Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Die neuronale Grundlage des Zustandes der Narkose: ein vergleichend-physiologischer Ansatz

MPG-Autoren
/persons/resource/persons84015

Kirschfeld,  K
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons247056

Baier-Rogowski,  V
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kirschfeld, K., & Baier-Rogowski, V. (1987). Die neuronale Grundlage des Zustandes der Narkose: ein vergleichend-physiologischer Ansatz. Biological Cybernetics, 55(5), 345-354. doi:10.1007/BF02281980.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-EFB5-8
Zusammenfassung
The sensitivity of flies and locusts to halothane and N2O was investigated. In this paper we report experiments concerning the allover motor activity in the animal as a whole. In order to determine how the size of neurons comes into play under anesthesia we experimented with different but closely related species of flies differing very clearly in size. For the same reason we chose locusts of different developmental states and consequently different size. It came out that the larger insects are more sensitive to anesthetics than the smaller ones.

The results confirm one of Sherrington's (1906) conclusions, which says the axon which conducts spikes cannot be the most sensitive part of the neuron to anesthetic action. He ascribed the highest sensitivity to synapses; this, however, does not match with our results. In agreement with our experimental data is the new hypothesis that long dendrites or axonal endings conducting graded potentials are those parts of the CNS that exhibit the highest sensitivity to anesthetic action. Further confirmation of this hypothesis by more direct approaches has to be provided.