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1.1. Complex  vs  Non-Complex  Imagw 

ABSTRACT 

The interaction of modules for depth perception was studied 
psychophysically by measuring the perceived depth of computer 
generated images showing simple solid objects with different 
combinations of depth cues. Accumulation of information from 
shading and stereo and vetoing of depth from shading by edge 
information have been found. Cooperativity and other types of 
interactions are discussed. If intensity edges are missing, as in 
smooth-shaded surfaces, the image intensities themselves could 
be used for stereo matching. Matching primitives other than 
edges were studied in additional experiments. The results are 
compared with computer vision algorithms for both single mod- 
ules and their integration for 3D-vision. 

1. Introduction 

The problem of deriving a description of a three-dimensional 
scene from its twedimensional images on the retina is the inverse 
of classical optics, wherein one has to find the two-dimensional 
image (brightness distribution) of a three-dimensional object. 
While the optics problem can be solved straightforwardly, the 
inverse problem is much harder to  attack because a unique s e  
lution does not always exist. Furthermore the solution has to 
be stable, i-e., depend continuously on the image intensities. 
Computational studies have provided in recent years promising, 
although far from complete theories of the processes necessary 
to  solve the ill-posed problem of deriving a three-dimensional 
scene description from twedimensional images. It has become 
clear that a single module is not sufficient to solve this problem. 
Stereo and motion algorithms, for example, can work well un- 
der laboratory-controlled conditions (random dot stereograms 
and moving sinewave patterns), but quite often make severe er- 
rors under more natural conditions where specularity, inhome 
geneous illuminations, and occlusion are common. We therefore 
argue that the analysis of the information processing involved 
should rely on complex natural images rather than non-complex 
synthetic images. 

The human visual system works much more reliable for complex 
natural images than for non-complex synthetic images. For ex- 
ample it can analyze complex shapes in a natural scene under 
quite different viewing conditions but produces often ambiguous 
solutions for simple line drawings like the Necker cube. Simi- 
lar observations can be made also for other vision modules like 
color, stereo and motion. Many illusions occur mainly when only 
single or few cues are available but are rare in complex natural 
situations because interaction of different cues can avoid false 
interpretations. In psychophysics, the study of this interaction 
can be facilitated by the use of computer graphic systems, which 
allows convenient control of different cues in complex synthetic 
images. Shading, for example, can be computed for arbitrary 

objects and ray-tracing and texture mapping techniques allow 
to  compute synthetic images of +.hree-dimensional scenes which 
can not be distinguished anymore from natural images ( p h e  
tograp hs). 

M a t  studies of depth cues, both in psychophysics and in 
computer vision, deal with the reconstruction of a three-dimen- 
sional scene from one isolated cue, the most intensively studied 
one being ~ t e r e o ' ~ , ' ~ , ~ ~ .  From the computational point of view, 
there also exist a number of studies on how to  evaluate tex- 
ture i n f o r m a t i ~ n ' . ~ ~ ,    ha ding'^-'^^^^, and r n o t i ~ n ~ . " ? ~ ~ .  There 
is, however, little knowledge of how the information from these 
cues can be integrated by the human visual system. 

1.2. Classification o f  D e p t h  Cues 

From the large number of cues, from which depth information 
may be inferred (for review see3) three types of cues may be 
distinguished: 

Primary depth cues that provide 'directn depth informa- 
tion, such as convergence of the optical axes of the two 
eyes, accommodation and unequivocal disparity cues. 

Secondary depth cues that may also be present in monocu- 
larly viewed images. These include shading, shadows, tex- 
ture gradients, motion parallax, kinetic depth effect, occlu- 
sion, 3D-interpretation of line drawings, structure and size 
of familiar objects. 

Cues to  flatness, inhibiting the perception of depth. Exam- 
ples are frames surrounding pictures, or the uniform texture 
of a poorly resolving CRT-monitor. 
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In the scope of computational vision, an  alternative approach 2. Methods 
t o  a classification of depth cues could rely on the observation 
that different cues require a different amount of preprocessing. 2.1. C o m p u t e r  Graph ic  Psychophysics  
For example, convergence and accommodation can be evaluated 
straightforwardly, whereas stereo disparity requires the previous 
extraction of some matching primitives from the image. T o  eval- 
uate occlusion or the apparent size of familiar objects, even more 
preprocessing is required and the objects may have to be recog- 
nized first. Since the recognition of objects might employ other, 
more easily accessible depth cues, it is clear that a complicated 
interaction of the different depth cues is to be expected. Only 
recently, attempts have been made to find general strategies for 
the integration of all this information in computer vision, e.g. 
by Poggio and Gamble2'. 

1.3. I n t e r a c t i o n  o f  D e p t h  C u e s  

In principle, there are several types of possible interactions be- 
tween different depth cues, which are not mutually exclusive: 

Accumulat ion:  Information from the different modules 
could be accumulated in a way similar to the (non-linear) 
summation known from spatial frequency channels (proba- 
bility summation). 

Veto: There can be unequivocal information from one cue 
that should not be challenged by others. In general primary 
depth cues should override secondary depth cues. 

Coopera t ion :  Especially in the case of poor or noisy cues, 
the modules might work synergistically. 

Disambiguat ion:  Information from one module can be 
used to locally disambiguate a representation derived from 
another module. Also, a global ambiguity of depth-order 
(convex-concave) can occur from cues like shadows or ki- 
netic depth4. 

Images of smooth-shaded ellipsoids and flat-shaded polygonal 
ellipsoidal objects were generated by ray-tracing techniques or 
with a solid modeling software package (S-Geometry, Symbolics 
Inc.). The smooth objects were ellipsoids of revolution, the axis 
of revolution being perpendicular to the display screen. Tex- 
tures and simple figures could be mapped onto the surface. The 
polygonal objects were derived from quadrangular tesselations of 
the sphere along meridian and latitude circles. These were elon- 
gated along an axis in the equatorial plane, the axis of elongation 
again being perpendicular to the display screen. Thus, the two 

Hierarchy:  Information derived from one cue may be used 
as raw da ta  for another one. 

1.4. R e p r e s e n t a t i o n  of D e p t h  - 

types of objects differed mainly in the absence or presence of 
edges. As compared to spheres, the objects were elongated by 
the factors 0.5, 1.0, 2.0, or 4.0. With an  original radius of 5 
cm, this corresponds to  depth values between 2.5 and 20 cm. In 
the following, aIl semi-diameters will be given as multiples of 5 
cm. Examples for and smooth- and flat-shaded ellipsoids with 
elongation 1 (sphere) and 4 are shown in Plate 1. 

The  imaging geometry used in the computations is shown 
in Fig. 1. It differs from the usual camera geometry in that the 
image is constructed on a screen which is not perpendicular to 
the optical axis of the eyes. Note that the imaging geometry and 
therefore the image itself does not depend on the fixation point 
as long as the nodal points of the two eyes remain fixed a t  the 
positions El and E,, respectively. Images were computed for a 
viewing distance of 120 cm and an interpupillary separation of 
6.5 cm. When a point 10 cm in front of the center of the screen 
is h a t e d ,  Panum's fusional area of h 1 0  min of arc corresponds 
to an  interval from 4.3 cm to 15.2 cm in front of the screen. 

In principle, there are many different ways to  represent depth in- 
formation. The  most straightforward way is to produce a depth- 
map of all the points in the field of view. Another way is to 
segment the scene into distinguishable objects and describe the 
shape of the objects in more abstract terms. For the latter way, 
different approaches have been tried in the last decade. For ex- 
ample,  mar^"^'^ proposed the 2iD-sketch which includes rough 
distances to surface patches as well as their orientations and 
Koenderink & van ~ o o r n ' ~ * ' ~  used the tools of differential ge- 
ometry and related their ideas to Gestalt theories of perception. 

For a psychophysical approach to  these questions, we stud- 
ied the depth perceived from computer generated images con- 
taining different combinations of depth cues. The shading and 
stereo cues could be either consistent or  contradictory. In con- 
trast to other studies of shape perception23~32 we did not try 
to describe the shape by measuring the surface orientation of Figure 1 Imaging geometry. Projection onto the x-%plane. Viewing 
the displayed objects but rather tried to  infer the shape from diBtance is 120 cm. El, E,: nodal poinb of the lefi and right eye, 
direct depth measurements of the surface of the objects. This r,p,tively, ~h~ distance between E, and E, is 6.5 cm. A point 
was done by interactively adjusting a depth probe to the surface P E R~ is imaged at P,' for the view from the left eye and at  Pi for 
of an  ellipsoidal object as described in the next chapter. the view from the right eye. 



For the computation of the smooth-shaded ellipsoids, a ray- 
tracing operation was performed. We write the equation of the 
ellipsoid as 

xTAx = 1, A =  ( " i b '  :), (I) 
0 c - ~  

where a, b,c denote the semi-diameters. We usually have a = 
b = 1. For a ray from E to PI, 

x = E + p(pl - E), p E R+, (2) 
this amounts to the solution for p of the quadratic equation: 

The image intensity at point P' was computed from this solution 
according to an ideal Lambertian surface illuminated by paral- 
lel light from the z-direction. Note that for a point x on the 
surface of the ellipsoid xTAx = 1, the surface normal is simply 
Ax/llAxl(. The viewing direction and the axes of illumination 
and of revolution of the ellipsoid were aligned. Since our objects 
were convex, no cast shadows or repeated scattering had to be 
considered. 

2.2. Experimental  Procedure 

We displayed either a pair of disparate imagea or one single 
(monocular) view of the object as seen from between the two eyea 
on a CRT-Color-Monitor (Mitsubishi UC-6912 High-Resolution 
Color-Display Monitor, Resolution (H x V) 1024 x 874 pixels; 
bandwidth f 3dB between 50 Hz and 50 MHz, short persistence 
phcephore). The disparate images were interlaced (even lines for 
left image and odd lines for right image) with a frame rate of 30 
Hz. Both disparate and monocular images were viewed through 
shutter glasses (Stereo-Optic Systems, Inc.) which were trig- 
gered by the interlace signal to present the appropriate images 
only to the left and right eye. The objects were shown in black 
and white with a resolution of 254 gray-levels. The background 
was colored in half saturated blue. 

Perceived depth was measured by adjusting a small red 
square-shaped (4 by 4 pixel) depth probe to the surface interac- 
tively (with the computer umouse"). This probe was displayed 
in interlaced mode together with the disparate images. Thus, 
the accommodation was the same for viewing both the surface 
and the probe. Measurements were performed at  45 vertices 
of a cartesian grid in the image plane in random order. The 
initial disparity of the depth probe was randomized for each 
measurement to avoid hysteresis effects. Subjects were asked to 
move the cursor back and forth in depth until it finally seemed 
to lie directly on top of the displayed ellipsoidal surface. After 
some training, subjects felt comfortable with this procedure and 
achieved reproducible depth measurements. All stimuli were 
viewed binocularly. Subjects included the authors (corrected 
vision) and one naive observer. 

2.3. D a t a  Evaluation 

For each set of 45 measurements we computed two characteris- 
tic numbers describing their shape by the following procedure. 
First, we performed a principle component analysis on all data 
sets. Variance of the perceived shapes was found mainly (0.95) 
along two directions in 45-space. The coefficient associated with 

these principle axes were wed to describe the results. Since they 
are derived from all 45 measurements of a set, their scatter is 
very small. The results were confirmed by other methods of 
evaluation, such as computing a least square fit of an ellipsoid 
to the data. 

3. Results 

Four different image types were tested: 

Flat-shaded ellipsoid displayed stereoscopically; disparity 
and edge information (D+E+)  

Smooth-shaded ellipsoid displayed stereoscopically; dispar- 
ity but no edge information (D+Eh)  

Flat-shaded ellipsoid presented to both eyea identically; no 
disparity, but edge information (D-Et)  

Smooth-shaded ellipsoid presented to both eyes identically; 
neither disparity nor edge information (D-E-). 

Each image type was tested for four different elongations (0.5, 
1.0, 2.0, 4.0). The subjects did not know the elongation of 
the displayed objects. Altogether, 253 measurements were per- 
formed, each consisting of 45 adjustments of the depth probe to 
the perceived surface. Results were consistent in all three sub- 
jects with differences mainly in the standard deviation. The 16 
plots of Fig. 2 show the averaged results of all subjects for the 
four types of experiments and the four different elongations. 

3.1. Classification of t h e  perceived objects  

In Fig. 3, the first and the second principle component of the 
measured surfaces are shown, together with two analytical sur- 
faces which allow an appropriate interpretation of these compo- 
nents. The first principle component is very close to an ideal 
ellipsoid (or sphere) which appears in Fig. 3c. A model of the 
second principle component is derived from the depth gradient 
of the sphere which, in cylindrical coordinates, is z = T I P .  
This 45-vector is orthogonalized (Gram-Schmidt) with respect 
to the sphere. The result is shown in Fig. 3d; it provides a 
reasonable fit of the second component. In what follows, we 
will use this theoretical frame derived from the ellipsoids depth 
and depth gradient rather than the actual principle components. 
The corresponding coefficients will be called perceived elongation 
and deformation, respectively. 

The fact that the perceived surfaces can be classified in 
terms of the two shapes shown in Fig. 3c,d reflects the oc- 
currence of truncated and conical shapes in the original data, 

Fig. 2. When depth is inferred from shading or intensity-based 
stereo, the object appears more conical than an ellipsoid, the 
depth level of the periphery being pulled towards that of the oc- 
cluding contour. In the case of intensity-based stereo, this may 
be due to a lack of matching primitives in the periphery of the 
smooth ellipsoids, or to problems related to the depth gradient. 



SHADING WITH STEREO SHADING WITHOUT STEREO 
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Figure 2 Perce~ved surfaces (depth not drawn to scale) For rtimuli, cf. Plate la,b. Each plot show8 the average of 6 - 9 
sessions from three subjecte. Perceived depth decreases with the following sequence of cue-combinations: shading, intensity- 
baaed and edge-based stereo (D+E+) ;  shading and intensity-bwd stereo (D'E-); shading (D-E-); contradictory shading 
and edge information (D-E'). The elongation of the displayed objects is denoted by c. 

3.2. Accumulation of  D e p t h  Information 

The perceived elongation in the consistent images depends on 
the amount of information available. As can be seen from Fig. 
4, the perceived elongation is almost correct when shading, in- 
tensity-based and edge-based disparity informations are avail- 
able (D+E+).  In the case of smooth-shaded disparate images 
(Dt E -  ), the edges are missing and depth perception is reduced. 
When shading is the only cue (D-E-), perceived elongation is 
almost independent from the displayed elongation (but see Sect. 
3.5). We could not test the case of intensity-based stereo with- 
out shading information for obvious reasons. From this, we can 
draw two conclusions: 

a Perceived depth is the greater, the more information is 
available. That is to say, the information from different 
cues is accumulated. 

a If no edges are present, intensity-based stereo can still p r e  
vide important information. This might be used for surface 
interpolation for images with sparse edge informatione. 

3.3. Edge-Based Stereo Vet- Shading 

In experiment D - E t ,  two identical images (no disparity) of 
flat-shaded ellipsoids (edges) were shown. Although shading 
alone provided some depth information as shown in experiment 
D-E-, the fact that edges occurred at zero disparity was d e  
cisive, The perceived depth did not vary with the elongation 
suggested by the shading (and perspective) information and 
took slightly negative value8 which, however, were not signifi- 
cantly different from zero. Since the perceived depth does not 
change with elongation, we may conclude that edge-based stereo 
matching overrides shading. This is an example of the v e t e  
relationship mentioned in the introduction. This finding is con- 
firmed by an additional experiment where a small stereo marker 
was attached to the smooth surface, cf. Sect. 5.1. Note, how- 
ever, that this veterelationship might occur only in the locally 
derived depth map. The global percept of the polygonal ellipsoid 
is not flat but convex. 



PRINCIPLE COWCMENTS 

ANALYTICAL SURFACES 

Figure 3 Classification of the prceived aurfacea. a,b. Principle com- 
ponents. a. First component, XI = 94%. b. Sewnd component, 
Xz = 1.4%. c,d. Analytical surfaces that can be used to interpret 
the principle component data. c. An ideal ellipsoid is almoet iden- 
tical to the first component. The associated coefficient is used as a 
measure of the peruived elongation. d. The depth gradient of the 
ellipsoid leads to an analytical model of the second component. The 
associated coefficient describes the deviation of the perceived surface 
from an ellipsoid; it will be called deformation Negativedeformations 
correspond to a more conelike percept, positive to a more cylindrical 
surface. 

3.4. Intensity-Based Stereo 

If no edge information is available, depth can still be perceived. 
One could argue that this depth perception is due to shading 
information that is ale0 present in the images D+E-. A com- 
parison of the results (Fig. 4) for smooth-shaded images with 
and without disparity information, however, establishes a sig- 
nificant contribution of intensity-based disparity information. 
The curves for D+E- and D-E- are significantly separated 
for all elongatiom except 0.5. One could argue that even in the 
smoothly shaded imagea one salient edge is present, namely the 
occluding contour. However, this boundary was placed in the 
zero-disparity plane in all experiments. It therefore does not 
provide depth information. Note that the self-shadow boundary 
coincides with the occluding contour since illumination was from 
the front. A control experiment with oblique lighting directions 
confirmed the findinge described here (cf. Sect. 5.1). For some 
general remarks on images without zero-crossings, see Sect. 4.4 

3.5. Intensity-Based Stereo Does Not  Veto Shading 

If stereo matching can be performed without edge information, 
the depth cues in the experiment with smooth-shaded non-dispa- 
rate images (D-E-) are contradictory in the sense that shading 

STEREO, WITH EDGES 
" . SMOOTH 

,WITH 
EDGES 

Figure 4 Perceived elongation and deformation. top: Depth percep 
tion improves as the number of available cues increases. The signifi- 
cant separation of the second and third curve (smooth shading with 
and without disparity) illustrates the influence of disparity informa- 
tion even in the absence of edges. bottom: Deformation (cf. Fig. 
3b). In the experiments with disparate edges, the coefficients are neg- 
ligible. In all ;ther experinients, the coefficients are negative, i.e., a 
more conical surface is perceived. 

suggests some depth where- stereo does not. A similar contra- 
diction occurs in flat-shaded non-disparate images when edge- 
based stereo is considered. It appears that intensity-based stereo 
does not veto shading information, as did edge-based stereo in 
experiment D-E+. The contradiction, however, may be the 
reason for the saturation in the perceived depth from shading 
(Fig. 4). 

4. Discussion 

4.1. Images without  Zem-Croesingr 

For the discussion of intensity-based stereo, the absence of zero- 
crossings in the Laplacians of images of smooth ellipsoids is cru- 
cial. First, we show that for an orthographically projected image 
of a sphere with Lambertian reflection function and parallel il- 
lumination, zero-crossings are missing. 

Consider a hemisphere given in cylindrical coordinates by 
the parametric equation 

x = m. (4) 

In the special case of a sphere, the surface normal simply equals 



the radius, i.e., 

n = ( r  cos cp, r sin cp, m). (5) 
Without loss of generality, we may assume the illuminant direc- 
tion t o  be  1 = (0,0,1). For the Lambertian surface, we obtain 
the luminance profile 

I ( r )  = I. ( I .  n)  = I. m, (6) 
where lo is a suitable constant, i.e., the image luminance is again 
a hemisphere. For the Laplacian of I ,  we finally obtain 

This is a non-positive function o f t ,  with VZI(0)  = 0, i.e., the 
Laplacian of I has no zero-crossings. 

Unfortunately, this result does not hold for ellipsoids with 
c # 1. A similar computation for an ellipsoid with elongation c 
yields 

which reduces to Eq. 6 for e = 1. In Fig. 5a, where luminance- 
profiles are plotted for the elongations c = 0.5, 1.0, 2.0, and 
4.0, i t  can be seen that for e 2 2 the curves are no longer con- 
vex. Tha t  is to say that the second derivatives of these profiles in 
fact have zero-crmsings, and a similar result holds for the Lapla- 
cians. However, when filtering with the Laplacian of a Gaussian 
or with the difference of two Gaussians is considered, it turns 
out that these zero-crossings are insignificant for the elongations 
used here. Pixel-baaed convolutions failed to  show the 'edges" 
unequivocally, and even a Gaussian integration algorithm run 
on the  complete function rather than on the sampled array pro- 
duced no zero-crossings beyond the single-precision truncation 
error. We therefore conclude that the slight zero-crossings in the 
unfiltered Laplacian of our luminance profiles do  not correspond 
to significant edges*. 

4.2. R e c e p t o r  Non-Linear i t ies  a n d  I m a g e  
I n t e r p r e t a t i o n  

Since the visual system does not work directly on image inten- 
sities but on spatially and temporally filtered and compressed 
(non-linear) signals, the effects of early visual processing in the 
retina have to  be taken into account. Signal compression alone 
can significantly change image interpretation. Non-linearity in 
photoreceptors, for example can lead to  an  illusiary motion per- 
ception for time-varying signals that do not entail motion in- 
formations. In analogy, these non-linearities could induce edge 
information that is not present in smooth-shaded images. An 

additional source of zero-crossings not present in our image ar- 
rays is the non-linearity of the color monitor. If arbitrary non- 
linearities are considered, zero-crossings can be induced in every 
non-constant image, however smooth (e.g. by discretization). 
We therefore recalibrated the CRT to compensate either for the 
CRT non-linearity only, or for the non-linearities of both the 
CRT and the retina. 

'However, the absence of edges should be verified using other edge 
detection mechanisms as well. 

Retinal non-linearities in both vertebrates6sZ4 and inverte- 
bratesl6have been modeled by saturation-type characteristics of 
the form 

I 
j ( O =  ( 9 )  

where 10.5 is a constant, given by the luminance which produces 
50% of the maximal excitation. Among other things, de- 
pends on the adaptation of the eye. We repeated experiments 
D+ E- and D- E - ,  i.e., those involving smooth-shaded images, 
with compensation for either monitor non-linearities or the com- 
bination of monitor and retina non-linearities with four different 
choices of the constant 10.5. The results did not show significant 
differences from those obtained without corrections. 

Figure 5b shows the luminance profile for an  ellipsoid with 
elongation 4.0, and the effect of a non-linearity given in Eq. 9 
for a number of choices of 10.5. It turns out that in our ex- 
periments, the presumed receptor non-linearities tend to  cancel 
the small zero-crossings rather than to create new ones. This 
is further support for our assumption that edges cannot be ex- 
tracted from the smooth-shaded images. Mechanisms relying 
on zero-crossings either in the original image or in its first neu- 
ral representation cannot account for the intensity-based stereo 
performance found in our experiments. 

LUMINANCE 
- C .  --- c . 
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Figure 5 Luminance prufles. a. Luminanw of ellipsoids with differ- 
ent elongations. The functions differ from those given analytically in 
Eq. 8 only in a slight distortion of the x-axis which is due to perspec- 
tive rather than orthographic projection. Note that for elongations 
larger than 2.0, inflections occur. b. Simulated perceived brightness 
profiles for the ellipsoid with elongation 4.0 (the one with the most 
pronounced inflections in Fig. 5a). Receptor characteristics are ac- 
counted for by the non-linear compression described in Eq. 9. The 
non-linear compression tends to cancel the inflections (which might 
give rise to zerc-crossings) rather than to enhance them. 



5. Relation to Computational Studies 

5.1. Edge-Based vs Intensi ty-Based S t e r e o  

The major finding of this study, a s  far as single depth modules 
are concerned, is the strength of depth perception obtained from 
intensity-based stereo. In computational theory, most studies 
have focused on edge-based stereo algorithms (for review seez7). 
This is due t o  the overall superiority of edge-based stereo which 
is confirmed by our finding that edge-based stereo gives a more 
reliable depth estimate than intensity matching. However, in the 
absence of edges and in surface interpolation, gray-level dispar- 
ities appear to  be more important than is usually appreciated. 

A number of additional experiments was performed to con- 
firm the involvement of intensity-based stereo and to  study its 
relationship to edge-based stereo. First, we measured smooth- 
shaded ellipsoids (D+E-,  D-E-)  with oblique directions of il- 
lumination. Light sources were placed in the upper left and 
the lower right in front of the object (f 14" azimuth and ~ 1 3 . 6 "  
elevation from the viewing direction). The results of these exper- 
iments are depicted in Fig. 6. Note that no depth values were 
determined in the dark (shadowed) parts of the images. The 
results confirm the original finding that intensity-based stereo 
is present and is much stronger than pure shape from shad- 
ing. Furthermore, when illumination is from the lower right, 
stereo prevents depth inversions which occasionally occurred in 
the non-disparate images. One has to keep in mind, however, 
that in the case of oblique illumination, the self-shadow bound- 
ary provides some edge information which improves depth per- 
ception in the stereo images and inhibits it in the non-disparate 
cases. Nevertheless, these data show that our original findings 
were not critically dependent on the special lighting conditions 
used. 

Ln a second series of control experiments, we studied the in- 
teraction of intensity-based and edge-based stereo. In contrast 
to the original measurements with flat-shaded ellipsoids where 
edge-information was distributed all over the surface, we placed 
a small dark ring (radius 7.5 mm, contrast 0.11) a t  the tip of 
the ellipsoid. The stereo disparity of this ring could be chosen 
independently from the disparity of the shaded surface. Three 
cases were tested: consistent disparities in ring and shading, no 
disparities in ring and shading, and a disparate ring in front of a 
non-disparate shaded image. The first two cases (left and right 
columns in Fig. 7) confirm the earlier findings of accumulation 
of depth information and vetoing. Although pure shape from 
shading yields some depth perception in the periphery, it is ve- 
toed in the center by the non-disparate edge-information. The  
third case, a stereo ring in front of a non-disparate smooth image 
(middle columns in Fig. 7) provides information on the mecha- 
nisms involved in intensity-based stereo. For the elongations 1.0 
and 2.0, the results are equal to those obtained with full stereo 
information, i.e. one salient stereo token in the center of the ob- 
ject (together with shape from shading) is sufficient to yield the 
same percep,tion as a complete intensity stereo pair. Since our 
token coincides with the intensity peak, one could argue that  
intensity-based stereo is achieved by intensity peak matching. 
However, for the elongation 4.0, it seems that a single stereo 
match in the center of the object is not sufficient t o  produce 
the same percept as full intensity disparities. The difference 
between the results for the two subjects corresponds to  an am- 
biguity which was experienced by both observers. For the large 
elongation, the object appears to  consist of a solid base with 
about half the depth of the ring and a "glass domen onto which 
the ring is drawn. While HAM adjusted the depth probe to  this 
'subjective surface', HHB measured the solid base. We conclude 
that a t  least for large disparities, one single token such as the 
intensity peak is not sufficient to yield the full depth percept. 

STEREO 
Light Source: 

I NO STEREO 

Figure 6 Percetued surfaces for obltque ~ l lum~na t tons  (Format as in Fig.3) For stimuli, cf. Plate Ic. Illumination from the 
upper left (first and third column) and from the lower right (second and fourth column). No depth was perceived in the 
self-shadow regions. The data confirm the relevance of intensity-based stereo and show the independence of our findlngs 
from the light~ng cond~tions. 

Upper Left 1 Lower Right Upper Left 1 Lower Right 
r 



Mayhew & FrisbyZZ propose a modification of the Marr-Poggio 
modelI9 where matches in the twoimages may occur before edge- 
detection is complete. In particular, they discuss peaks in image 
irradiance as additional matching primitives. However, it ap- 
pears that their experimental data can be explained with level- 
(rather than zero-) crossings in the Laplacian of the image irra- 
diance, or with a shift of the zero-crossings due to some prior 
filtering as well7. On the other hand, our experimental data 
seem to support the notion of intensity peak matching if dispar- 
ities are not too large. For large disparities other mechanisms 
have to be taken into consideration. 

In another model, Grimsonlo makes explicitly use of binocu- 
lar shading differences for the interpolation of surfaces between 
good matches (i.e., between edges). Unfortunately, his model 
is not directly comparable to our study for the following rea- 
sons: First, the information that Grimson's algorithm recovers 
from shading is the surface orientation along zero-crossing. In 
our experiments with smooth ellipsoids, the only zero-crossing 
is the occluding contour of the object where the surface orien- 
tation does not depend on the total elongation of the object; it 
is always perpendicular to the image plane. Second, Grimson's 
model requires a specular component in the reflectance function 
of the object. Until now, our experiments explored only purely 
Lambertian surfaces. We shall, however, include different re- 
flectance functions and lighting conditions in future studies. At 
any rate, it is an interesting result that human observers are 
able to evaluate binocular shading information in the Lamber- 
tian case. From this we may conclude that a mechanism different 
from the one proposed by Grimson is involved. 

There are different stereo algorithms that do not rely on match- 
ing primitives at  all. For example, Gennert & Horns have devel- 
oped a new intensity-based stereo matching method that makes 
use of a spatially linear transformation to relate gray-levels in 
the two images. In future work, we are planning to relate these 
studies to psychophysical investigations as well. 

6.2. Shape  from Shading 

The case of pure shape from shading is studied in our experi- 
ment D - E - .  Ikeuchi & Horn12 provide a computational theory 
of shape from shading. Their algorithm starts out from the 
occluding contour of a given object and successively computes 
first the surface-orientation and subsequently the depth within 
the surface. As an example, Ikeuchi & Horn discuss the image of 
a sphere with a Lambertian reflectance function, illuminated by 
parallel light from the viewing direction. This example can be 
directly compared to our experiment. As can be seen from their 
Fig. 15, the algorithm converges fastest in the vicinity of the 
occluding contour, i.e., in the periphery of the sphere, whereas 
errors persist for some iterations in the center. Eventually, how- 
ever, the correct result is recovered. Interestingly, although the 
same dependence of the error on the position is found in our ex- 
periments, the result that the human observers eventually derive 
is different: in our experiments, depth from shading ia signifi- 
cantly underestimated, although the observation time was not 
limited. 

Ellipsoid Stereo No Stereo 
Ring Stereo , Stereo 

HAM+HHB I HAM 

No Stereo 
No Stereo 
HAWHHB 
I 

Figure 7 Perceived sur faces  f o r  smooth  shadang combmed  wtth a small  stereo marker  (Format as in Fig. 3) Edge-based 
stereo information cancels shape from shading (right column). When the marker has the correct disparity. intensity-based 
stereo does not further improve the percept, at least for small elongations. For the elongation 4 ,  the data are ambiguous 
(For further discussion, see text ) 



The algorithm of Ikeuchi & Horn does make some errors when 
the required knowledge on the light source position and the re- 
flectance properties of the surface are not known exactly. The 
types of errors reported from numerical experiments are asym- 
metric distortions for false assumptions of the light source pmi- 
tion and overestimation of depth when false reflectance functions 
are assumed. In our psychophysical studies, the main erron 
were of different types. As can be seen from Figs. 3,4, errors 
included underestimation of elongation and the deformation of 
the ellipsoidal shape to a more cone-like percept. Asymmetric 
deformations did not occur even for the obliquely illuminated 
objects. 

6.3. H o w  Useful  is S h a d i n g  as a C u e  for  D e p t h ?  

Todd & M i n g ~ l l a ~ ~ p ~ ~  used psychophysical techniques to  inves- 
tigate how observes analyze shape by use of shading cues. Ac- 
cording to their results, the human observer makes errors up to 
50% in estimating shape from shading. A similar result has been 
reported ina, showing that shading of a cylindrical surface could 
deviate substantially from natural shading before a change in 
the perceived shape can be detected. This is well in line with 
our psychophysical findings which suggest that non-disparate 
shading is a poor cue to  shape. It is, however, in contrast t o  the 
intuition of artists who use shading as a primary tool to depict 
objects in depth. 

Is i t  possible that we are not asking the right question when 
we try to analyze shape with psychophysical tools? Obviously 
everybody can describe the shape of a vase in a photograph 
even without any texture on it. In principle, shading can pro- 
vide only information about surface orientation and not absolute 
depth measurements. But as Todd and Mingolla have shown, 
a long training phase is required for subjects to point out the 
normal surface on simply shaded rigid bodies. And even after 
the training phase subjects make a lot of errors. A precise mea- 
surement of surface-slant and tilt does not seem to be necessarv 
for humans to  describe shape. If we do  not use slant of surfaces 
(2  iD-sketch) it s e e m  likely that we use other cues to  construct 
a depth-map of an  object. 

In the study reported here, we tried to  answer this question 
by measuring the perceived depth directly with a stereoscop- 
ically viewed depth probe. This seems to  be a much simpler 
task for the subjects and indeed we did not need a long training 
phase to  obtain consistent depth measurements. Surprisingly, 
this method worked for shading cues alone (no disparity). This 
is not obvious, since it involves a cross comparison of suppoa- 
edly more or less independent modules and also comparison of 
local (depth probe) versus global (shading) information. On the 
other hand, our depth probe requires binocular viewing even for 
non-disparate images (pure shape from shading). The rivalry be- 
tween shape from shading and intensity-based stereo (cf. Sect. 
3.5) may be partly responsible for the poor shape from shad- 
ing performance. To avoid this we are currently developing a 
paradigm to  measure shape from shading monocularly. With 
this paradigm we can analyze also other cues, eg. texture gra- 
dients and occluding contours (see Plate Id)  which would show 
similar problems with a local stereo depth probe. 

5.4. In t e rac t ion  o f  D e p t h  M o d u l e s  

Concrete predictions as to what types of interactions should oc- 
cur between different depth cues are still difficult t o  obtain from 
computational studies. Therefore, we hope that psychophysical 
studies will in turn provide useful hints for computational inves- 
tigations as to how an integration of depth information could 
work. In this section, we try to relate our results to some of the 
emerging concepts of visual integration. 

Accumulation is a simple type of interaction that can be 
implemented in a number of different ways. Consider for exam- 
ple Marr's 2)D-sket~h""~. Information on surface orientation 
can be collected from different modules such as shading, tex- 
ture (density- and deformation-gradient), or 3D interpretations 
of line drawings. I t  seems natural that performance improves 
when more information is available. 

Similar results should be obtained with the approach of reg- 
ularization theory30. Originally introduced as a unified theory 
of a number of different modules in early vision, it is equally 
suited to model the integration of different modules by joint op- 
timization of different sets of data3'. Depending on the choice 
of the particular loss-functions, the described interaction types 
of accumulation and cooperativity are likely to  occur. In fact, i t  
should be possible to infer the form of the minimized functional 
from the particular type of summation found psychophysically 
between the involved modules. 

More 'asymmetric' types of interaction, such as veto or dis- 
ambiguation, can be expected from models of surface interpo- 
lationg that start with reliable depth information typically ob- 
tained from disparate edges and employ other modules, espe- 
cially shading, t o  improve the interpolation between the sites 
of the edges (R. Wildes, pers. communication). The combi- 
nation of edge and shading information is thus similar t o  the  
combination of occluding contours and shading i d 2 .  A similar 
relationship has been assumed between edge-based stereo and 
binocular shading (intensity-based stereo)''. 

Recently, Poggio2s proposed another formalism for the in- 
tegration of different depth modules, based on a probabilistic 
approach to  optimization by non-convex f u n ~ t i o n a l s * ~ ~ ~ ' .  T h e  
advantage of this coupled Markov Random Fields approach over 
regularization theory lies in the possibility of simultaneous seg- 
mentation and (piecewise) smoothing of the image. As far as the 
experiments discussed here are concerned, the results should not 
be significantly different from those of regularization. However, 
if other cues such as occlusion are considered, more complex 
types ofinteractions are to be expected from the coupled Markov 
Random Field approach. 
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