
James  Little, Heinrich Bulthoff and  Tomaso Poggio 

Massachusetts Ins t i tu te  of Technology 
Xrtiflcial Intelligence Laboratory 

Abstract  

We outline a new, parallel and f a ~ t  algonthm for com- 
?utrng the optrcal pow.  The algonthm ~ u g g e ~ t e d  by a 
,-+anzation method that we call "con~trarnt method". 
The method, based on  a theorem of  Tikhonov, enforces 
local conrtraints and leads to ef icient ,  parollel algo- 
r i t h m .  The specific constrarnt ezploited by out algo- 
rithm can be shown to comspond,  in rts most general 
form, to 3 - D  rigid motion of planar s u t f a c e ~ .  An initial 
~egmenta t ion  of the motion'field can be obtained b m  
the optical flow Feld generuted by the algorithm. W e  aLo 
~ugges t  an iterative scheme that can provide fast, ap- 
pmtimate solutions and refine3 them sub~equently. We 
discw3 the implementation of the algorithm on the Con- 
nection hlochineTM system and its neat r e d t i m e  per- 
formance on ~ y n t h e t i c  and natuml imager. 

1. Introduction 

The computation of motion is an important module of 
early vision. It is potentially useful for computing the 
3-D structure of surfacn, for segmenting a scene into 
objects and M a control module for navigation. The 
3-D motion field, however, or even its 2-D projection, 
cannot be directly meaaured Gom the time sequence of 
images. Much effort in recent years hss been invested 
in analyzing ways to compute the optical flow - the 2-D 
field of motion of brightnew in the image. A common 
assumption is that the optical flow, suitably defined, is 
a very close approximation to  the 2-D projection of the 
true 3-D motion field. Vem and Poggio (these Proceed- 
ings) argue against this assumption and the related use 
of the optical flow to obtain a precise quantitative esti- 
mate of 3-D structure and motion under general condi- 
tions. They argue also, however, that qualitative prop- 
ertiw of the optical flow are very useful for segmenting 
the scene into different objects and for providing infor- 
mation about the type of motion and the 3-D structure, 

and that they are more robust than quant~tative esti- 
mates. Notice that a closed-loop control system does 
not need accurate estimates. Furthermore, Verri's a n d -  
ysis suggmts that the precise definition of optical flow is 
not critical w long a it prexrves the qualitative prop- 
erties of the 2-D motion field. 

In this paper we outline a new, robust and last al- 
gorithm for computing a ver3ion of the optical flow that 
was suggested by a regularization method that we call 
"constraint method". The algorithm h u  been imple- 
mented on the Connection ~ a c h i n e ~ ~  system. Com- 
paratively little work in the area of motion computation 

'bar made use of sequences of real images, because of 
technical limitations in acquiring and processing them. 
Our algorithm, which runs in times that are typically 
of the order of a few seconds, is routinely used with im- 
age sequences grabbed by the Vision machine's eye-head 
system (Poggio and staff, these Proceedings). 

2. The algorithm 

We can formulate a first algorithm in terms of the sim- 
p l a t  possible aasurnption, that the optical flow is 10- 
cally uniform. This ~ a u m p t i o n  is strictly only true lor 
translational motion of 3-D planar surface patches par- 
allel to the image plane. It is a restrictive assumption 
that, however, may be a satirfsctory local approxima- 
tion in many caaca. L& E,(z,y) and Et+a t ( t ,  y)  rep- 
w e n t  transformations of two discrete i m a g ~  separated 
by time interval At, such M filtered images or a map 
of the intensity changu in the two imagn (more gen- 
erally, they can be maps containing a feature vector at 
each location 2, y in the image). We look for a motion 
displacement (also discrete) y = (vz,  v y  ) at each discrete 
location 2, y such that 

where the norm is over a local neighborhood centered 
at each location I, y and ~ ( z ,  y )  is assumed constant in 



the neighborhood. Equation (1) impiies that we should 
look at  each s, y for u = (u rn  v , )  such that 

/ lE . ( s .  y ) ~ t + n t ( z  + v . ~ f .  Y + v , A i ) l d r d ~  (2)  
P a t c h ,  

is mwim~zed. Equation (2) represents the correlation 
between a patch in the first image centered around the 
location z, y and a patch in the second image centered 
around the location z + v , A t ,  y + vyAt. 

This algorithm can be translated easily into the 
following description. Consider a network of processors 
representing the result of the integrand in equation (2). 
Assume for simplicity that this result is either 0 or 1. 
(This is the case if El and Ec+&1 are binary feature 
maps.). The processors hold the result of multiplying 
(or logically "anding") the right and left image map for 
different values of z ,  y  and v,, vy. The next stage, cor- 
responding exactly to the integral operation over the 

patch, is for each p r o c a k r  to  count how many pro- 
cessors are active in an t, y neighborhood at the same 
disparity. Each processor t h w  collects a vote indicat- 
ing support that a patch of surface udsta at that dis- 
placement. The l ~ t  stage ia t o  choose y(z, y) out of 
a finite set of allowed values that maximizes the inte- 
gral. This is done by aa operation of u n o n - m ~ m u m  
suppression" a c r m  vclociticr out of the finite allowed 
set: a t  the given z,  y, the processor ia found thht har 
the maximum vote. The corresponding y(z,y) is the 
velocity of the surface patch found by the algorithm. 
This algorithm is similar to the sttreo algorithm imple- 
mented by M. Drumhella and T. Poggio (1986) on the 
Connection MachineTM system. 

The algorithm will not find, in general, the 2-D pro- 
jection of the true 3-D velodty Aeld. Thia will happen 
only when the featuree used for matching comapond to 
markings on the 3-D surfaces and when e i t ha  the f e b  
tures are sparse (no ambiguity) or the diaarnbiguation 
step (the voting and non-maximum suppression s t q e )  
finds the true correspondence (i.e. the underlying sr- 
sumptions are satisfied). Even when the result ia not 
the true motion field, the algorithm will usually pre- 
serve its most important qualitative properties. 

3. The constraint method 
The algorithm just described WM suggested by a reg- 
ularization method (Poggio aad V&, in preparation) 
that follows directly from some raul ta  of Tikhonov and 
the discrete nature of the i m q e  data. We outline here 
the b u i s  of the conatraint method and then discuu how 
it is implemented by our motion algorithm. We port- 
pone a more formal discussion to  a later paper. 

3.1. Tikhonov Lemma 

As pointed out by Poggio and Torre (1984) zany prob- 
lems of early vision are ill-posed. For example solutions 
to problems 3uch ss surface reconstruction, conputation 
of visual motion and depth from stereo are not unique or 
they are not stable (for instance for edge detect~on and 
structure from motion). '1 lemma by Tikhonov and Xr-  
senin (1977) suggests how to regularize these problems 
by exploiting the discrete nature of the image data and 
the boundedness of sought solutions (for instance depth 
of surfaces or velocity values). 

Let us consider the problem of solving the equation 

for E X ,  X a metric space. Let y E Y ,  Y a met- - 
ric space! and let A be an operator mapping D(A) C X 
onto R(A) C Y. In many applications it is required that 
the solution g to (2.1) i )  exists, i i)  it is unique and i t r )  it 
depends continuoudy on y. - A problem whose solutions 
satisfies i) , i i)  and iii) is said to be well-posed; otherwise 
it is said to be ill-pored. It is clear that the solution d o e  
not exist if y @ R(A) and that it is not unique if A is not - 
injective. The solution depends continuously on y - when 
the inverse of A, A'l, is continuous. k t  us assume that 
the solution to  (2.1) ir given by 

Sufficient conditions for the well-posedness of (3) 
(or (4)) are provided by the following lemma by 
Tikhonov: 

Lemma Suppose that the operator A maps a compact 
set F E X onto the set U C Y. If A :  F -. U is contin- 
uoua and one-to-one, then the i n o m  mapping A\;' is 
alsa continuour. 

The uniquenaa is obviously guaranteed by the fact 
that A ir one-to-one while both the existence and the 

stability of the solution rely upon the compastness of 
the set F. k t  w M8UIne that X (or F) is a closed and 
bounded subset of R*. Therefore X (or F) is compact. 
Hence, it the solution belongn to a closed and bounded 
set in P and A ia one-to-one, the problem to solve is 
well-posed. Since every early virion problem is defined 
on a n-dimamiond space (where n is the number of pu- 
ela), sufficient conditiona for the well-posedness of t h m  
problem can be.given setting a priori bounds on the 
solutionr. In the s~eciiic case of our motion algorithm 
the compactnes srsumption is satisfied by restricting 
the input and output spacer t o  be discrete and 
(only a small set of discrete velocitia is allowed). 



It is important to stress that in several early vision 
the solution is not unique. For example the 

same 2-D motion field can be generated by the projec- 
tion of different kinds of 3-D motion fields. This corre- 
sponds to the problem of solving equation 2 when A is 
not one-to-one. In this case the lemma is not sufficient 
since it  does not guarantee uniqueness. Let us assume, 
however, that the solution is still bounded: only a fi- 
nite number of solutions, then, are possible due to the 
quantization. Uniqueness can be achieved by giving a 

set  of t u l e ~  that allow the selection of at most one value 
(possibly none) for the solution at every point: such 
a strategy obviously will always succeed due to the fi- 
nite number of possible values at en& location. It is 
worth noting that the solution could actually turn out 
to be defined only in some locations, corresponding to 
the selection of no value. The set of ruler corresponds in 
our algorithm to the voting followed by non-maximum 
suppression. 

3.2. Equivalent physical constraints  

The a l g o r i t h  can be extended t o  a l a a  restrictive con- 
straint: that the optical flow is locally linear or even 
quadratic instead of simply corutant. The quadratic 
case correspondn to a very simple conrtraint on 3-D 
motion and surfaces, under the urumption that the op- 
tical flow is sufficiently c loa  to the 2-D motion field. 
Under this assumption we can urn the following result 
due to  Wsxman (1986): the velocity field on the im- 
age plane otiginated by arbitrary, rigid S-D motion of 
a planar ~urface patch ir quadriatie. In this way, the al- 
gorithm exploits the physical auumption that surf- 
a r t a t  l e ~ t  relative to the image remlution-locally 
planar (the "allowedn world ir t h w  a world of polyhc- 
dral solids, albeit with a very high number of facer). 
It is worth noting that our initid erpaimentr indicate 
that the quadratic and even the linear urumptionr do 
not change significantly the rau l t r  obtained with the 
"constant constraint" a r i t h m .  

3.3. An i te ra t ion  schema 

The implementation of the quadratic patch constraint 
is computationally expensive, even for c w s e  diuretisa- 
tion of the velocity valuer. Though it may be unnec- 
sary to  consider in practice quadratic patches, it ir of in- 
terest to  develop a scheme that d o -  for a fat  approx- 
imate solution b d  on the constrnt field arrumption 
that is then refined in t e r m  of higha o r d a  arrumptiom 
such sr linear and quadratic patch. It ir natural t o  con- 
sider an iteration that k t  find, the b a t  "conrtantn 

solution, then refines it with the best "linear" correc- 
tion and finally finds the best "quadratic" correction. 
In general, the best quadratic correction does not pro- 
vide the best quadratic approximation. Results however 
about the estimation of polynomial operators (see for 
instance Poggio, 1975, theorem 4.2)  suggest that iterat- 
ing the procedure should converge to the b a t  quadratic 
approximation. In this way we can find the best "con- 
stant" estimation of the optical flow and then refine it 

by successive iterations that cycle from the lowest to the 
highest order and to the lowest again. 

4. The Connection ~ a c h i n e ~ ' ~  
implement a t  ion 

The time At between imaga is small, on the order of 

one video time frame (1130th second). During this short 
time, the appearance of a moving object can change due 
to  its own motion. camera motion, light source motion, 
or all three, among other effects (see Vem and Poggio, 
this Procetdinga). However, when the local intensity 
variation in the rurface albedo is sufficiently large, the 
errors introduced by these effects are minimized. For 
thir reamn, we w the output of an edge detection step 
ar the input to l a t a  r taga  of optical flow computation. 
Both the Laplacian of a Gaurrian and Canny's edge de- 
tector (Canny, 1986) have been used with good rewlts. 
Let Et be an image containing a description of the fea- 
t u r a  a t  time t. Featura can, for example, describe the 
sign of the z and y components of the image gradient 
at edge points. 

The comparison of featurem in Et and is per- 
formed for each p snd ir recorded at each z,  y in a match- 
ing map M ( y ) ,  which identifla whetha the feature at 
E,(t ,  y) found a match in y) when displaced 
by (u,,v,)At in the image  lane. This procas is spa- 
tially pardel ,  operating at all z ,  y simultaneously, for 
esch y in the diacrete & that ir dowed. The process 
i terata  o v a  this rangd, generating the matching map 

M(Y). 

The integration stage acts only upon the match- 
ing maps M(y).  By assumption, we rue lmking for the 
optical flow which is locally constant. We choose the 
flow y which, in a neighborhood N around t, y, max- 
imizer the number of matches. Again this procedure 
i t a a t a  o v a  all y in the bounded range. We identify a 
dirplscernent only at thore locations z ,  y at which the 
mtdmurn vote is unique; ties sre ambiguous and are 
eliminated. The result ir a map of the optical flow at 
locations in the image at which a moving feature has 
undergone unambiguour motion. 



The comparison and integrated stages could be 
merged into one stage, in which case we would be di- 
rectly implementing a binary correlation scheme on the 
feature maps. 

The constraint method can also be used to ex- 
p lo~ t  more sophisticated and less restrictive assumptions 
about surfaces. We could, for instance, assume that the 
motion surface is locally planar, or that the patch is 
locally quadratic. These more general assumptions can 
be implemented by changing appropriately the geome- 
try of the neighborhoods over which the voting takes 
place. We have implemented the iterative scheme for 
determining the best linear correction (linear in I ,  y )  

to the constant solution. There, the separation of the 
two stages is crucial for a. f u t  implementation; for cor- 
rections tha t  are  not constant, the voting neighborhood 
no longer corresponds to  a simple patch in the za tch -  
ing map  of just one displacement. Also, the co;: ?arisen 
operation can be done once and used for all !a:x inte- 
gration stager. 

Figure 1. A disc with random texture is embedded in a 
background pattern with the same texturu. The shape of 
the object becomes immediately visible when foreground md 
background pattern are moving with different speeds (Figure 
21. 

4.1.  Examples 

We used both synthetic and real i m a g a  for t a t i n g  
the  implementation of the algorithm on the Connec- 
tion MachinerM system. T h e  algorithm requires a.a 

much structure as possible in the  images to be an* 
lyzed. In the  synthetic i m a g a  we ~ r o d u c e  sufficient 

structure by using random textures for the foreground 

Figure 2. Needle diagram of the motion field Compu:ed by 
the constraint method. A disc with random texture is no". 

ing with half speed in the same direction the background, 
The algorithm computes connistent velocitin for foreground 
and background motion. 

Figure 3. Needle diagram of the motion field computed by 
the  conrtraint method. A disc with random texture is rc- 
tating clockwise a t  2 degrmi  per time step in front of r 
stationary background. 

and background patterns ' (Figure 1). Since the fore 
ground ha.a the  same texture u the background it . r e  . 
mains invisible to  the human observer u long as i t  IS 

not moving. As soon M either the foreground or the 
background pattern beginr to move the object become 
immediately visible. T h e  needle diagrams of the opti- 

'To  prevent a n t i d i u i n g  in the motion computation output 
the  imagw were appropriately bandpus  filtered 



cai flow field in Figure '2 show that the algorithm sue. 
cesfully computes consistent motion i f  foreground and 
background patterns move with different speeds. In Fig- 
ure 3 the disc-like foreground pattern is rotating clock- 
w~se in front of a stationary background. Again all mo- 
tion vectors show locally consistent direction and mag- 
nitude of velocity for the foreground pattern. Figure 4 

shows that the Connection Machinerw implementation 
of the constraint method is able to compute a consistent 
descri?tion of motion in a natural sequence of images. 
Two images are digitized in 30 rnsec intervals with the 
Vision machine's eye-head sytem and analyzed by the 
Connection ~ a c h i n e ' ~ .  Almost all of the significant 
intensity changes on the moving robot are labelled with 
motlon vectors pointing to  the Left which is consistent 
with the actual motion of the robot. The non-moving 
chair and the background is invisible to  the motion de- 
tectlon mechanism. Only a few small patches show false 
motion due to apparent motion of specular reflections 
caused by changes in illumination between frames. On 
a Connection ~ a c h i n e ~ ~  having 16K processors, the 
optical flow of a 128 x 128 image can be computed in a 
few seconds, several hundreds of times faster than on a 
Symbolics 3640 Lisp Machine. 

5. Finding discontinuities 

We are presently analyzing several methods for finding 
efficiently initial estimates of the discontinuities of the 
optical flow that  may be later refined (for instance a t  
the integration stage). We give here a very brief outline 
of three methods: 

5.1. S t a t i s t i c s  o f  t h e  v o t i n g  s t e p  

At  motion discontinuities t h e  assumption of a constant 
(or linear or  quadratic) motion field is obviously wrong. 
One would expect therefore that  the  "voted' at  a motion 
discontinuity (say in the  case of the  "constant" motion 

algorithm) would fail t o  support clearly any single ve- 
locity. In fact, regions of closc "tier", or equivalently 
of winners with locally minimum votes, often delinate 
motion discontinuities. O u r  implementation of this p r e  
ctdure scales the number of votes a t  a location by the 
total number of features in the voting neighborhood. 
Close ties receive values near 0.5. Figure 5 shows the  
result of thresholding this ratio a t  0.75. This ideacan be 
developed further by considering more complete statis- 
tics of the votes (Spoerri and Ullman, in preparation). 

Figure 4a. Frame 1 of 2 from a motion sequence used to 
test parallel motion detection algorithms with red images 
(256 x 256). The robot is moving to the left. b. Output 
of the constraint method algorithm for the motion sequence 
shown above. Most of the needles point to the left con- 
siltently with the actual movement. The stationary back- 
ground (wall, floor and chair) ii invisible to the motion de- 
tectors. The small patches of indicated motion on the left 
are most probably caused by apparent motion of specular 
reflections due to changes i n  illumination between frames. 

5.2. Ve to ing  c o h e r e n t  m o t i o n  

Motion discontinuities can be found by using an algo- 
rithm that  wss suggested by data  on the insect visual 
system (Reichardt et al., 1983). The  idea is to inhibit 
or veto the value of the optical flow at  each point by 
the average value of the  field over a large region cen- 
tered at that point whenever  the motion is of the same 



type. The scheme suggested by the insect work is the 
following: at each r ,  y consider s e p a a t e l ~  the r and 
the y component of the optical flow, take its d u e  and 
divide it by the average value, computed over a large 
region. Figure 6 shows the output of this operation on 
two examples. The average may be Gaussian weighted. 
It is quite intriguing to notice that the basic operation 
is very similar to a recent proposal by Land (1986). It is 
also similar to performing a center-surround operation 
(such as the Laplacian of a Gaussian, but with much 
larger surround) on the log of the optical flow. 

5.3. E d g e  d e t e c t i o n  on t h e  op t i ca l  flow 

Edge detection on the each component of the optical 
flow is the simplest way to  obtain an  initial mtimate of 
discontinuities. We plan to use Canny's edge detector 
(Canny, 1986) on each component of the optical flow. 

Figure 5. Edge labeling by relative motion. Motion disconti- 
nuities can be found by finding the locationr that get a min- 
imum number of votn for conrirtent motion. Thir should 
be the case at  object boundaries for relative motion between 
foreground (object) and background. a. A dirc mover with 
same speed but in opporite direction to the moving back- 
ground. b. Object mover in same direction but hdf the 
speed of the background. 
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