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Problem setting

Consider an input space X = {x1, . . . , xl, xl+1, . . . , xn} and output

space Y = {−1, 1}.

• Observes the labels of the first l points: (x1, y1), . . . , (xl, yl).

• Predicts the labels of the remaining points: xl+1, . . . , xn.

The elements of the input space can be everything of your interest, e.g.,

web pages, images, proteins and so on.

Max Planck Institute for Biological Cybernetics 2



K-Nearest-Neighbor (k-NN) classification

The predicted class is chosen by majority vote amongst the k-nearest

labeled neighbors, i.e.,

yu =
1

k

∑
i∈Nk(u)

yi, for any l < u ≤ n.
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Support Vector Machines (SVMs)

Using the optimal separating hyperplane to separate the two classes and

maximize the distance to the closest point from either class (Boser et

al., 1992; Cortes and Vapnik, 1995).
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Using the optimal separating hyperplane to separate the two classes and
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A toy classification problem: two moons
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(a) Toy Data (Two Moons)
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Max Planck Institute for Biological Cybernetics 7



The classification result from SVMs
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(b) SVM  (RBF Kernel)
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The classification result from k-NN
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(c) k−NN
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The ideal classification
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(d) Ideal Classification
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Part A—Algorithms
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A powerful but simple classification algorithm

1. Define a n × n affinity matrix W in which the elements are non-

negative, symmetric, and furthermore the diagonal elements are zeros.
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A powerful but simple classification algorithm

1. Define a n × n affinity matrix W in which the elements are non-

negative, symmetric, and furthermore the diagonal elements are zeros.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal

matrix with its (i, i)-element equal to the sum of the i-th row of W.
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A powerful but simple classification algorithm

1. Define a n × n affinity matrix W in which the elements are non-

negative, symmetric, and furthermore the diagonal elements are zeros.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal

matrix with its (i, i)-element equal to the sum of the i-th row of W.

3. For each point i, iterate f t+1
i = α

∑
i,j Sijf

t
j + (1 − α)yi until

convergence, where α is a parameter in (0, 1).
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A powerful but simple classification algorithm

1. Define a n × n affinity matrix W in which the elements are non-

negative, symmetric, and furthermore the diagonal elements are zeros.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal

matrix with its (i, i)-element equal to the sum of the i-th row of W.

3. For each point i, iterate f t+1
i = α

∑
i,j Sijf

t
j + (1 − α)yi until

convergence, where α is a parameter in (0, 1).

4. Let f∗i denote the limit of the sequence {f ti}, and label point i as

sgnf∗i .
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Define an affinity matrix

• For vectorial data, the affinity matrix can typically be defined by a

Gaussian Wij = exp(−‖xi − xj‖2/2σ2) except that Wii = 0,

where ‖ · ‖ represents Euclidean norm.

• For (undirected) graph data, the affinity matrix can be defined by

Wij = 1 if points i and j are connected by an edge, and 0 otherwise.
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Solving the two-moon problem
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(a) t = 10
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Solving the two-moon problem
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(b) t = 50
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Solving the two-moon problem
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Solving the two-moon problem
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(d)  t = 400
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Proof of the convergence
Theorem Let y be a n× 1 vector with yi = 1 or −1 if point i is labeled as plus
or minus, and 0 otherwise. Then f∗ = (1− α)(I − αS)−1y.

Proof. It is easy to see that

f
t
= (αS)

t
f

0
+ (1− α)

t−1∑
i=0

(αS)
i
y.

Since 0 < α < 1 and the eigenvalues λ(S) of S satisfy |λ(S)| ≤ 1,

lim
t→∞

(αS)
t
= 0, and lim

t→∞

t−1∑
i=0

(αS)
i
= (I − αS)

−1
.

Hence f∗ = (1− α)(I − αS)−1y.
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Describe the algorithm again

1. Define a n × n affinity matrix W in which the elements are non-

negative, symmetric, and furthermore the diagonal elements are zeros.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal

matrix with its (i, i)-element equal to the sum of the i-th row of W.

3. Compute f = (I −αS)−1y, where α is a parameter in (0, 1), and

assign a label sgn(fi) to point i.
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Multi-class classification

• Multi-class representation

• Compute F = (I − αS)−1Y, and label each point i as

arg maxj Fij.
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Hand-written digit recognition
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Digit recognition with USPS handwritten 16x16 digits dataset for a total of 9298. The

panel shows the test errors for the different algorithms with the number of labeled

points increasing from 10 to 100.
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An optimization framework

Theorem Define a cost function associated with function f to be

Ω(f) =
1

2

{ n∑
i,j=1

Wij

(
1√
Dii

fi −
1√
Djj

fj

)2

+ µ

n∑
i=1

(fi − yi)
2
}
,

where µ > 0 is the regularization parameter. Then the closed form solution of the
iterative algorithm is just

f
∗

= arg min
f∈Rn

Ω(f).

Remark The first term in the cost function is called the smoothness term, which

means that a good classifying function should not change too much between nearby

points. The second term is the fitting term, which means a good classifying function

should not change too much from the initial label assignment.
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Proof. Differentiating Ω(f) with respect to f , we have

∂Ω(f)

∂f

∣∣∣∣
f=f∗

= f
∗ − Sf

∗
+ µ(f

∗ − y) = 0,

which can be transformed into

f
∗ −

1

1 + µ
Sf

∗ −
µ

1 + µ
y = 0.

Let us introduce a variable α = 1/(1 + µ). Then

(I − αS)f
∗

= (1− α)y,

Since I − αS is invertible, we have

f
∗

= (1− α)(I − αS)
−1
y.
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Illustrate the smooth function
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Illustrate the smooth function

Max Planck Institute for Biological Cybernetics 28



Illustrate the smooth function
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Illustrate the smooth function
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The ranking problem

Given an input space X = {x0, x1, . . . , xn} ∈ Rm, the first point is

the query. The goal is to rank the remaining points with respect to

their relevances or similarities to the query.

[See also (e.g., Crammer and Singer, 2001; Freund et al., 2004) for other

ranking work in the machine learning community. ]
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A powerful but simple ranking algorithm

1. Sort the pairwise Euclidean distances between points in ascending order. Repeat
connecting the two points with an edge according the order until a connected graph
is obtained.

2. Form the affinity matrix W defined by Wij = exp[−d2(xi, xj)/2σ
2] if there is

an edge linking xi and xj. Note that Wii = 0 because there are no loops in the
graph.

3. Symmetrically normalize W by S = D−1/2WD−1/2 in which D is the diagonal
matrix with (i, i)-element equal to the sum of the i-th row of W.

4. Compute f = (I − αS)−1y, and rank each point i according the function value
f∗i on it (largest ranked first).
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A toy ranking problem

(a) Connected graph
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A toy ranking problem
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A toy ranking problem
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A toy ranking problem
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A toy ranking problem
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Euclidean distance based ranking
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Image ranking

Ranking digits in USPS. The top-left digit in each panel is the query. The left panel

shows the top 99 by our method; and the right panel shows the top 99 by the

Euclidean distance based ranking. Note that in addition to 3s there are many more 2s

with knots in the right panel.
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MoonRanker: A recommendation system
http://www.moonranker.com/
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Protein ranking

(With J. Weston, A. Elisseeff, C. Leslie and W.S. Noble) Protein
ranking: from local to global structure in the protein similarity
network. Proceedings of the National Academy of Sciences (PNAS)

101(17) (2004).
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Classification and ranking on directed graphs
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The importance of directionality
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Classification on the WebKB dataset: student vs. the rest in each university. Taking

the directionality of edges into account can yield substantial accuracy gains.
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Part B—Theory
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Analysis, geometry and regularization on
discrete spaces

• Discrete analysis and differential geometry on discrete spaces

• Discrete regularization framework based on discrete differential oper-

ators

• Recover the algorithms presented before from the discrete framework,

and derived new approaches as well

Warning The discrete analysis and geometry is developed by (Zhou and

Schölkopf, 2004). It is NOT standard mathematics.
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Some basic notions in graph theory

• A graph Γ = (V,E) consists of a set V of vertices and a set of

pairs of vertices E ⊆ V × V called edges.

• A graph is undirected if for each edge (u, v) ∈ E we also have

(v, u) ∈ E.

• A graph is weighted if it is associated with a function w : E → R+

satisfying w(u, v) = w(v, u).
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Some basic notions in graph theory (cont.)
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Some basic notions in graph theory (cont.)

• The degree function g : V → R+ is defined to be

g(v) :=
∑
u∼v

w(u, v),

where u ∼ v denote the set of vertices u connected to v via the

edges (u, v).
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Some basic notions in graph theory (cont.)
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The space of functions defined on graphs

• Let H(V ) denote the Hilbert space of real-valued functions endowed

with the usual inner product

〈ϕ, φ〉 :=
∑
v

ϕ(v)φ(v),

where ϕ and φ denote any two functions in H(V ). Similarly define

H(E). Note that function ψ ∈ H(E) need not be symmetric, i.e.,

we do not require ψ(u, v) = ψ(v, u).
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Gradient (or boundary) operator

• We define the graph gradient operator d : H(V ) → H(E) to be

(dϕ)(u, v) :=

√
w(u, v)

g(u)
ϕ(u)−

√
w(u, v)

g(v)
ϕ(v),

for all (u, v) in E.

Remark In the lattice case, the gradient degrades into

(dϕ)(u, v) = ϕ(u)− ϕ(v),

which is the standard difference definition in numerical analysis.
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Gradient (or boundary) operator
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Edge derivative

• The edge derivative
∂

∂e

∣∣∣∣
v

: H(V ) → R along edge e = (v, u) at

vertex v is defined by

∂ϕ

∂e

∣∣∣∣
v

:= (dϕ)(v, u).

• Define the local variation of function ϕ in at v to be

∥∥∇vϕ
∥∥ :=

[ ∑
e`v

(
∂ϕ

∂e

∣∣∣∣
v

)2]1/2

,

where e ` v denotes the set of edges incident on v.
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Divergence (or co-boundary) operator

• We define the adjoint d∗ : H(E) → H(V ) of d by

〈dϕ, ψ〉 = 〈ϕ, d∗ψ〉, for all ϕ ∈ H(V ), ψ ∈ H(E).

We call d∗ the graph divergence operator.

Note that the inner products are respectively in the space H(E) and

H(V ).
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Laplacian operator

• We define the graph Laplacian ∆ : H(V ) → H(V ) by

∆ :=
1

2
d
∗
d.

• An equivalent definition is

(∆ϕ)(v) :=
1

2

∑
e`v

1
√
g

(
∂

∂e

√
g
∂ϕ

∂e

)∣∣∣∣
v

.

Remark See (cf. Jost, 2002) for the Laplace-Beltrami operator on Riemannian

manifolds, and (cf. Chung, 2002) for the classical definition of the graph Laplacain.
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Discrete regularization framework (I)

Theorem The solution f of the optimization problem

argmin
f∈H(V )

{
1

2

∑
v

∥∥∇vf∥∥2
+
µ

2
‖f − y‖2

}
.

satisfies
∆f + µ(f − y) = 0.

Corollary f = µ(µI + ∆)−1y.
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Curvature operator

• By analogy with the curvature of a curve which is measured by

the change in the unit normal, we define the graph curvature κ :

H(V ) → H(V ) by

κϕ := d
∗
(

dϕ

‖∇ϕ‖

)
.
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Discrete regularization framework (II)

Theorem The solution of the optimization problem

argmin
f∈H(V )

{ ∑
v

∥∥∇vf∥∥ +
µ

2
‖f − y‖2

}
satisfies

κf + µ(f − y) = 0.

No closed form solution.
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Discrete regularization framework (III)

Discrete large margin classification

argmin
f∈H(V )

{max
v

∥∥∇vf
∥∥ +

µ

2
‖f − y‖2}.

Only the worst case is considered!

Remark This is closely related to the classic graph bandwidth problem in

combinatorial mathematics (cf. Linial, 2002), which is a NP-hard problem and has

a polylogarithmic approximation.
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Limitation: How to beat our method?

One can construct arbitrarily bad problems for a given algorithm:

Theorem [No Free Lunch, e.g., Devroye, 1996] For any algorithm, any n and
any ε > 0, there exists a distribution P such that R∗ = 0 and

P
[
R(gn) ≥

1

2
− ε

]
= 1,

where gn is the function estimated by the algorithm based on the n training

examples.
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Limitation: How to beat our method? (cont.)
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(b) True labels
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Part C—Related work
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A closely related regularizer

• The regularizer we used is

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

• A closely related one∑
u,v

w(u, v)(f(u)− f(v))
2

is proposed by (Belkin and Niyogi, 2002, 2003; Zhu et al., 2003).

See also (Joachims, 2003) for a similar one.
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Similarities between the two regularizers

• Both can be rewritten into the quadratic forms:

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

= f
T
D
−1

2(D −W )D
−1

2f

and ∑
u,v

w(u, v)(f(u)− f(v))
2

= f
T
(D −W )f.

• BothD−1
2(D−W )D−1

2 andD−W are called the graph Laplacian

in Machine Learning Community (unfortunate truth).
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Differences between the two regularizers:
limit cases

• (Bousquet et al., 2003) showed the following limit consequence:∑
u,v

w(u, v)(f(u)− f(v))
2 →

∫
‖∇f(x)‖2

p
2
(x)dx.

• A conjecture:

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

→
∫
‖∇f(x)‖2

p(x)dx.
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Difference between the two regularizers:
experiments
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[Note: A subset of USPS containing the digits from 1 to 4; the same RBF kernel for

all methods. ]
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Improve the unnormalized regularizer by
heuristics

• (Belkin and Niyogi, 2002, 2003) Choose a number k and construct a

k-NN graph with 0/1 weights over points. Using the weight matrix

as the affinity among points.

• (Zhu et al., 2003) Estimate the proportion of different classes based

on the labeled points, and then rescale the function based on the

estimated proportion.

Both of them just empirically approximate to the normalization in our

method.
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Improve the unnormalized regularizer by
heuristics: experiments

4 10 15 20 25 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# labeled points

te
st

 e
rr

or

Unnormalized Regularizer
Unnormalized Regularizer (+ heuristics)
Our method

[Note: A subset of USPS containing the digits from 1 to 4; the same RBF kernel for

all methods. ]
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Another related work: graph/cluster kernels

• Graph or cluster kernels (Smola and Kondor, 2003; Chapelle et al.,

2002): Descompose the (normalized) graph Laplacian K = UTΛU

and then replace the eigenvalues λ with ϕ(λ), where ϕ is a decreas-

ing function, to obtain the so-called graph kernel:

K̃ = U
T
diag[ϕ(λ1), . . . , ϕ(λn)]U.

• The matrix (µI + ∆)−1 contained in our closed form express can

be viewed as a graph kernel with ϕ(λ) = 1/(µ+ λ).
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Difference from graph/cluster kernels

• The matrix (µI + ∆)−1 is naturally derived from our regularization

framework for transductive inference. In contrast, graph/cluster ker-

nels are obtained by manipulating the eigenvalues.

• SVM combined with the kernel matrix (µI + ∆)−1 does not work

well in our transductive experiments.

• When we take other nonlinear regularizers, e.g., total variation, no

corresponding kernel exists any more.
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This talk is based on our following work:

• Differential Geometry D. Zhou and B. Schölkopf. Transductive Inference with
Graphs. Technical Report, Max Planck Institute for Biological Cybernetics, August,
2004.

• Directed Graphs D. Zhou, B. Schölkopf and T. Hofmann. Semi-supervised Learn-
ing on Directed Graphs. NIPS 2004.

• Undirected Graphs D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Schölkopf.
Learning with Local and Global Consistency. NIPS 2003.

• Ranking D. Zhou, J. Weston, A. Gretton, O. Bousquet and B. Schölkopf. Rank-
ing on Data Manifolds. NIPS 2003.

• Bioinformatics J. Weston, A. Elisseeff, D. Zhou, C.Leslie and W.S. Noble. Pro-
tein ranking: from local to global structure in the protein similarity network. PNAS
101(17) (2004).

• Bioinformatics J. Weston, C. Leslie, D. Zhou, A. Elisseeff and W. S. Noble.
Semi-Supervised Protein Classification using Cluster Kernels. NIPS 2003.
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Conclusions

• Proposed the new classification and ranking algorithms for vectorial

and (directed) graph data

• Developed the discrete analysis and differential geometry, and con-

structed the discrete regularization frameworks

• Validated the approaches on real-world problems
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