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Learning and Inference

The inductive inference process:
1. Observe a phenomenon

2. Construct a model of the phenomenon

3. Make predictions

= This can be taken as a definition for natural sciences !

= The goal of Machine Learning is to automate this process
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An Inference Problem

A simple example: sequences of numbers

Question:
3,5,7,...

which numbers should follow ?

= there is no satistactory single answer.
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Possible Solutions (I)

1. Prime numbers
3,5,7,11,13,17,19, ...

2. Odd numbers
3,5,7,9,11,13,15, ...

= more numbers reduce uncertainty ?
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Possible Solutions (II)

1. Numbers which end with 3,5,7
3,5,7,13,15,17,23 ...
2. Prime numbers which do not end with 1

3.5,7,13,17,19,23 . ..

= What if we change the representation 7
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Possible Solutions (II)

Binary representation
11,101, 111,1101, ...

— what does it mean to finish with 3,5 or 7 in this representation
? (15 =1111,17 = 10001, 23 = 10110)

A simple continuation
11,101,111,1101,1111,11101, 11111, ...
which corresponds to
3,5,7,13,15,29,31, ...
= Simplicity is relative !
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Philosophy

Inductive inference: philosophical issues

e Can we discover the laws of Nature by observing it 7

e What is a scientific theory 7

e What is inference 7
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Philosophy

e Aristotle: the best demonstration is the one using the least
number of hypotheses (because Nature is simple and what is
simple is beautiful)

e Epicurius: if several explanations are compatible with the ob-
servations, one should keep them all

e Indifference principle (probability): without information, one
consider all hypotheses are equiprobable
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Philosophy

e Occam’s Razor: Entities should not be multiplied beyond ne-
cessity (because this is an efficient method to get to the truth)

e Mach: economy principle (simple is more economical in terms
of number of experiments needed to confirm)

e Jeflreys: prior ordering of hypotheses using number of parame-
ters

e Popper: falsifiability, more empirical content means easier to
falsify (require less experiments), but number of parameters also
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Occam’s Razor

Idea: look for regularities in the observed phenomenon
These can ge generalized from the observed past to the future

= choose the simplest consistent model

How to measure simplicity ?

e Physics: number of constants
e Description length

e Number of parameters
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Theoretical Computer Science

A candidate universal notion of complexity
Kolmogorov Complexity

Definition: Given a binary string x = 011010011....., K(z) is
the length of the shortest program that generates x.

e Need to choose a programming language (Universal Turing Ma-
chine)

e Non-computable

= still relative !!' (some things are easier in a language than in
another)
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No Free Lunch

e No Free Lunch

—if there is no assumption on how the past is related to the
future, prediction is impossible

—if there is no restriction on the possible phenomena, general-
1zation 1S impossible

e We need to make assumptions
e Simplicity is not absolute
e Data will never replace knowledge

e Generalization = data + knowledge
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Assumptions

Two types of assumptions

e Future observations related to past ones
— Stationarity of the phenomenon

e Constraints on the phenomenon
— Notion of simplicity
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Goals

= How can we make predictions from the past 7 what are the
assumptions ?

e Give a formal definition of learning, generalization, overfitting

e Characterize the performance of learning algorithms

e Design better algorithms
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Probabilistic Model

Relationship between past and future observations

= Sampled independently from the same distribution

e Independence: each new observation yields maximum informa-
tion

e Identical distribution: the observations give information about
the underlyin phenomenon (here a probability distribution)
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Probabilistic Model

We consider an input space X and output space Y.
Here: classification case Y = {—1,1}.

Assumption: The pairs (X,Y) € X x Y are distributed
according to P (unknown).

Data: We observe a sequence of m i.i.d. pairs (X, Y;) sampled
according to P.

Goal: construct a function f : X — Y which predicts Y from
X.
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Probabilistic Model

Criterion to choose our function:

Low probability of error P(f(X) #Y).
Risk

R() = PUX) £Y) = [ L00dPXY)
e P is unknown so that we cannot directly measure the risk

e Can only measure the agreement on the data

e 'mpirical Risk
1 m

Remp(f) = — > Li(x 27
1=1
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Assumptions about P

Need assumptions about P.

Indeed, if P is Px x P(Y|X) with Px uniform and P(Y|X)
totally chaotic, there is no possible generalization from finite data.
Assumptions can be

e Preference (e.g. a priori probability distribution on possible
functions)

e Restriction (set of possible functions)
Treating lack of knowledge
e Bayesian approach: uniform distribution

e Learning Theory approach: worst case analysis
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Approximation/Interpolation

How to trade-oftf knowledge and data 7
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Overfitting/Underfitting

The data can mislead you.

e Underfitting
model too small to fit the data

e Overfitting
artificially good agreement with the data

No way to detect them from the data ! Need extra validation
data.
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Empirical Risk Minimization

e Choose a model F (set of possible functions)

e Minimize the empirical risk in the model

;,Iéi% Remp(f )

What if the Bayes classifier is not in the model 7
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Structural Risk Minimization

e Choose a collection of models {F;:d=1,2,...}
e Minimize the empirical risk in each model

e Minimize the penalized empirical risk

In min R + pen(d
ménfl’gg_}d emp(.f) + pen(d)

pen(d) gives preference to models where estimation error is small
pen(d) measures the size or capacity of the model
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Regularization

e Choose a large model F (possibly dense)
e Choose a regularizer || f]|
e Minimize the regularized empirical risk

in R NN
g emp(f) + M| f]

e Choose an optimal trade-off A (regularization parameter).

Most methods can be thought of as regularization methods.
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Bounds

A learning algorithm
e Takes as input the data (X1,Y7),..., (Xm, Ym)

e Produces a function fy,

Can we estimate the risk of f,, 7

e Error bounds
R(fm) < Remp(fm) + B

e Relative error bounds
R(fm) < R*+ B

= they are probabilistic in nature
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The Law of Large Numbers

e Notice that

with 2 = 1j7(x)2y), 1s the dlfference between the expectation
and the empirical average of a random variable.

e The law of large numbers says

P | lim —ZZ E[Z]=0| =1.

= can we quantify it 7
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Hoeffding’s Inequality

Quantitative version of law of large numbers.

Assumes bounded random variables

Theorem 1 Let Z1, ..., Zy be m 1.i.d. random variables with
values in |a,b]. Then for all e > 0, we have

1 Ine?
P E;Zi—E[Zﬂ > € SQexp(—(b_a)2>.

Let’s rewrite 1t to better understand
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Hoeffding’s Inequality

Write ,
2ne
0 =2 —
- ( e a>2>
Then
1 log%
Pl|— . —K\Z b — —2 <)

or with probability at least 1 — 0,

1 — log %
EZZZ-—]E[Zl] < (b—a) 0
1=1
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Hoeffding’s inequality

Let’s apply to Z = 1¢x)4y], Z € 0, 1].

For any f, and any 0 > 0, with probability at least 1 — ¢

log %
2m

R(f) < Remp(f) + (1)

Notice that one has to consider a fixed function f and the proba-
bility is with respect to the sampling of the data.

If the function depends on the data this does not apply !
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Limitations

What we need to bound is
R(fm) — Remp(fm)

where fy, is the function choosen by the algorithm based on the
data.

For a fixed sample, there exists a function f such that

R(f) — Remp(f) =1

Take the function which is f(X;) = Y; on the data and f(X) =
—Y everywhere else.

This does not contradict Hoeflding but shows it is not enough
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Limitations

Risk

'

f f opt fm Function class

Hoeftding’s inequality quantifies differences for a fixed function
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Uniform Deviations

Before seeing the data, we do not know which function the algo-
rithm will choose.

The trick i1s to consider uniform deviations

R(fm> — Remp(fm) < sup (R(f) — Remp(f))
feF

We need a bound which holds simultaneously for all functions in
a class
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Union Bound

Consider two functions f1 and fo.

For 2+ = 1, 2 define the 'bad’ set as
Ci — {(xlv y1)7 Tt (xma ym) : R(fz) R Remp(fz) > 6}

Hoeftding gives for each ¢
PG <0
We want to bound the probability of being 'bad’ for 7 =1 or ¢ = 2

P[C1UCo = P[C1] +P[Co] = P[C1 N Oy
< P[C1] + P[CY]
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Finite Case

More generally
N
PI[CiU...UCyN| < ZP[CZ']
1=1

We have
P(3f € {fioe . SN} : RUf) — Remplf) > €

N

< > P[R(fi) = Remp(fi) > €]
1=1

< 2N exp (—2n52)
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Finite Case

We obtain, for F = {f{,..., fy}, forall § > 0

with probability at least 1 — 0,

log N + log%

VfeF, R(f) < Remp(f) +\/

This is a generalization bound !

2m

Coding interpretation
log N is the number of bits to specify a function in F
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Approximation/Estimation

Let

fr=arg J{réi% R(f)

If f,;, minimizes the empirical risk in F,

Remp(f*> — Remp(fm) >0
Thus

R(fm) = B(fm) — R(f*) + R(f")
Remp(f*) = Remp(fm) + R(fm) — R(f*) + R(f™)

2 sup |R(f) — Remp(f)| + R(f™)
feF

IA AN ]
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Approximation/Estimation

We obtain with probability at least 1 — 9

log N + log%

R(fm) < R(f*) + 2\/

The first term decreases if N increases
The second term increases

2m

The size of F controls the trade-oft
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Infinite Case

Measure of the size of an infinite class 7

Consider

F(x1,...,2m) = {(f(x1),..., f(xm)) : f € F}

The size of F' is the number of possible ways in which the data
(1, ...,%m) can be classified.

Growth function

Spm)= swp  |F(on,... 5m)

(:Cl,,xm>
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Infinite Case

Result (Vapnik-Chervonenkis)
With probability at least 1 — 9

log S£(m) + log %

VieF, R(f) SRemp(f>+\/

am

How to compute Sx(m) ?

= use VC dimension
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VC Dimension

Notice that since f € {—1,1}, Sg(m) < 2™

If Sz(m) = 2" the class of functions can generate any classifica-
tion on m points (shattering)

Definition 2 The VC-dimension of F is the largest m such
that
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VC Dimension

Examples

e Hyperplanes in RY
VC dimension h =d + 1

esin(tr), t € R
Infinite VC dimension

e Hyperplanes in R with margin p
VC dimension
R2
h<—
0
if [|zf| < R.

How are Sz(m) and h related 7
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Sauer Lemma

Lemma 3 Let F be a class of functions with finite V(-
dimension h. Then for all m € N,

h
n
SE(m) <) (Z) ,
1=0
and for all m > h,
h
Sr(m) < (%) -
Notice that for m < h, Sg(m) = 2"

= phase transition
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VC Bound

Let F be a class with VC dimension h.

With probability at least 1 — 9

hlog%—klog%

vfeF, R(f) < Remp(f)+\/

am

So the error is of order
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Interpretation

VC dimension: measure of effective dimension

e Depends on the goal to achieve (reduce overfitting)
e Gives a natural definition of simplicity
e Not related to the number of parameters

e Impossible to learn if the VC dimension is infinite (falsifiability)
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Other Capacity Measures

Covering numbers

e Define a distance d between functions, e.g.
d(f, f') = [{f(z;) # f(z) i =1,...,n}

e A set fi,..., fy covers F at radius € if
F C UL B(fire)

e Covering number N(F,¢) is the minimum size of a cover of
radius € )

P ;ug)__ R(f) — Remp(f) > €| < E[N(F,¢)] exp(—ne?/8)
-
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Proof Strategy (Gurvits, 1997)

Assume that xi,...,X, are shattered by canonical hyperplanes
with [|[w|| < A, ie., for all y1,...,yr € {£1}, there exists a w
such that

y; (w,x;) > 1 foralli=1,...,r. (2)

‘Two steps:

e prove that the more points we want to shatter (2), the larger
I 2_i—1 yix|| must be
e upper bound the size of || Y '_; y;%;|| in terms of R

Combining the two tells us how many points we can at most shat-
ter.
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Part 1

Summing (2) over ¢ = 1,...,r yields
T
<W, Z%‘Xz‘ > > T
1=1

By the Cauchy-Schwarz inequality, on the other hand, we have

r r Tr
<W, > i >§||W| D || <A yix;
i=1 i=1 i=1

Combine both:

T

r

KS z;yzxz : (3)
1=
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Part 11

Consider independent random labels y; € {%1}, uniformly dis-
tributed (Rademacher variables).

- 5 ) )

T T T
B (S | -3 E <z>
i=1 i=1 j=1

- Y E <inia > yxj | +ixi >
i=1 | ji ]
i
= E [(yixi,yixj)] | +E[yixi, yixi)]
=1 \ \j7

T r
2 2
= S B |llyxl?] = X il
i=1 1=1
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Part 11, ctd.

Since ||x;|| < R, we get

r
E Z Y; Xy S TRQ.
1=1

e This holds for the expectation over the random choices of the
labels, hence there must be at least one set of labels for which
1t also holds true. Use this set.

Hence

.
Z yix;|| <rR°.
i=1
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Part I and 11 Combined

2 2
Part I: (%) <[> 25=1 vixl]
Part 1I: ||> i y@'Xi||2 < rR?

Hence
7“2 9
P S rR y
1.e.,
r < R2A2,

completing the proof.
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Concentration

Hoeftding’s inequality is a concentration inequality

When m increases, the average is concentrated around the expec-
tation

Generalization

Theorem 4 (McDiarmid’s Inequality) Let Z1,..., Z,, be
m i.1.d. random variables and let T = F(Z,...,Zy) be a
function such that there exists a constant c satisfying

/
|F(21, 3 %55y 2m) — F21,. .0, 2, zm)| L oc,
for any zl,...,zm,z,g and any 1= 1,...,m. Then we have for
all € > 0,

262
P T —E[T]| > ¢e] <2exp (—2> .

nc
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Application, I

We want to apply it to Z = sup rex R(f) — Remp(f)-
Notice that

sup A(f) + B(f) < sup A(f)+ sup B(f)
feF feF feF

Hence

| sup C(f) — sup A(f)| < sup (C(f) — A(f))
feF feF feF

Applied to Z this gives

| sup (R(f) — Remp(f)) — sup (R(f) — Repp(f))] <
feF feF
Sup (Rémp(f) - Rémp(f))
feF

Rémp empirical risk with one point changed,
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Application, II

For a given f: X — {—1,1},

1
Remp(£) = Remp(f) = (L p(at) 2y) = Lf(wiu)) <

thus

| sup (R(f) — Remp(f)) — sup (R(f) — Remp(f))] <
feF feF

1
—

Sh

McDiarmid’s inequality can be applied with ¢ = 1/m
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Application

Proposition 5 For any confidence level 0 > 0, with proba-
bility at least 1 — 0 over the random choice of the data, we
have

| o

up R(f) = Remplf) < E | sup (RIS) — Remgl) | + /22

JEF feF | m
“

Bound holds uniformly over the class of functions F

However, the expectation appearing on the right-hand side still
has to be computed
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Symmetrization

Rademacher variables
o1,...,0m Independent random variables with

Plo;=1]=Plo; = -1 ==

Symmetrization lemma

feF feFm

Expectation is taken with respect to X;,Y; and o;

E | sup R|f] — Remplf]| < 2E | sup lZail

Lf(X;)#Y]]
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Rademacher Averages

1 m
E | sup — > oiliy(x,2v,

fer ™o
1 < 1
=E |sup — > o0;5(1 = Yif(X;))
feFMiS 2
= %;% +§ ;E%E;_OZ i f(X5)

0. Bousquet, Giinne, March 2003



Rademacher Averages

K

O | —

sup—Z ~0;Y; f(X;)

fejfmZ ]

inf —
fe]—"m

Zasz
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Rademacher Averages

b | ing LS o ()
— inf — —0; :
9 fEJ’:mZ 1 0 (
1
= ——FE | Inf i
2 feFm
1
= ——FEKE | inf —
2 fe]—"m

Ay
D5

1=1

Zl

1 — o f(

%Uz

Intuition: capacity of .7-“ to fit random noise

X))
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Concentration

Let

1 m
Z =Es; | sup — o;1 LY
o |5 ; A1(X0)4;

Expectation with respect to o; only, with (X;,Y;) fixed.

Z satisfies McDiarmid’s assumptions
= [E|Z] can be estimated by Z on the data
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Data-dependent Bound

Proposition 6 Let F be a class of functions mapping X to

|—1,1]. For any confidence level § > 0, with probability at
least 1 — 0 over the random choice of the data, we have

1] & 210g%
sup (R|f| — R fl) < 2E4 | sup — o;1 Ny | :
sup (RUf] = Renlf]) < 2o | sup 20 ) oilipixny |+ =

where the expectation is taken with respect to the o; only.
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Relationship with VC dimension

For a finite set F = {f1,..., fn}

Es | sup — Z o, f(X

fe]—"

Consequence for VC classes

< 24/log N

Lemma 7 Let F be a class of functions with finite V(-

dimension h. Then for all m € N,

E | sup _ZUJ

fe}—mz 1

J

hlog%.

m
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SVM Insights

Why do SVM work 7

e Computational: Convex optimization

e Capacity Control: Regularization

e Universality: Kernel
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Formulation

e Soft margin
1 ) m
min - [|w||® + C -
3l +C 36

yi((w,x;) +b) > 1=
& >0

Convex objective function and convex constraints
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Linearization

Free vector space: define the set V(X) of (formal) linear combi-
nations of elements from X

V(X) = {ZO‘Z’(S«%‘@' o €R x; € X, |I] < 00}
el

Any function f from X to Y can be represented as a linear function
on V(X):
Ly(>_ aidz;) = 3 aif ()
Everything is linear
Seems like rewriting but it is at the heart of the kernel approach.
To get a kernel (reproducing kernel Hilbert space), simply define
an inner product on V' (X) with a kernel function.
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Convexity

Consider now real valued functions

Linearity eases computations

Convexity gives even simpler computations — choose a convex
loss tfunction
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VC dimension

The VC dimension of the set of hyperplanes is d + 1.

The feature space has dimension m for RBF kernel

The VC bound does not give any information

Need scale-sensitive approach
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Regularization

Capacity control by restricting the class

min Ly,
IfII<R )

Capacity control by regularization

min Lin(f) + M| f]1%
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Loss Functions

B(Y F(X)) = max(0,1 - Y (X))
e Convex, non-increasing

® Upper bounds 1[Yf(X)§O]
e [s minimized by Bayes classifier
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Rademacher Averages (I)

Sup

Hw\<MmZ 1

=K | sup

IA

ZUZ w, ®(x;))

1
w, — UZ'(I) X
:w<M< m; | >>

\

1 m
E| sup [lw]||—=>) oz
wl<M i
i m m
—E <ZU¢¢($¢),ZO¢¢(%>>
i—1 i—1
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Rademacher Averages (II)

%E <Z 0;9(x;), ZJZ’CD(QZ‘@')>
m \ i=1 i=1

A
|

Mg <ZUZ'(D($@’>7ZUZ@($Z'>>
\i=1 i=1

E Z 00 <<I>(513z')7 Cb(xj)>
Y

LS o)
1=1
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Geometry

Ellipsoid

Proposition 8

0. Bousquet, Giinne, March 2003



RBF

Geometry

e Norms
2
|B(2)]|” = (B(z), D(x)) =€’ =1
— sphere of radius 1
e Angles

A

cos(P(z), D(y

y —e ||£C y” /20

— positive quadrant
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RBF

Differential Geometry

e Flat Riemannian metric
— 'distance’ along the sphere is equal to distance in input space

e Distances are contracted
— ’shortcuts’ by getting outside the sphere
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RBF

Universality

Let k£ be the RBF kernel with a fixed width.
Let H be the corresponding reproducing kernel Hilbert space

Proposition 9 H s dense in C'(X)
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RBF

Eigenvalues
e Fixponentially decreasing
e Fourier domain: exponential penalization of derivatives

e Einforces smoothness with respect to the Lebesgue measure in
iput space
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RBF

Induced Distance and Flexibility

e 0 — 0 l-nearest neighbor in input space
Each point in a separate dimension, everything orthogonal

e 0 — 00 linear classifier in input space
All points very close on the sphere, initial geometry

e Tuning
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RBF

Ideas

Works well if the Euclidean distance is good
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Choosing the Kernel

e Major issue
e Prior knowledge
e Cross-validation

e Bound (better with convex class)
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Learning Theory: some Informal Thoughts

e Need assumptions/restrictions to learn

e Data cannot replace knowledge

e No universal learning (simplicity measure)

e SVM work because of capacity control

e Choice of kernel = choice of prior/ regularizer

e RBF works well if Euclidean distance meaningtul

e Knowledge improves (e.g. invariances)
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