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Abstract

We outline a new, parallel and fast algorithm for com-
puting the optical flow. The algorithm 1s suggested by a
regularization method that we call “constraint method”.
The method, based on a theorem of Tikhonov, enforces
local constraints and leads to efficient, parallel algo-
rthms. The specific constraint ezplosted by our algo-
rithm can be shown to correspond, in its most general
form, to 3-D rigid motion of planar surfaces. An initial
segmentation of the motion field can be obtained from
the optical flow field generated by the algorithm. We also
suggest an iterative scheme that can provide fast, ap-
prozimate solutions and refines them subsequently. We
discuss the implementation of the algorithm on the Con-
nection MachineT™ system and its near real-time per-
formance on synthetic and natural images.

1. Introduction

The computation of motion is an important module of
early vision. It is potentially useful for computing the
3-D structure of surfaces, for segmenting a scene into
objects and as a control module for navigation. The
3-D motion field, however, or even its 2-D projection,
cannot be directly measured from the time sequence of
images. Much effort in recent years has been invested
in analyzing ways to compute the optical flow - the 2-D
field of motion of brightness in the image. A common
assumption is that the optical flow, suitably defined, is
a very close approximation to the 2-D projection of the
true 3-D motion field. Verri and Poggio (these Proceed-
ings) argue against this assumption and the related use
of the optical flow to obtain a precise quantitative esti-
mate of 3-D structure and motion under general condi-
tions. They argue also, however, that qualitative prop-
erties of the optical flow are very useful for segmenting
the scene into different objects and for providing infor-
mation about the type of motion and the 3-D structure,
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and that they are more robust than quantitative esti-
mates. Notice that a closed-loop control system does
not need accurate estimates. Furthermore, Verri's anal-
ysis suggests that the precise definition of optical flow is
not critical as long as it preserves the qualitative prop-
erties of the 2-D motion field.

In this paper we outline a new, robust and fast al-
gorithm for computing a version of the optical flow that
was suggested by a regularization method that we call
“constraint method”. The algorithm has been imple-
mented on the Connection MachineT™ system. Com-
paratively little work in the area of motion computation

*has made use of sequences of real images, because of

technical limitations in acquiring and processing them.
Our algorithm, which runs in times that are typically
of the order of a few seconds, is routinely used with im-
age sequences grabbed by the Vision machine's eye-head
system (Poggio and staff, these Proceedings).

2. The algorithm

We can formulate a first algorithm in terms of the sim-
plest possible assumption, that the optical flow is lo-
cally uniform. This assumption is strictly only true for
translational motion of 3-D planar surface patches par-
allel to the image plane. It is a restrictive assumption
that, however, may be a satisfactory local approxima-
tion in many cases. Let Ei(z,y) and Eirad(z,y) rep-
resent transformations of two discrete images separated
by time interval At, such as filtered images or a map
of the intensity changes in the two images (more gen-
erally, they can be maps containing a feature vector at
each location z,y in the image). We look for a motion
displacement (also discrete) y = (v, vy) at each discrete
location z,y such that

”E‘(I,y)—E‘.‘.A‘(I+U:At,y+v,At)Hp.lch, = min (1)

where the norm is over a local neighborhood centered
at each location z,y and y(z,y) is assumed constant in
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the neighborhood. Equation (1) implies that we should
look at each z,y for y = (vg,v,) such that

/ 1Bz, y) Bewad(z + v Aty + v, A)|dzdy  (2)
Patch,

is maximized. Equation (2) represents the correlation
between a patch in the first image centered around the
location z,y and a patch in the second image centered
around the location z + vy Aty + vyAt.

This algorithm can be translated easily into the
following description. Consider a network of processors
representing the result of the integrand in equation (2).
Assume for simplicity that this result is either 0 or 1.
{This is the case if E, and E;+as are binary feature
maps.). The processors hold the result of multiplying
(or logically “anding”) the right and left image map for
different values of z,y and v, v,. The next stage, cor-
responding exactly to the integral operation over the

patch, is for each processor to count how many pro-
cessors are active in an z,y neighborhood at the same
disparity. Each processor thus collects a vote indicat-
ing support that a patch of surface exists at that dis-
placement. The last stage is to choose y(z,y) out of
a finite set of allowed values that maximizes the inte-
gral. This is done by an operation of “non-maximum

suppression” across velocities out of the finite allowed

set: at the given z,y, the processor is found that has
the maximum vote. The corresponding y(z,y) is the
velocity of the surface patch found by the algorithm.
This algorithm is similar to the stereo algorithm imple-
mented by M. Drumbheller and T. Poggio (1986) on the
Connection MachineT¥ system.

The algorithm will not find, in general, the 2-D pro-
jection of the true 3-D velocity fleld. This will happen
only when the features used for matching correspond to
markings on the 3-D surfaces and when either the fea-
tures are sparse (no ambiguity) or the disambiguation
step (the voting and non-maximum suppression stage)
finds the true correspondence (i.e. the underlying as-
sumptions are satisfied). Even when the result is not
the true motion field, the algorithm will usually pre-
serve its most important qualitative properties.

3. The constraint method

The algorithm just described was suggested by a reg-
ularization method (Poggio and Verri, in preparation)
that follows directly from some results of Tikhonov and
the discrete nature of the image data. We outline here
the basis of the constraint method and then discuss how
it is implemented by our motion algorithm. We post-
pone a more formal discussion to a later paper.
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3.1. Tikhonov Lemma

As pointed out by Poggio and Torre (1984} many prob.
lems of early vision are ill-posed. For example solutions
to problems such as surface reconstruction, computation
of visual motion and depth from stereo are not unique or
they are not stable (for instance for edge detection and
structure from motion). A lemma by Tikhonov and Ar.
senin (1977) suggests how to regularize these problems
by exploiting the discrete nature of the image data and
the boundedness of sought solutions (for instance depth
of surfaces or velocity values).

Let us consider the problem of solving the equation

Az =y (3)

for £ € X, X a metric space. Let yE€Y,Y amet
ric space, and let A be an operator mapping D(A4) C X
onto R(A) C Y. In many applications it is required that
the solution z to (2.1) i) exists, ii) it is unique and i21) it
depends continuously on y. A problem whose solutions
satisfies i),13) and ii1) is said to be well-posed; otherwise
it is said to be ill-posed. It is clear that the solution does
not exist if y ¢ R(A) and that it is not unique if A is not
injective. The solution depends continuously on y when
the inverse of A, A™}, is continuous. Let us assume that
the solution to (2.1) is given by

I = ;gi; Az - yll (4)

Sufficient conditions for the well-posedness of (3)
{or (4)) are provided by the following lemma by
Tikhonov:

Lemma Suppose that the operator A maps a compact
set FC X ontotheset UCY. If A: F — U is contin-
uous and one-to-one, then the inverse mapping A|;! is
also continuous.

The uniqueness is obviously guaranteed by the fact
that A is one-to-one while both the existence and the
stability of the solution rely upon the compactness of
the set F. Let us assume that X (or F') is a closed and
bounded subset of R™. Therefore X (or F') is compact.
Hence, if the solution belongs to a closed and bounded
set in R™ and A is one-to-one, the problem to solve is
well-posed. Since every early vision problem is defined
on a n-dimensional space (where n is the number of pix-
els), sufficient conditions for the well-posedness of these
problems can be given setting a priors bounds on the
solutions. In the specific case of our motion algorithm
the compactness assumption is satisfied by restricting
the input and output spaces to be discrete and finite
(only a small set of discrete velocities is allowed).



[t is important to stress that in several early vision
problems the solution is not unique. For example the
same 2-D motion field can be generated by the projec-
tion of different kinds of 3-D motion fields. This corre-
sponds to the problem of solving equation 2 when A is
not one-to-one. In this case the lemma is not sufficient
since it does not guarantee uniqueness. Let us assume,
however, that the solution is still bounded: only a fi-
nite number of solutions, then, are possible due to the
quantization. Uniqueness can be achieved by giving a
set of rules that allow the selection of at most one value
(possibly none) for the solution at every point: such
a strategy obviously will always succeed due to the fi-
nite number of possible values at each location. It is
worth noting that the solution could actually turn out
to be defined only in some locations, corresponding to
the selection of no value, The set of rules correspondsin
our algorithm to the voting followed by non-maximum
suppression,

3.2. Equivalent physical constraints

The algorithm can be extended to a less restrictive con-
straint: that the optical flow is locally linear or even
quadratic instead of simply constant. The quadratic
case corresponds to a very simple constraint on 3-D

motion and surfaces, under the assumption that the op-
tical flow is sufficiently close to the 2-D motion field.
Under this assumption we can use the following result
due to Waxman (1986): the velocity field on the im-
age plane originated by arbitrary, rigid 3-D motion of
a planar surface patch is quadratic. In this way, the al-
gorithm exploits the physical assumption that surfaces
are—at least relative to the image resolution—locally
planar (the “allowed” world is thus a world of polyhe-
dral solids, albeit with a very high number of faces).
[t is worth noting that our initial experiments indicate
that the quadratic and even the linear assumptions do
not change significantly the results obtained with the
“constant constraint” algorithm.

3.3. An iteration scheme

The implementation of the quadratic patch constraint
is computationally expensive, even for coarse discretiza-
tion of the velocity values. Though it may be unneces-
sary to consider in practice quadratic patches, it is of in-
terest to develop a scheme that allows for a fast approx-
imate solution based on the constant field assumption
that is then refined in terms of higher order assumptions
such as linear and quadratic patch. [t is natural to con-
sider an iteration that first finds the best “constant”
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solution, then refines it with the best “linear” correc-
tion and finally finds the best “quadratic” correction.
In general, the best quadratic correction does not pro-
vide the best quadratic approximation. Results however
about the estimation of polynomial operators (see for
instance Poggio, 1975, theorem 4.2) suggest that iterat-
ing the procedure should converge to the best quadratic
approximation. [n this way we can find the best “con-
stant” estimation of the optical flow and then refine it
by successive iterations that cycle from the lowest to the
highest order and to the lowest again.

4. The Connection Machinel
implementation

The time At between images is small, on the order of
one video time frame (1/30th second). During this short
time, the appearance of a moving object can change due
to its own motion, camera motion, light source motion,
or all three, among other effects (see Verri and Poggio,
this Proceedings). However, when the local intensity
variation in the surface albedo is sufficiently large, the
errors introduced by these effects are minimized. For
this reason, we use the output of an edge detection step
as the input to later stages of optical flow computation.
Both the Laplacian of a Gaussian and Canny’s edge de-
tector (Canny, 19868) have been used with good results.
Let E; be an image containing a description of the fea-
tures at time t. Features can, for example, describe the
sign of the z and y components of the image gradient
at edge points.

The comparison of features in E; and E.+a, is per-
formed for each y and is recorded at each z,y in a match-
ing map M(y), which identifies whether the feature at
Ei(z,y) found a match in Eyya4(z,y) when displaced
by (vs,vy)At in the image plane. This process is spa-
tially parallel, operating at all z,y simultaneously, for
each y in the discrete set that is allowed. The process
iterates over this range, generating the matching map

M(y).

The integration stage acts only upon the match-
ing maps M(y). By assumption, we are looking for the
optical flow which is locally constant. We choose the
flow y which, in a neighborhood N around z,y, max-
imizes the number of matches. Again this procedure
iterates over all y in the bounded range. We identify a
displacement only at those locations z,y at which the
maximum vote is unique; ties are ambiguous and are
eliminated. The result is a map of the optical flow at
locations in the image at which a moving feature has
undergone unambiguous motion.



The comparison and integrated stages could be
merged into one stage, in which case we would be di-
rectly implementing a binary correlation scheme on the
feature maps.

The constraint method can also be used to ex-
ploit more sophisticated and less restrictive assumptions
about surfaces. We could, for instance, assume that the
motion surface is locally planar, or that the patch is
locally quadratic. These more general assumptions can
be implemented by changing appropriately the geome-
try of the neighborhoods over which the voting takes
place. We have implemented the iterative scheme for
determining the best linear correction (linear in z,y)
to the constant solution., There, the separation of the
two stages is crucial for a fast implementation; for cor-
rections that are not constant, the voting neighborhood
no longer corresponds to a simple patch in the match-
ing map of just one displacement. Also, the coir sarison
operation can be done once and used for all la:er inte-
gration stages.

Figure 1. A disc with random texture is embedded in a
background pattern with the same texture. The shape of
the object becomes immediately visible when foreground and
background pattern are moving with different speeds (Figure
2).

4.1. Examples

We used both synthetic and real images for testing
the implementation of the algorithm on the Connec-
tion Machine?™ system. The algorithm requires as
much structure as possible in the images to be ana-
lyzed. In the synthetic images we produce sufficient
structure by using random textures for the foreground
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Figure 2, Needle diagram of the motion field computed by
the constraint method. A disc with random texture is mqy.
ing with half speed in the same direction as the backgroung.
The algorithm computes consistent velocities for foregroung
and background motion.
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Figure 3. Needle diagram of the motion field computed by
the constraint method. A disc with random texture is ro-
tating clockwise at 2 degrees: per time step in front of a
stationary background.

and background patterns ! (Figure 1). Since the fore-
ground has the same texture as the background it re-
mains invisible to the human observer as long as it 13
not moving. As soon as either the foreground or the
background pattern begins to move the object becomes
immediately visible. The needle diagrams of the opti-

'To prevent antialiasing in the motion computation output
the images were appropriately bandpass filtered



cal Alow fleld in Figure 2 show that the algorithm suc-
cesfully computes consistent motion if foreground and
background patterns move with different speeds. In Fig-
ure 3 the disc-like foreground pattern is rotating clock-
wise in front of a stationary background. Again all mo-
tion vectors show locally consistent direction and mag-
nitude of velocity for the foreground pattern. Figure 4
shows that the Connection Machine™ implementation
of the constraint method is able to compute a consistent
description of motion in a natural sequence of images.
Two images are digitized in 30 msec intervals with the
Vision machine's eye-head sytem and analyzed by the
Connection Machine™ . Almost all of the significant
intensity changes on the moving robot are labelled with
motion vectors pointing to the left which is consistent
with the actual motion of the robot. The non-moving
chair and the background is invisible to the motion de-
tection mechanism. Only a few small patches show false
motion due to apparent motion of specular reflections
caused by changes in illumination between frames. On
a Connection Machine™ having 16K processors, the
optical flow of a 128 x 128 image can be computed in a
few seconds, several hundreds of times faster than on a
Symbolics 3640 Lisp Machine.

5. Finding discontinuities

We are presently analyzing several methods for finding
eFciently initial estimates of the discontinuities of the
optical flow that may be later refined (for instance at
the integration stage). We give here a very brief outline
of three methods:

5.1, Statistics of the voting step

At motion discontinuities the assumption of a constant
{or linear or quadratic) motion field is obviously wrong.
One would expect therefore that the “votes” at a motion
discontinuity (say in the case of the “constant” motion

algorithm) would fail to support clearly any single ve-
locity. In fact, regions of close “ties”, or equivalently
of winners with locally minimum votes, often delinate
motion discontinuities. Our implementation of this pro-
cedure scales the number of votes at a location by the
total number of features in the voting neighborhood.
Close ties receive values near 0.5. Figure 5 shows the
result of thresholding this ratio at 0.75. This idea can be
developed further by considering more complete statis-
ties of the votes (Spoerri and Ullman, in preparation).
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Figure 4a. Frame ! of 2 from a motion sequence used to
test parallel motion detection algorithms with real images
{256 x 256). The robot is moving to the left. b. Output
of the constraint method algorithm for the motion sequence
shown above. Most of the needles point to the left con-
sistently with the actual movement. The stationary back-
ground (wall, floor and chair) is invisible to the motion de-
tectors. The small patches of indicated motion on the left
are most probably caused by apparent motion of specular
reflections due to changes in illumination between frames.

5.2. Vetoing coherent motion

Motion discontinuities can be found by using an algo-
rithm that was suggested by data on the insect visual
system (Reichardt et al., 1983). The idea is to inhibit
or veto the velue of the optical flow at each point by

the average value of the field over a large region cen-
tered at that point whenever the motion is of the same



type. The scheme suggested by the insect work is the
following: at each z,y consider separately the z and
the y component of the optical flow, take its value and
divide it by the average value, computed over a large
region. Figure 6 shows the output of this operation on
two examples. The average may be Gaussian weighted.
[t is quite intriguing to notice that the basic operation
is very similar to a recent proposal by Land (1986). It is
also similar to performing a center-surround operation
(such as the Laplacian of a Gaussian, but with much
larger surround) on the log of the optical flow.

5.3. Edge detection on the optical flow

Edge detection on the each component of the optical

fow is the simplest way to obtain an initial estimate of

discontinuities. We plan to use Canny’s edge detector
(Canny, 1986) on each component of the optical flow.

Figure 5. Edge labeling by relative motion. Motion disconti-
nuities can be found by finding the locations that get a min-
imum number of votes for consistent motion. This should
be the case at object boundaries for relative motion between
foreground (object) and background. a. A disc moves with
same speed but in opposite direction to the moving back-
ground. b. Object moves in same direction but half the
speed of the background.

o0
A

Figure 6. Edge labeling by relative motion. a. A disc with

random texture is moving with opposite direction in front of
a moving background with the same texture. Only those
indicators of relative motion with values above a certain
threshold are shown here. b. The same pattern is moving
in front of the same background in the same direction but
with half the velocity. The size of the labeled area depends

on the size of the larger mask (see text).
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