v,At). 

This algorithm can be translated easily into the following description. 
Consider a network of processors representing the result of the integrand 
in the previous expression. Assume for simplicity that this result is ei- 
ther 0 or 1 (this is the case if El and Et+nt are binary feature maps). 
The processors hold the result of differencing (taking the logical "exclusive 
or") the right and left image map for different values of (I, y) and v,,v,. 
The next stage, corresponding exactly to the integral operation over the 
patch, is for each processor to summate the total in an (x, y) neighborhood 
at the same disparity. Note that this summation operation is efficiently 
implemented on the Connection Machine using scan computations. Each 
processor thus collects a vote indicating support that a patch of surface 
exists at that displacement. The algorithm iterates over all displacements 
in the range (33, f 6), recording the values of the integral for each displace- 
ment. The last stage is to choose ~ ( x ,  y) among the displacements in the 
allowed range that maximizes the integral. This is done by an operation 
of "non-maximum suppression" across velocities out of the finite allowed 
set: at the given (z, y), the processor is found that has the maximum vote. 
The corresponding y(x, y) is the velocity of the surface patch found by 
the algorithm. The actual implementation of this scheme can be simpli- 
fied so that tlie "non-maximum suppression" occurs during iteration over 
displacements, so that no actual table of summed differences over displace- 
ments need be constructed. In practice, the algorithm has been shown to 
be effective both for synthetic and natural images using different types of 
features or measurements on the brightness data, including edges (both 
zero-crossings of the Laplacian of Gaussian and Canny's method), which 
generate sparse results along brightness edges, or brightness data directly, 
or the Laplacian of Gaussian, or its sign, which generate dense results. 
Because the optical flow is computed from quantities integrated over the 
individual patches, the results are robust against the effects of uncorrelated 
noise. 

The comparison stage employs patchwise cross-correlation, which ex- 
ploits local constancy of the optical flow (the velocity field is guaranteed 
to be constant for translations parallel to the image plane of a planar 
surface patch); it is a cubic polynomial for arbitrary motion of a planar 
surface (see Waxman [1987], and Little et al. [1987]). Experimentally, we 
have used zero-crossings, the Laplacian of Gaussian filtered image, its sign, 
and the smoothed brightness values, with similar results. It is interesting 
that methods superficially so different (edge-based and intensity-based) give 
such similar results. As we mentioned earlier, this is not surprising. There 
are theoretical arguments that support, for instance, the equivalence of 
cross-correlating the sign bit of the Laplacian filtered image and the Lapla- 
cian filtered image itself. The argument is based on tlie following theorem, 
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which is a slight reformulation of a well-known theorem. 

Theorem. If f(x, y) and g(x, y) are zero mean jointly normal processes, 
their cross-correlation is determined fully by the correlation of the sign of 
f and of the sign of g (and determines it). In particular 

where f = sign f and 0 = sign g. 
Thus, cross-correlation of the sign bit is exactly equivalent to cross- 

correlation of the signal itself (for Gaussian processes). Note that from 
the point of view of information, the sign bit of the signal is completely 
equivalent to the zero-crossing of the signal. Nishihara [I9841 first used 
patchwise cross-correlation of the sign bit of DOG filtered images, and has 
implemented it more recently on real-time hardware [Nishihara & Crossley 
19SSl. 

The existence of discontinuities can be detected in optical flow, as in 
stereo, both during computation and by processing the resulting flow field. 
The latter field is input to the MRF integration stage. During computation, 
discontinuities in optical flow arising from occlusions are indicated by low 
normalized scores for the chosen displacement. 

Color 

The color algorithm that we have implemented is a very preliminary ver- 
sion of a module that should find the boundaries in the surface spectral 
reflectance function, that is, discontinuities in the surface color. The algo 
rithm relies on the idea of effective illumination and on the single source 
assumption, both introduced by Hurlbert and Poggio. 

The single source assumption states that the illumination may be s e p  
arated into two components, one dependent only on wavelength, and one 
dependent only on spatial coordinates; this generally holds for illumina- 
tion from a single light source. I t  allows us to write the image irradiance 
equation for a Lambertian world as 

I" = kVE(x, y)pY(x, y) ( 5 )  
where I" is the image irradiance in the vth spectral channel (v = red, 
green, blue), pY(x, y) is the surface spectral reflectance (or albedo), and the 
effective illumination E(x, y) absorbs the spatial variations of the illumina- 
tion and the shading due to the 3D shape of surfaces (k' is a constant for 
each channel, and depends only on the luminant). A simple segmentation 
alaorithm is then obtained by considering the equation 

which changes only when p', or @, or both change. Thus H, which is 
piecewise constant, has discontinuities that mark changes in the surface 
albedo, independently of changes in the effective illumination. 

The quantity H(z,y) is defined almost everywhere, but is typically 
noisy. To counter the effect of noise, we exploit the prior information that 
H should be piecewise constant with discontinuities that are themselves 
continuous, non-intersecting lines. As we will discuss later, this restoration 
step is achieved by using a MRF model. This algorithm works only under 
the restrictive assumption that specular reflections can be neglected. Hurl- 
bert [1989] discusses in more detail the scheme outlined here and how it 
can be extended to more general conditions. 

Texture 

The texture algorithm is a greatly simplified parallel version of the texture 
algorithm developed by Voorhees and Poggio [1987]. Texture is a scalar 
measure computed by summation of texton densities over small regions 
surrounding every point. Discontinuities in this measure can correspond to 
occlusion boundaries, or orientation discontinuities, which cause foreshort- 
ening. Textons are computed in the image by simple approximation to the 
methods presented in Voorhees and Poggio [1987]. For this example, the 
textons are restricted to blob-like regions, without regard to orientation 
selection. 

To compute textons, the image is first filtered by a Laplacian of Gaus- 
sian filter at several different scales. The smallest scale selects the textural 
elements. The Laplacian of Gaussian image is then thresholded a t  a non- 
zero value to find the regions which comprise the blobs identified by the 
textons. The result is a binary image with non-zero values only in the areas 
of the blobs. A simple summation counts the density of blobs (the portion 
of the summation region covered by blobs) in a small area surrounding each 
point. This operation effectively measures the density of blobs a t  the small 
scale, while also counting the presence of blobs caused by large occlusion 
edges at the boundaries of textured regions. Contrast boundaries appear 
as blobs in the Lapladan of Gaussian image. To remove their effect, we use 
the Laplacian of Gaussian image a t  a slightly coarser scale. Blobs caused 
by the texture a t  the fine scale do not appear at this coarser scale, while 
the contrast boundaries, as well as all other blobs at coarser scales, remain. 
This coarse blob image filters the fine blobs; blobs at the coarser scale are 
removed from the fine scale image. Then, summation, whether with a sim- 
ple scan operation, or Gaussian filtering, can determine the blob density at 
the fine scale only. This is one example where multiple spatial scales are 
used in the present implementation of the Vision Machine. 
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T h e  integration s tage and MRF 

Whereas it is reasonable that combining the evidence provided by multiple 
cues (for example, edge detection, stereo, and color) should provide a more 
reliable map of the surfaces than any single cue alone, it is not obvious how 
this integration can be accomplished. The various physical processes that 
contribute to image formation, surface depth, surface orientation, albedo 
(Lambertian and specular component), illumination, are coupled to the 
image data, and therefore to each other, through the imaging equation. 
The coupling is, however, difficult to exploit in a robust way, because it 
depends critically on the reflectance and imaging models. We argue that 
the coupling of the image data to the surface and illumination properties 
is of a more qualitative and robust sort at locations in which image bright- 
ness changes sharply and surface properties are discontinuous, in short, at  
edges. The intuitive reason for this is that at discontinuities, the coupling 
between different physical processes and the image data is robust and qual- 
itative. For instance, a depth discontinuity usually originates a brightness 
edge in the image, and a motion boundary often corresponds to a depth 
discontinuity (and an brightness edge) in the image. This view suggests 
the following integration scheme for restoring the data provided by early 
modules. The results provided by stereo, motion, and other visual cues are 
typically noisy and sparse. We can improve them by exploiting the fact 
that they should be smooth, or even piecewise constant (as in the case of 
the albedo), between discontinuities. We can exploit a priori information 
about generic properties of the discontinuities themselves, for instance, that 
they usually are continuous and non-intersecting. 

The idea, is then, to detect discontinuities in each cue, for instance 
depth, simultaneously with the approximation of the depth data. The 
detection of discontinuities is helped by information on the presence and 
type of discontinuities in the surfaces and surface properties (see figure I), 
which are coupled to the brightness edges in the image. 

Note that reliable detection of discontinuities is critical for a vision 
system, because discontinuities are often the most important locations in 
a scene; depth discontinuities, for example, normally correspond to the 
boundaries of an object or an object part. The idea is thus to couple differ- 
ent cues through their discontinuities and to use information from several 
cues simultaneously to help refine the initial estimation of discontinuities, 
which are typically noisy and sparse. 

How can this be done? We have chosen to use the machinery of Markov 
Random Fields (MRFs), initially suggested for image processing by Geman 
and Geman (19841. In the following section, we will give a brief, informal 
outline of the technique and of our integration scheme. More detailed 
information about MRFs can be found in Geman and Geman [I9841 and 
Marroquin (19871. Gamble and Poggio [I9871 describe an earlier version 
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of our integration scheme and its implementation as outlined in the next 
section. 

O MRF models 

Consider the prototypical problem of approximating a surface given sparse 
and noisy data (depth data) on a regular 2D lattice of sites. We f is t  
define the prior probability of the class of surfaces we are interested in. 
The probability of a certain depth at any given site in the lattice depends 
only upon neighboringsites (the Markov property). Because of the Clifford- 
Hammersley theorem, the prior probability is guaranteed to have the Gibbs 
form 

1 - q . l  
P ( f )  = Ze ( 7) 

where Z is a normalization constant, T is called temperature, and U(f) = 
Cc Uc(f) is an energy function that can be computed as the sum of local 
contributions from each neighborhood. The sum of the potentials, Uc(X), 
is over the neighborhood's cliques. A clique is either a single lattice site or 
a set of lattice sites such that any two sites belonging to it are neighbors 
of one another. Thus U(f) can be considered as the sum over the possible 
configurations of each neighborhood (see Marroquin [1987]). As a simple 
example, when the surfaces are expected to be smooth, the prior probability 
can be given as sums of terms such as 

uc(f) = (fi - fj)' (8) 
where i and j are neighboring sites (belonging to the same clique). 

If a model of the observation process is available (that is, a model of 
the noise), then one can write the conditional probability P(g/f) of the 
sparse observation g for any given surface f .  Bayes Theorem then allows 
one to write the posterior distribution 

P (  f lg)  = ie- (9) 

In the simple earlier example, we have (for Gaussian noise) 

U(f/g) = x ~ ? i ( f i  - gil2 f (fi - fj)' 
C 

(10) 

where 7i = 1 only where data are available. More complicated cases can 
be handled in a similar manner. 

The posterior distribution cannot be solved analytically, but sample 
distributions can be obtained using Monte Carlo techniques such as the 
Metropolis algorithm. These algorithms sample the space of possible sur- 
faces according to the probability distribution P(f/g) that is determined 
by the prior knowledge of the allowed class of surfaces, the model of noise, 
and the observed data. In our implementation, a highly parallel computer 
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generates a sequence of surfaces from which, for instance, the surface cor- 
responding to the maximum of P(f/g) can be found. This corresponds 
to finding the global minimum of U(f/g) (simulated annealing is one of 
the possible techniques). Other criteria can be used: Marroquin [I9851 has 
shown that the average surface f under the posterior distribution is often a 
better estimate, and one which can be obtained more efficiently by simply 
finding the average value o f f  a t  each lattice site. 

One of the main attractions of MRFs is that the prior probability dis- 
tribution can be made to embed more sophisticated assumptions about the 
world. Geman and Geman [I9841 introduced the idea of another process, 
the line process, located on the dual lattice, and representing explicitly the 
presence or absence of discontinuities that break the smoothness assump 
tion. The associated prior energy then becomes 

Uc(f) = (fi - fj)2(1 - 1:) + ~ ~ c ( l i )  (11) 
where 1 is a binary line element between site i, j .  Vc is a term that reflects 
the fact that certain configurations of the line process are more likely than 
others to occur. In our world, depth discontinuities are usually themselves 
continuous, non-intersecting, and rarely isolated joints. These properties of 
physical discontinuities can be enforced locally by defining an appropriate 
set of energy values Vc(l) for different configurations of the line process 
in the neighborhood of the site (note that the assignment of zero energy 
values to the non-central cliques mentioned in Gamble and Poggio [I9871 
is wrong, as pointed out to us by Tal Symchony). 

0 Organization of integration 

It is possible to extend the energy function of Equation (5) to accommodate 
the interaction of more processes and their discontinuities. In particular, 
we have extended the energy function to couple several of the early vision 
modules (depth, motion, texture, and color) to brightness edges in the im- 
age. This is a central point in our integration scheme; brightness edges 
guide the computation of discontinuities in the physical properties of the 
surface, thereby coupling surface depth, surface orientation, motion, tex- 
ture, and color, each to the image brightness data and to each other. The 
reason for the role of brightness edges is that changes in surface proper- 
ties usually produce large brightness gradients in the image. It is exactly 
for this reason that edge detection is so important in both artificial and 
biological vision. 

The coupling to brightness edges may be done by replacing the term 
vc(lj) in the last equation with the term 

V(4 e) = g(4 ,  ~ ~ ( l j ) )  (12) 

with e{ representing a measure of the presence of an brightness edge b e  
tween site i, j .  The term g has the effect of modifying the probability 
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of the line process configuration depending on the brightness edge data 
(V(1,e) =.-log p(l/e)). This term facilitates formation of discontinuities 
(that is, 1;)  at the locations of brightness edges. Ideally, the brightness 
edges (and the neighboring image properties) activate, with different prob- 
abilities, the different surface discontinuities (see figure l), which in turn 
are coupled to the output of stereo, motion, color, texture, and possibly 
other early algorithms. 

We have been using the MRF machinery with prior energies like that 
shown above (see also figure 1) to integrate edge brightness data with 
stereo, motion, and texture information on the MIT Vision Machine Sys- 
tem. 

We should emphasize that our present implementation represents a 
subset of the possible interactions shown in figure 1, itself only a simplified 
version of the organization of the likely integration process. The system will 
be improved in an incremental fashion, including pathways not shown in 
figure 1, such as feedback from the results of integration into the matching 
stage of the stereo and motion algorithms. Examples can be found in 
Poggio, Gamble and Little [I9881 and in Poggio and The Staff [1987). 

0 Algorithms: Deterministic and stochastic 

We have chosen to use MRF models because of their generality and theo- 
retical attractiveness. This does not imply that stochastic algorithm must 
be used. For instance, in the cases in which the MRF model reduces to 
standard regularization [Marroquin 19871 and the data are given on a reg- 
ular grid, the MRF formulation leads not only to a purely deterministic 
algorithm, but also to a convolution filter. Recent work in color [Hurlbert 
& Poggio 19891 shows that one can perform integration similar to the M W -  
based scheme using a deterministic update. Geiger and Girosi [I9891 have 
shown that there is a class of deterministic schemes that are the mean-field 
approximations of the MRF models. These schemes have a much higher 
speed than the Montecarlo schemes we used so far, while promising similar 
performance. 

Recognition 

The output of the integration stage provides a set of edges labeled in terms 
of physical discontinuities of the surface properties. They represent a good 
input to a model-based recognition algorithm like the ones described by 
Huttenlocher and Cass [1988]. In particular, we have interfaced the Vision 
Machine as implemented so far with the Cass algorithm. We have used 
only discontinuities for recognition; later we will also use the information 
provided by the MRFs on the surface properties between discontinuities. 
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We have more ambitious goals foc the recognition stage of the Vi- 
sion Machine. In an unconstrained environment the library of models that 
a system with human-level performanee requires is in the order of many 
thousands. Thus, the ability to learn from examples appears to be es- 
sential for the achievement of high p e r f o n ~ ~ ~ ~ c e  in real-world recognition 
tasks. Learning the models becomes then a primary coneern in developing 
a recognition system for the Vision Machine. This has not been the case 
in other approaches of the last few years, mainly motivated by a robotic 
framework. 

Learning in a three-stage recognition s c h  

Although some of the existing recognition systems incorporate a module 
for learning object models from examples (for example Tucker's 2D system 
pcker et oL 19881) no such capabiity exists yet for the more difficult 
problems of mognkii 3D objects (Huttenlocher & Ullmsn 19871 or hand- 
writing [Edelman & Ullman to appear 19901. We believe that incorporating 
learning into a gene ra l -pm recognition system may be facilitated by 
breaking down the task of recognition into three distinct but interact'mg 
stages: selection, ind-, and veri- 

Selection. Selection or segmentation brsaks down the image into regions 
that are likely to correspond to single objects. The utility of an early seg- 
mentation of a m e  into meaningful entities lies in the great reduction of 
complexity of scene interpretation. Each of the dekted objects can in turn 
be subjected to separate recognition, by comparing it with object models 
stored in memory. Without prior segmentation, every possible combimation 
of image primitives such as lines and blobs can in principle constitute an 
object and must be checked out. The power of early segmentation may be 
enhanced by integrating all available visual cues, especially if the integra- 
tion parameters are automatically adjusted to suit the particular seane in 
question. 

Indexing. By indexing we mean defining a small set of candidate objects 
that are likely to be present in the image. Although one cannot hope to 
achieve an ideal segmentation in real-world eituaLions, partial success is suf- 
ficient if the indexing process is robust. A s w h g  that moat objects in the 
real world are redundantly specified by their local features, a good indexing 
maehanism would use such features to overwme changes in viewpoint and 
illumination, occlusion and nok.  

What k i d  of feature is good for indexing? Reliably detected line8 
provided by the integration of several low-level cues in the process of eeg- 
mentation may suffice in many  case^. We conjecture that mmple viewpoint- 
invariant combinations of primitive elements, such as two lines forming a 
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corner, parallel lines, and symmetry are also likely to be useful. Ideally, 
only 2D informstion should be used for indexing, although it be aug- 
mented sometimes by qualitative 3D cues such as relative depth. 

Verification. In the verification stage each of the candidates screened 
by the indexing pr- is tested to find the best match to the image. At 
this stage, the system can afford to perform complicated tests, because 
the number of candidate objects is small. We conjecture that hierarchi- 
cal indexing by a small number (two or three) features that are spatidy 
localized in 2D suffices to achieve useful interpretations of most everyday 
scenes. In general, hwvever, further wi6catiin by model dependent row 
tines (if it is a M d e s  it must have a three joint star in front) or pracise 
shape matching, p d b l y  involving 3D information, is required m a n  
1884; Lowe 1986; Huttenlocher & Ullman 1987; Bolles et ol. 1983; Ayache 
& Faugeraa 1986; Tucker et ol. 1988). 

Future Developments 

The Vion M&e will evoIve in several parallel directions: 

Improvement and extensions of its early modules 
Improvement of the integration and recognition stagas (recognition is 
discmad later) 
Use of the eye-head system in an active mode during recognition task 
by developing appropriate gwe strategies 
Use of the r d t s  of the integration stage in order to impmve the 
operation of early modules such as stereo and motion by feeding back 
the preliminary computation of the discontinuities 

Two goals will occupy most of our attention. The first one is the develop 
ment of the overall organization of the Vision Machine. The system can 
be seen as an implementation of the inwrse optics par- it attempta 
to extract surface properties from the integration of image cues. It must 
be stremd that we never intended this framework to imply that precise 
surface properties such as dense, high resolution depth maps, must be de- 
livered by the system. This extreme interpretation of inverse optics seems 
to be common, but was not the motivation of our project, which originally 
started with the name C m e  Vision Machine to emphasize the impor- 
tance of computing qualitative, as oppceed to very precise, properties of 
the environment. 

Our second main goal in the Vion machine project will be Machine 
hming .  In particular, we have begun to explore simple learning and es- 
timation techniques for vision tasks. We have s u d e d  in synthesizing a 
color algorithm from examples [Hurlbert & Poggio 19871 and in developing 
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a technique to perform mupervised learning [Sanger 19881 of other simple 
vision algorithms such as simple versions of the computation of texture and 
stereo. In addition, we have used learning techniques to perform integra- 
tion tasks, such as labeling the type of discontinuities in a scene. We have 
also begun to explore the mnnections between recent approaches to learn- 
ing, such as neural netmks, genetic algorithms, and dassical methods in 
approximation theory such as splines, Bayesian techniques, and Markov 
Random Field models. We have identilied some common propertie of 
all these approaches and some of the common limitations, such as sample 
wm~lexitv. As a conaeauence. we now believe that we can leverage our 
expertise &I approximati& techniques for the problem of learning in - 
chine vision. Our future theoretical and computational studies will examine 
available learning tedmiques, their pmp&es and limitations and develop 
new ones for the tasks of early vision, for the integration stage and for 
object recognition. The algorithms will be tested with the Vision Machine 
system and eventually incorporated into it. We will also pay attention to 
parallel network implementations of these algorithms: for this subgoal we 
will be able to leverage the work we are now doing in developing analog 
VLSI networks for several of the components of the Vion  Machine. To- 
wards the goal of achieving much higher flexibility in the Viion Machine 
we propose to explore (a) the synthesis of vision algorithms from a set of 
instances and (b) the refinement and tuning of preprogrammed algorithms, 
such as edge detection, texture discrimination, motion, color and calibre 
tion for stereo. We will also develop techniques to estimate parameters of 
the integration stage. Much of our effort will be focused on the new scheme 
for visual recognition of 3D objects, whose key component is the automatic 
learning of a large database of models. We aim to develop a prototype of 
a flexible viaion system that can, in a limited way, learn from experience. 

In the following, we outline some of the other directions of future 
dmlopment. 

Labeling the physical origin of edges: Computing qualitative 
d c e  attributes 

0 Physical discontinuities 

We dassi& edges according to the following physical events: diintinuities 
in surfaca properties, called mark or olbalo edges (for example, chsoges in 
the color of the surface); discontinuities in the orientation of the surface 
patch, called orientation edges (for example, an edge in a polyhedron); 
discontinuities in the illumination, called shadow edgw, occfuding bound- 
aries, which are discontinuities in the object #puce (a different object); and 
qm&r discontinuities, which exist for non-Lambertian objects. 
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0 Integration via labeling with a linear classifter 

Gamble, Geiger, Weinshall and Poggio have implemented a part of the 
general scheme. More speciIicaUy, they have used a simple linear claasffier 
to label edges at pixels where there exists an intensity discontinuity, using 
the output of the line process mciated with each low-level vision module. 
They use the fact that the modules' discontinuities are aligned, having 
being integrated with the intensity edges before, so that the nonexistence 
of a module discontinuity at a pixel is meaDingfuL The linear classilier 
corresponds to a linear network where each output unit is a weighted linear 
comb'ition of its inputs (for a similar application to a problem of color 
vision, see Hurlbert and Poggio [1987)). The input to the network is a pixel 
where there exists an intensity edge and that feeds a set of qualitatively 
different input units. The output is a real value vector of each lab&' 
support. 

In the system we have so far implemented, we achieve a rather r e  
stricted integration, because each module is integrated only with the in- 
tensity module, and labeling is done via a simple linear claasi5er only. It is 
still unclear how successful labeling can be, using only bed information. 

Saliency, grouping, and segmentation 

A grouping and segmentation module working on the output of the edge 
detection module is an important part of a vision system: humans can deal 
with monocutar, still, black and white pictures devoid of stereo, motion 
and color. We are now developing techniques to h d  salient edges, to 
group them and thereby segment the image. These algorithms have not 
been integrated yet in the Vision Machine system. 

0 Saliency measure 

Edge mapa produced by mcst current edge detectors are cluttered with edge 
responses and may have edges caused by noise. This creates dillicuities for 
higher level processing, because the wmbinatorics of these algorithms often 
depends on the number of edge primitives being examined. What is needed 
is a technique to focus attention on the "importantn edges in a scene. We 
call such attention f o d i  techniques that measure the "importance' of 
an edge saliency measures. Shimon Ullman [Ullman k Sha'ashua 19881 has 
proposed two different kinds of saliency measures: local saliency and strue 
tural saliency. An edge's local saliency is entirely determined by features of 
that edge alone. For example, an edge'@ length, its average gradient mag- 
nitude, or the color of a bounding region serve as local saliency measures. 
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Structural saliency refers to more global properties of an edge-its rela- 
tionships with other edges. Although two edges may not be locally salient, 
if there is a "nonaecidentaln relationship between them, then the structure 
becomes salient. Examples of Ynonaecidental" relationships, as pointed 
out by David Lowe, include ~Ilinearity, parallelism, and symmetry, among 
other things. 

We have i n v e s t i  local saliency measures applied to the output 
of the Canny edge detector [Beymer 19891. The edge features we have 
considered include curvature, edge length, and gradient magnitude. The 
measure favors t h e  edges that have low average curvature, Long length, 
and a high gradient magnitude. The saliency measure eliminates many of 
the edges due to noise and many of the unimportant adgee. The edges that 
remain are often the long, smooth boundaries of objects and signi6cant 
intensity changes inside the objects. We expect that the salient edges 
will help higher level processes such as grouping (structural saliency) and 
model based recognition by allaving them to focus attention on regions of 
an image bounded by salient edges. 

0 T junctions: Their detection and use in grouping 

In cluttered imagery, imagery containing many objects occluding one an- 
other, it is important to group together pieces of the image that come from 
the same object. In particular, given an edge map produced by the Canny 
edge detector, we would like to select and group together the edges from 
a particular object before ruaoing high level recognition algorithms on the 
edge data This grouping stage helps reduce the combinatoria of the higher 
level stages, as they are not forced to consider false edge groupings as ob- 
jects. Considering how occlusion cues can be used in grouping, we have 
investigated the detection of T junctions and grouping rules arising from 
the pairing of T junctions. When one object partially occludes another in 
a cluttered m e ,  a T junction is formed between the two objects. Beymer 
has developed algorithms for detecting T junctions as a postpracessing step 
to the Canny edge detector. The Canny edge detector, while very good at 
detecting edges, is particularly bad at detecting junctions. Indeed, it was 
designed to detect one dimensional events. This one dimensional char- 
t h t i o n  of the image breaks d m  at junctions because locally there are 
three or more surfaces in the image. We have investigated how one could 
use edge curvature and region properties of the image to reconstruct these 
"broken" junctions. Often the way Canny will fail at junctions is that one 
of the three curves belonging to the junction will be broken off from the 
other two. We have m d e d  an existing algorithm and achieved promising 
results in mtoring broken T junctions. 
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Past vision: The role of time smoothness 

The present version of the Vision Machine proceases only isolated frames. 
Even our motion algorithm takes as input simply a sequence of two images. 
The reaeon for this is, of course, limitations in raw speed. We cannot 
perform all of the proming we do at video rate (say, 30 frames per seeond), 
though this goal is certainly within present technological capabilities. If we 
could p r o m  frames at video rate, we could exploit constraints in the time 
dimension similar to the ones we are already exploiting in the space domain. 
Surfaces, and even the brightness array itself, do not uauaUy change too 
much from frame to frame. This is a constraint of smoothness in time, 
which is valid a l m d  e m h e r e ,  but not m a 8  discontinuities in t i e .  
Thus one may use the same MR. technique, applied to the output of stereo, 
motion, color, and texture, and enforce continuity in time (if there are no 
discontinuities), that is, exploit the redundancy in the sequence of frames. 

We believe that the surfsoe reconstructed from a stereo pair usually 
does not need to be recomputed completeiy when the next stereo pair is 
taken a fraction of a second later. Of come, the role of the MRFs may 
be accomplished in this case by some more specific and more ef8cient d s  
terministic method such as, for example, a form of Kalman filtering. Note 
that space-time MRFs applied to the brightness arrays would yield spa- 
tiotemporal interpWton and appmxhation of a kind already considered 
Fable & Poggio 1980; Poggio, Nielsen & Niihihara 1982; Bliss 19851. 

A VLSI Vision Machine? 

Our vision Machine consists mostly of specialized software running on 
the Connection Machine. This is a good system for the present stage 
of experimentation and development. Later, once we have perfected and 
tested the algorithms and the overall system, it will make sense to compile 
the software into silicon in order to produce a faster, cheaper, and smaller 
Vision Machine. We are presently planning to use VLSI technologies to 
develop some initial chips as a first step toward this goal. In this section, 
we will outline some thoughts about VLSI implementation of the Vion  
Machine. 

Algorithms and Hardware. We r e a k  that our specialized software 
vision algorithms are not, in general, optimized for hardware implemen- 
tation. So, rather than directly %ardwiring algorithms" into standard 
computing circuitry, we will be investigating "algorithmic hardware" de- 
signs that utilize the local, symmetric nature of early vision problems. This 
will be an iterative process, as the algorithm iduencea the hardware design 
and as hardware constraints modify the algorithm. 
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Degree of Pardelism. Typical visjon tasks require tremendous amou- 
nts of computing power, andue usually parallel in nature. As an example, 
biolcgical vision uses highly p d e l  networks of relatively slow componenta 
to achieve sophisticated systems. However, when implementing our algo- 
rithms in silicon integrated circuits, it ia not dear what level of parallelism 
is neoessary. While biology b able to use three dime~sions to construct 
highly intero1111ected parallel networks, VLSI is limited to 2 !j dimensions, 
making highly parallel networks much more di5icult and c08tly to imple- 
ment. However, the electrical components of silicon integrated circuits are 
approximately four orders of magnitude faster than the electrochemical 
components of biology. This suggests that pipelined pmwssinp or other 
methods of time-sharing mmputing power may be able to compensate for 
the lowar degree of comectivity of silicon VLSI. Clearly, the architecture 
of a VLSI vision system may not resemble any biolcgical vision systems. 

Signal Representation. Within the integrated circuit, the image data 
may be repreaented as a digital word or an analog value. While the ad- 
van- of digital computation are its accuracy and speed, digital circuits 
do not have as high a degree of functionality per device as analog circuits. 
Therefore, analog circuits should allow much denser computing networks. 
This is particularly important for the integration of computational circuitry 
and ~hotoseumrs, which will help to alleviate the 110 bottleneck tyd~cally 
ex&enced whenever image data are serially transfer& between Vion  
Machine components. how eve^, analog circuits are limited in accuracy, and 
are =cult to character& and design. 

Learning and parameter estimation 

Using the MRF model involves an energy function which has m a l  free 
parameters, in addition to the many possible neighborhood systems. The 
values of these parameters determine a distribution over the con&mtion- 
space to which the system converges, and the speed of convergeme. Thus 
rigorous methods for estimating these parametars are essential for the prac- 
tical success of the method and for meaningful results. In some cases, 
parameters can be learned from the data: for example, texture param- 
etsrs [Geman & Gragne 1987), or neighborhood parameters (for which 
a cellular automaton model may be the most convenient for the pupom 
of learning). There are general statistical methods which can be used for 
parameter estimation: 

A maximum liketihood estimate-one can use the indirect iterative EM 
algorithm (Dempskr eel al. 1 9 q ,  which is mask useful for maximum 
Likelihood estimation from incomplete data (see Marroquiu [I9873 for a 
special case). This algorithm involves the iterative maximbation (over 
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the parameter space) of the expected value of the likelihood function 
given that the parametem take the values of their estimation in the 
previous iteration. Alternatively, a 8e~rch constrained by some statis- 
tics for a minimum of an appropriate merit tunetion may be employed 
(see Marroquin (1987)). 
A smoothing (regulaciition) parameter can be estimated using the 
methods of crossvalidation or unbiased risk, to minixthe the mean 
square error. In cross-validation, an estimate is obtained omitting one 
data point. The goal is to minimiae the distance between the predicted 
data point (from the estimate above with the point omitted) and the 
actual value, for all points. 

In the case of Markov Random Fields, some more specific approaches are 
appropriate for parameter estimation: 

Besag [I9721 -ted conditional maximum likelihood estimation w 
ing coding methods, msximum likelihood estimation with unilateral 
approximations on the rectangular lattice, or kxdmum pseudolib 
lihoodn--a method to estimate parameters for homogeneous random 
fields (see Geman and Graiiigne [1987)). 
For the MPM estimator, where a fixed temperature is yet mother 
parameter to be estimated, one can try to use the physics behind the 
model to 6nd a temperature with as tittle disorder as posgible and still 
reasonable time of convergence to equilibrium (for example, away from 
"pbtraU.qition"). 

An alternative asymptotic appmach can be used with smoothing (regular- 
ization) terms: instead of estimating the smoothing parameter, let it tend 
to 0 as tbe temperature tends to 0, to reduce the smoothing do86 to the 
6naI configuration (see Geman and Geman [1987)). 

In summary, we plan to explore three distinct s t a p  for parameter 
estimation in the integration stage of the Vision Machine: 

Modeling from the physics of surfaces, of the imaging process and 
of the cless of scenes to be anslyzed and the b k s  to be performed 
The range of allowed parameter values may also ba established at 
this stage (for example, minimum and maximum brightness value in 
a acene, depth difIerences, positivity of certain measurements, distri- 
bution of expected velocities, reftectance properties, characteristics of 
the illuminant, etc.). 
Estimating of parameter values from a set of examples in which data 
and desired solution are given. This is a learning stage. We may have 
to use days of CM time and, at least initially, synthetic images to do 
this. 
Tuning of some of the parameters dlractly from the data (by using EM 
algorithm, cross-validation, Besag's work, or various types of heuris- 
tics). 
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T h e  dream is that at some point in the f u t u e  the Vision Machine will run 
all t h e  time, day and night, looking about and learning on i ts  own to see 
better  and better. 
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