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Abstract

To see whether single molecule scattering experiments can yield atomic resolution
structures of biomolecules, it is necessary to understand the physics underlying the
radiation damage processes induced by the X-ray radiation. The first part of this
work is concerned with the electron dynamics during the Auger decay as part of
the radiation damage processes in single molecule scattering experiments. To test
if Hartree-Fock theory suffices to describe auto-ionization processes like the Auger
decay, we simulated the electron dynamics in a one-dimensional model system and
a beryllium atom after instantaneous core-shell ionization using time-dependent
Hartree-Fock theory. The simulations employed both numerical grids as well as
B-splines. In a model system containing six particles the initially created core-hole
is refilled during the electron dynamics. But no clear emission of a particle into the
continuum occurred. During the electron dynamics in a beryllium atom, however,
neither a refilling of the initially created core-hole nor the emission of a particle
was observed. As two different, flexible basis sets were used it is likely to be
the limitation of Hartree-Fock theory causing the absence of the Auger process in
the simulations. In addition, we used the approach described above to simulate the
electron dynamics after instantaneous valence-shell ionization in two small organic
molecules. The electron dynamics exhibit a diffusion-like behavior of the valence
hole. These dynamics, however, do not reproduce the charge migration dynamics
predicted by correlated ab-initio methods.

To compare different hopping algorithms and to validate previous simulation
results, excited state molecular dynamics simulations of the photo-isomerization
dynamics of a small retinal model and the photo-active yellow protein were per-
formed in the second part of this thesis. In the retinal model small differences in the
excited state lifetimes and quantum yields are observed among the different hop-
ping algorithms. The simulations of the photo-active yellow protein chromophore
yield a photo-isomerization pathway that agrees with the isomerization pathway
previously predicted. There is, however, a large difference in the excited state life-
times among the hopping algorithms. Additionally, the excited state molecular
dynamics simulations are used to study the molecular dynamics induced excita-
tion energy transfer in a small bi-chromophoric molecule. The molecular dynamics
simulations together with ab-initio calculations indicate that molecular dynamics
on different nonadiabatically coupled potential energy surfaces can explain the ex-
citation energy transfer from one chromophore to another. This offers a different
explanation of excitation energy transfer processes in small molecules compared
to Förster and Dexter theory.
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Zusammenfassung

Um zu verstehen, ob Einzelmolekülstreuexperimente Stukturen von Biomolekülen
mit atomarer Auflösung liefern können, ist ein Verständnis der Physik notwendig,
die den durch die Röntgenstrahlung ausgelösten Strahlungsschäden zugrunde liegt.
Im ersten Teil dieser Arbeit wird die Elektronendynamik während des Augerzer-
falls untersucht. Der Augerzerfall ist ein wichtiger Teil des Strahlungsschadens
in Einzelmolekülstreuexperimenten. Um zu testen, ob Hartree-Fock-Theorie aus-
reicht um Autoionisationsprozesse wie den Augerzerfall zu beschreiben, haben
wir die Elektronendynamik nach plötzlicher Ionisation der Kernschale in einem
eindimensionalen Modell und einem Berylliumatom simuliert. In den Simulatio-
nen wurden sowohl numerische Gitter als auch B-bpline-Basen verwendet. Im
Modellsystem mit sechs Teilchen wird das Loch in der Kernschale während der
Elektronendynamik aufgefüllt. Allerdings wird kein Teilchen in das Kontinuum
emittiert. Während der Elektronendynamik im Berylliumatom wird weder das
Loch in der Kernschale aufgefüllt noch wird ein Elektron in das Kontinuum emit-
tiert. Da zwei verschiedene, flexible Basen verwendet wurden, ist wahrschein-
lich die Hartree-Fock-Näherung selbst unzureichend, um den Augerprozess zu
beschreiben. Zusätzlich wurde mithilfe des obigen Ansatzes die Elektronendy-
namik nach Valenzionisation in zwei kleinen, organischen Molekülen simuliert.
Die beobachtete Elektronendynamik ähnelt einer Diffusion des Valenzloches. Dies
steht im Gegensatz zu der sogenannten “charge migration” Dynamik, die mithilfe
von korrelierten ab-initio Methoden vorhergesagt wurde.

Um verschiedene “surface hopping” Algorithmen miteinander zu vergleichen
und Ergebnisse von vorangegangenen Simulationen zu validieren, wurde im zwei-
ten Teil die Photoisomerisierungsdynamik eines kleinen Retinalmodells und des
Chromophores des “photo-active yellow protein” mit Moleküldynamiksimulationen
für angeregte Zustände und verschiedenen “surface hopping” Algorithmen simu-
liert. Im Fall des Retinalmodells sind kleine Unterschiede in den Lebensdauern
des angeregten Zustandes und den Produkten der Isomerisierung zwischen den
unterschiedlichen Algorithmen festzustellen. Der Photoisomerisierungsmechanis-
mus, der in den Simulationen des “photo-active yellow protein” beobachtet wurde,
stimmt mit dem Photoisomerisierungsmechanismus, der in vorherigen Studien
beschrieben worden ist, überein. Allerdings gibt es deutliche Unterschiede in den
von den verschiedenen Algorithmen vorhergesagten Lebensdauern des angeregten
Zustandes. Zusätzlich wurden die Moleküldynamiksimulationen verwendet, um
Anregungstransferprozesse in kleinen Molekülen mit zwei Chromophoren zu un-
tersuchen. Zusammen mit ab-initio Berechnungen deuten die Moleküldynamiksi-
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Zusammenfassung

mulationen darauf hin, dass der Anregungstransfer von einem Chromophor zum
anderen durch Moleküldynamik auf verschiedenen, nicht adiabatisch gekoppelten
Potentialflächen erklärt werden kann. Dieser Ansatz bietet also eine alternative
Erklärung für Anregungstransferprozesse in kleinen Molekülen im Vergleich zur
Förster- und Dextertheorie.
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1
Introduction

Atomic resolution structures of proteins are crucial for the understanding of life
processes at the molecular level. These structures are usually obtained by X-
ray crystallography[2]. The first protein structure was solved in 1958 when John
Kendrew and co-workers were able to obtain the structure of a whale myoglobin[3].
Since then X-ray crystallography has become one of the standard tools in structural
biology.

The crystallization of proteins is one of the most important bottle necks in ob-
taining new atomic resolution structures as there is no general way to crystallize
a given protein[4, 5]. The next generation X-ray sources — the free electron lasers
currently deployed in Germany[6], Japan[7] and the USA[8] — will provide X-ray
pulses with a pulse length of 10− 100fs at a wavelength of about 1 Å with 1012

photons per pulse. These pulse parameters offer the possibility of a new type of
experiment.

In single molecule scattering (Figure 1.1), a stream of single particles is inserted
into the beam line. Each of these particles is hit by a single X-ray laser pulse and
the scattering image is recorded. As indicated in Figure 1.1 the target molecule is
destroyed during the illumination. Hence, this approach is also called “diffract-
and-destroy” method[10].

The radiation damage it caused by photo-ionization (see Figure 1.2 (mid)), which
occurs about ten times more often then elastic scattering (see Figure 1.2 (left)) for
a wavelength of 1 Å[11].

In crystallography the radiation damage problem is overcome by distributing
the damage over a whole ensemble of molecules. The short pulses provided by the
next generation X-ray source allow a different strategy. Rather then spreading the
radiation damage over an ensemble of molecules the goal of single molecule scat-
tering is to outrun the radiation damage by collecting the scattering image before
the molecule is destroyed. For this strategy to be successful, the critical question is:

1
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Stream of particles 

Scattering
images

Molecular
transform

Sorting and
averaging 

X-ray pulses

Figure 1.1: The single molecule scattering approach is sketched. A stream of single
particles is inserted into the beam line. Every particle is illuminated with a single
X-ray pulse and the scattering image is recorded. Afterwards, the recorded im-
ages are sorted and averaged accordingly to yield the structure of the molecule in
reciprocal space[9].

How fast are the individual processes that lead to the radiation damage and how
short do the X-ray pulses actually have to be to outrun these processes. Another
related question is: Can these radiation damages be slowed down? It is, thus, nec-
essary to understand the physics underlying the destruction process to estimate
the pulse length needed to outrun the destruction process. The Auger decay (see
Figure 1.2 (right)) plays an important role during the first part of the Coulomb
explosion as it enhances the radiation damage caused by the photo-ionization. The
Auger decay speeds up the Coulomb explosion in two ways. Firstly, an electron is
emitted while the core vacancy is refilled charing up the molecule. Secondly, the
refilled core shell can again be ionized by photo-ionization. For the “heavy” atoms
(mostly carbon, nitrogen and oxygen found in proteins) the core-hole lifetime is of

2



Figure 1.2: The left figure sketches elastic scattering. A photon (wavy blue line) is
scattered from an electron (blue circle) changing its direction. The energy of the
photon is conserved during elastic scattering leaving the state of the electron un-
touched. The right figure sketches photo-ionization with subsequent Auger decay.
A photon is absorbed emitting a core electron. In the subsequent Auger decay the
hole in the core shell is by a valence electron. In turn another valence electron is
emitted and the energy is conserved.

the order of 5− 10fs[12], which is about the same order of magnitude as the pulse
length 10− 100fs.

The aim of Part I of this thesis is to study the electron dynamics during the
Auger decay right after photo-ionization by solving the electronic time-dependent
Schrödinger equation using computer simulations. Due to the high computational
costs of quantum mechanical calculations this approach is not applicable to a whole
protein. We will, thus, study the electron dynamics in smaller systems to under-
stand how the environment of a specific atom influences the electron dynamics
during the Auger decay after core shell ionization of the atom. The insight drawn
from the electron dynamics simulation could later be used to improve existing sta-
tistical models [13–15] to simulate the Coulomb explosion of a whole protein. It is
still preferable to use a computationally comparably cheap method. Hartree-Fock
(HF) theory (cf. Section 2.1) is the computationally simplest ab initio method to
solve the electronic Schrödinger equation.

It has been shown that highly correlated methods can be used to simulate auto-
ionizing processes after inner valence ionization[16]. In contrast, stationary HF
theory neglects any correlation effects. One could, thus, question whether the
HF approximation is sufficient to describe the Auger decay. Note, however, that
time-dependent HF theory will recover parts of the dynamic correlation effects,
since a change of a part of the electron density will induce changes in the rest of

3



1 Introduction

the electron density. Hence, it is crucial to validate that time-dependent Hartree-
Fock (TDHF) 1 theory[18] is sufficient to describe the electron dynamics during the
Auger decay process.

First, the applicability of TDHF to auto-ionization processes was tested using
a one-dimensional model system (cf. Chapter 3), which imitates a single atom.
In contrast to an atom in a one-dimensional system, it was not necessary to split
the system into an angular and a radial part. This simplified both the derivation
and implementation of the working equations as well as the interpretation of the
simulations. A one-dimensional model simulation thus offered a natural starting
point for this work.

To avoid possible limitations of L2 basis sets, a numerical grid was used as a
basis[19]. A grid offers the flexibility to describe both bound and continuum elec-
trons, which occur during the Auger process. The method developed to solve the
TDHF equations for the model system was then applied to atoms (cf. Chapter 4).
As atoms are spherically symmetric they can be treated as being essentially one-
dimensional, only considering the radial part. Additionally to the numerical grid
basis from the model system also a B-spline basis[20–22] was used. The B-spline
offers a more balanced description of the bound and the continuum part of the
system than the grid. This leads to more compact basis sets and allows longer
simulations.

Unfortunately, the simple basis sets used for single atoms cannot be applied
to molecules as they are lacking the spherical symmetry. To test the TDHF sim-
ulations on molecules, they were applied to the electron dynamics in small or-
ganic molecules after valence-shell photo-ionization (Chapter 5). In particular
the electron dynamics obtained by TDHF were compared to the charge migration
process[23, 24] predicted by correlated ab initio methods.

In Part II the dynamics induced by photo instead of X-ray absorption were con-
sidered. The absorption of an (optical) photon promotes the electronic wavefunc-
tion of a molecule into an excited state. The change of the electronic state changes
the potential energy surface (PES) (cf. Chapter 7) for the nuclear wavefunction and,
hence, induces molecular dynamics (MD).

An important example of an MD process induced by photo-absorption is photo-
isomerization. In photo-isomerization the sudden change of the PES induces a
rotation of a dihedral angle and the excited electronic state decays radiationless
through a conical intersection (cf. Section 7.2)[25]. The change in the molecular

1Note that that here TDHF does not refer to the calculation of excited states by linear response
theory which is also called TDHF or time-dependent density functional theory (TDDFT)[17].

4



structure server as the first step in many different biological processes leading to
biological functions like vision or ion-pumping[26, 27].

To study these photo-isomerization processes by computer simulations in their
native environment, e.g. proteins in solution[26], one has to reside on the classical
approximation for the nuclei because wavepacket dynamics are only applicable to
systems containing few atoms[28].

To describe the MD during a photo-isomerization properly, accurate forces ex-
erted by the different electronic wavefunctions on the nuclei are required. To this
end ab initio quantum chemical methods were employed to determine the elec-
tronic wavefunction and the respective forces on the nuclei.

During the radiationless decay the molecule changes from one PES to another.
This was facilitated in the MD simulations by so called hopping algorithms [29]
(cf. Sections 8.3 and 8.4) that determine when exactly the hop to a different PES
takes place.

One aim of this part is to compare different hopping algorithms to be able to
judge the results obtained with them. Thereto, the excited state dynamics of the
retinal model system protonated Schiff base with two double bonds (PSB2) were
studied in vacuum using different hopping algorithms.

The photo-isomerization of the photoactive yellow protein (PYP) chromophore
found in Halorhodospira halophila bacteria is thought to provide the first step in a
cascade leading to photo-avoidance of the bacteria protecting it from harmful ultra
violet light[30, 31].

The photo-isomerization of the PYP is experimentally[31–35] and computation-
ally characterized[36–39]. To validate previous excited state MD simulation, pre-
dicting the trans-to-cis photo-isomerization dynamics in the PYP[36], two different
hopping algorithms were used together with a better quantum chemically descrip-
tion of the excited states of the chromophore to simulate the photo-isomerization
dynamics of the PYP.

Another important process induced by photo-absorption is excitation energy
transfer (EET). In EET one chromophore, the donor, is excited by absorbing a pho-
ton. Subsequently, the excitation is transferred to a second chromophore, the ac-
ceptor, which excited state decays via photo-emission. Thus, an absorption in the
absorption spectrum of the donor induces an emission in the emission spectrum of
the acceptor. The EET is usually interpreted by Foerster resonance energy transfer
(FRET)[40] or Dexter’s[41] theory. In both theories the EET is attributed to pertur-
bative coupling between the (distinct) wavefunctions of the two chromophores and
is discussed in terms of Fermi’s golden rule.
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1 Introduction

Excitation energy transfer forms for instance the basis for the experimental tech-
nique also called FRET, which is used to determine inter- and intra-molecular
distances on the nanometer scale and is widely used in biophysics[42, 43].

It has been, however, predicted that excited state MD on different nonadiabat-
ically coupled PES can induce EET[44–47]. In small bi-chromophotic molecules
this process offers an additional explanation for EET compared to the conventional
interpretation of EET by FRET or Dexter’s theory.

To test this prediction, we have performed excited state MD simulations men-
tioned above to study the excited state MD simulation for a bi-chromophoric p-
cyclophane. Speiser and co-workers[48] have shown experimentally that EET oc-
curs in theses molecules depending on their size.
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Part I

X-ray Absorption Induced Electron
Dynamics
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2
Theory

Here, the theoretical framework used for the subsequent calculations of the elec-
tron dynamics will be derived. The solution of the time-dependent electronic
Schrödinger equation (atomic units, i.e. e = me = h̄ = 1

4πε0
= 1, are used through-

out this work if not stated otherwise)

i
∂

∂t
Ψelec = ĤelecΨelec (2.1)

will be approximated using HF theory. The electronic Hamiltonian is given by

Ĥelec =
1
2

nelec

∑
j

∆j +
nelec

∑
k>j

1∣∣r j − rk
∣∣ + nelecNAtoms

∑
jA

ZA∣∣r j − RA
∣∣ , (2.2)

where j, k, r j and rk refer to electrons and their positions; A, RA and ZA to nuclei
and their positions and charges. In the following the subscripts elec and Atoms
are dropped if the context is obvious.

2.1 Hartree-Fock Theory

In HF theory the wavefunction Ψ is approximated by an anti-symmetrized product
ansatz of single particle wavefunctions, usually called a Slater determinant. The
electrons only interact with each other via mean-field potential[49]. Due to the sin-
gle determinant ansatz and the mean-field interaction, electron correlation is not
described by stationary HF theory[50]. In the HF theory the electronic wavefunc-
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2 Theory

tion Ψ is approximated by a single Slater determinant formed by single particle
functions

Ψ (x; R) ≈ Â
n

∏
j

χj
(
xj; R

)
=

∣∣∣∣∣∣∣∣∣
χ1 (x1; R) χ2 (x1; R) · · · χn (x1; R)
χ1 (x2; R) χ2 (x2; R) · · · χn (x2; R)

...
χ1 (xn; R) χ2 (xn; R) · · · χn (xn; R)

∣∣∣∣∣∣∣∣∣ , (2.3)

with the combined space-spin coordinates x = (r, σ). The single particle functions
χ1 (x1; R) are called molecular orbital (MO). The MOs are orthonormal[49]〈

χj |χk〉 =
∫

dxχ∗j (x) χk (x) = δjk. (2.4)

The bra-ket notation indicates integration over the electronic spin-space degrees
of freedom (DOF). Both the total wavefunction and the MOs depend parametri-
cally on the nuclear positions R due to the nuclear potential term in the electronic
Hamiltonian (2.2). The HF energy is given by[49]

E =
〈
Ψ
∣∣Ĥ∣∣Ψ

〉
=

n

∑
j

〈
χj

∣∣∣∣∣−1
2

∆j −
N

∑
A

ZA∣∣r j − RA
∣∣
∣∣∣∣∣ χj

〉

+
n

∑
k>j

〈
χj (x1) χk (x2)

∣∣∣∣∣ 1∣∣r j − rk
∣∣
∣∣∣∣∣ χj (x1) χk (x2)

〉
︸ ︷︷ ︸

Coulomb

−
n

∑
k>j

〈
χj (x1) χk (x2)

∣∣∣∣∣ 1∣∣r j − rk
∣∣
∣∣∣∣∣ χk (x1) χj (x2)

〉
︸ ︷︷ ︸

Exchange

=
n

∑
j

〈
j
(

ĥ
∣∣∣ j
)
+

1
2

n

∑
jk
(jj |jk)︸ ︷︷ ︸
Coulomb

− (jk |kj)︸ ︷︷ ︸
Exchange

, (2.5)

with the one-electron operator ĥ and the two-electron integrals (pq |rs) in chemists
notation[49]. Note that the Coulomb interaction acts among all MOs, whereas the
exchange interaction only affects MOs of the same spin. The MOs are determined
such that the HF energy is minimized, retaining the orthonormality of the MOs
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2.1 Hartree-Fock Theory

(2.4). To ensure the orthonormality of the MOs, the method of undetermined mul-
tipliers is used[51]. The HF equations are obtained from the first order variations
of the Lagrange functions[49]

L = E−
n

∑
jk

ε jk
(
〈j |k〉 − δjk

)
. (2.6)

This yields

f̂ χj =

(
ĥ + ∑

k
Ĵk − K̂k

)
χj = ∑

k
ε jkχk, (2.7)

which has to be fulfilled for all j for the first order variation of L to vanish. In
(2.7) the Fock operator f̂ = ĥ + ∑k Ĵk − K̂k is defined. Equations (2.7) are the
HF equations in the noncanonical form. The Equations (2.7) define the MOs χj
only up to a unitary transformation. This unitary transformation can be used to
diagonalize the matrix of Lagrange multipliers ε and to bring the HF equations
into their canonical form

f̂ χj = ε jχj. (2.8)

The Lagrange multipliers ε j can now be interpreted as orbital energies. Note that
the HF equations are nonlinear as the Fock operator f̂ depends on the orbitals due
to the Coulomb and Exchange interactions.

2.1.1 Time-dependent Hartree-Fock

Time-dependent HF theory is derived from the time-dependent Schrödinger Equa-
tion (2.1) using the Dirac-Frenkel variational principle (DFVP)[18]. In the DFVP
the action

S =
∫ t1

t0

dt
〈

Ψ
∣∣∣∣Ĥ − i

∂

∂t

∣∣∣∣Ψ
〉

(2.9)
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is minimized with respect to variations of the wavefunction Ψ. Again, the wave-
funtion Ψ approximated by a Slater determinant

Ψ (t, x; R) ≈ Â
n

∏
j

χj
(
t, xj; R

)
, (2.10)

where the MOs χj
(
t, xj; R

)
are now time-dependent. The variations of the orbitals

δχj are restricted as follows

〈δj |k〉 = 0∀j, k. (2.11)

This restriction is physically meaningful as changes in the space of occupied MOs
only introduce a phase factor that has no physical effect. The first order variation
of the action δS can then be expressed as[52, 53]

δS =

〈
δΨ
∣∣∣∣Ĥ − i

∂

∂t

∣∣∣∣Ψ
〉

, (2.12)

which yields the TDHF equations

i
∂

∂t
χj = f̂ χj. (2.13)

2.1.2 Linear Combination of Atomic Orbitals

To solve the stationary (2.8) and time-dependent (2.13) Equations numerically, the
linear combination of atomic orbitals (LCAO) approach is used. Accordingly, the
MOs are expanded using a set of spacial basis functions {µ (r)}µ=1...N

χj (x) = χσ
j =

N

∑
µ

Cσ
µjµ (r) . (2.14)

The basis functions {µ (r)}µ=1...N are taken to be real. Inserting Equation (2.14) into
the stationary HF Equations (2.8), projecting onto a basis function and integrating
over space yields the Roothan-Hall equations

FσCσ = εσSCσ. (2.15)
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2.1 Hartree-Fock Theory

The Fock matrix Fσ is given by

Fσ
µν =

(
µ
∣∣∣ f̂ ∣∣∣ ν

)
=
∫

drµ (r) f̂ ν (r)

= hµν +
N

∑
λρ

(
Dα

λρ + Dβ
λρ

)
(µν |ρλ) − Dσ

λρ (µλ |ρν) , (2.16)

with the one- and two-electron integrals in atomic orbitals (AOs) space

hµν =
(

µ
∣∣∣ĥ∣∣∣ ν

)
,

(µν |ρλ) =
∫

dr1dr2µ (r1) ν (r1)
1

|r1 − r2|
ρ (r2) λ (r2) , (2.17)

and the one-electron density matrixs (OPDMs)

Dσ
µν =

nσ

∑
j

CµjC∗νj. (2.18)

The S matrix is the overlap matrix of the basis set

Sµν = (µ |ν) . (2.19)

As the Fock operator (2.7) depends on the MO, the Fock matrix F depends on the
coefficient matrices Cσ. Thus, the Roothan-Hall Equations (2.15) are nonlinear and
need to be solved iteratively. A solution of the Roothan-Hall equation is usually
called self-consistent field (SCF) as the MOs are eigenfunctions of the correspond-
ing Fock operator. In listing 2.1 a simple iterative algorithm is sketched to solve
the Roothan-Hall equations. This algorithm will be later on used to determine the
closed shell ground states of the model systems (cf. 3) and the atom (cf. 4). For
a closed shell system the restricted Hartree-Fock (RHF) ansatz is used, where the
same coefficients are used for both spins, i.e. Cα = Cβ. That means, all spatial are
doubly occupied by electrons of opposing spin.
Similarly, inserting the LCAO ansatz (2.14) into the time-dependent HF Equations
(2.13) yields

iSĊσ
= FσCσ. (2.20)
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Algorithm 2.1 Simple iterative algorithm to solve the Roothan-Hall equations
hµν, Sµν, (µν |ρλ) ← AOs integrals
TTT = 1← diagonalize S
Dσ ← Dσ

0
E← 0
repeat

Fσ ← from Dσ, hµν, (µν |ρλ)

F̃σ ← TTFσT
εσ, C̃σ ← diagonalize F̃σ

Cσ ← TC̃σ

Dσ ← Cσ (Cσ)†

Eold ← E
E← from Dσ, hµν, Fσ

until |E− Eold| < ε

Again these equations are nonlinear because the Fock matrices Fσ depend on the
coefficient matrices Cσ. For a both stable and efficient time-propagation of the
Equations (2.20) a modification of the constant mean field (CMF) algorithm[1] is
used. Listing 2.2 sketches the modified CMF algorithm. The time-evolution op-
erator e−i ∆t

2 Fσ
is evaluated by diagonalizing the Fock matrix Fσ. This is always

possible as Fσ is hermitian. The diagonilization of Fσ is again done in a space
where S = 1 as in algorithm 2.1. This transformation step is, however, left out for
clarity.

The TDHF theory will be used to study the electron dynamics in a one-di-
mensional model system (cf. Chapter 3), in atoms (cf. Chapter 4) and small
molecules (cf. 5). The initial conditions for all simulations are set up using a
RHF wavefunction. For the model system and the atoms the RHF wavefunction is
converged using the SCF algorithm 2.1. The initial state is then propagated in time
using the CMF algorithm sketched in 2.1 for both of the atom and the molecules.
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2.1 Hartree-Fock Theory

Algorithm 2.2 Pseudo code of the constant mean field algorithm[1]
hµν, Sµν, (µν |ρλ) ← AOs integrals
Cσ ← Cσ

0
t← 0
while t < tEnd do

repeat
adjust ∆t
Fσ ← from Cσ, hµν, (µν |ρλ)

Mσ ← e−i ∆t
2 Fσ

Cσ

Fσ ← from Mσ, hµν, (µν |ρλ)

Nσ ← e−i ∆t
2 Fσ

Cσ

error← ||M − N||
until error < ε
Cσ ← e−i ∆t

2 Fσ
Mσ

end while
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3
Model System

The aim of this chapter is to test if time-dependent Hartree-Fock (TDHF) theory
suffices to describe auto-ionizing processes despite the limited description of cor-
relation by TDHF theory. To this end, the electron dynamics in a one-dimensional
model system are studied using the methods discussed in the previous chapter. A
screened Coulomb potential (see Figure 3.1) is used for both the central potential

Vcental (r) = − Z√
r2 + 1

(3.1)

and the particle-particle interaction

Vpp (r12) =
1√

r2
12 + 1

(3.2)

because in one dimension the integrals over the Coulomb potential do not con-
verge. This model has similar physical properties as an atom. It has a set of bound
orbitals (see Figure 3.1) as well as continuum orbitals because the central potential
(3.1) has an upper bound. Additionally, the restrictions of the TDHF theory with
respect to correlation effects are the same in the model as in atoms because the
correlation arises from the anti-symmetry of the wavefunction. Thus, we expect to
see similar electron dynamics in the model as in atoms.

For an Auger-like process that is a transition during which the initial hole in the
core-shell is refilled by a valence particle with the same spin. At the same time a
valence particle with opposite spin is emitted into the continuum. Such a transition
in the simulation would be a hint that TDHF is able to describe the Auger process.
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V central (r)

χ1 (r)

χ2 (r)

χ0 (r)

r

Figure 3.1: Sketch of the screened Coulomb potential for Z = 6 and the corre-
sponding ground state Hartree-Fock orbitals for the six particle ground state.

3.1 Implementation

For a proper description of both the bound and continuum orbitals a numerical
grid is used instead of an L2 basis set. In contrast to usual grid based Hartree-
Fock (HF) implementations[19, 54], the grid is used as a basis to directly expand
the orbitals. For a good description of the orbitals the grid spacing has to be
significantly smaller then the smallest feature of the orbitals.

In the grid approximation the one- and two-electrons potential integrals are
given by(

µ
∣∣∣Vcentral

∣∣∣ ν
)
= −δµν

Z∣∣rµ

∣∣ ,
(µν |ρλ) = δµνδρλ

1∣∣rµ − rρ

∣∣ . (3.3)

For the kinetic energy operator the second order central difference approximation
is used(

µ

∣∣∣∣−1
2

∆
∣∣∣∣ ν

)
= δµν −

1
2

(
δµ(ν−1) + δµ(ν+1)

)
. (3.4)

For the determination of the HF ground state wavefunction the simple self-
consistent field (SCF) procedure sketched in Listing 2.1 is used. The TDHF equa-
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tions are propagated in time using the fourth-order Runge-Kutta algorithm[55]
which turned out the be sufficiently stable (see next section).

For the determination of the HF ground state the SCF algorithm sketched in
Algorithm 2.1 is used.

3.2 Setup

The initial state of the simulation is supposed to approximate the electronic wave-
function right after a photo-ionization. The ionization was not described explicitly
but the effect of the ionization was modeled by an instantaneous removal of a par-
ticle, i.e. a particle was removed from the wavefunction without relaxing it. This
sudden approximation is valid as long as the energy of the photo electron is large
enough[56]. The photon energy produced by the X-ray free-electron lasers is about
12 keV while the binding energies of the core-shell electrons of carbon, nitrogen
and oxygen are of the order of 300 eV – 500 eV[57]. Hence, the kinetic energy of
the photo electron exceeds the binding energy of any of the remaining electrons
by about one and a half orders of magnitude. Thus, the initial state should be well
described within the sudden approximation.

According to the discussion above, the initial state was prepared by converging a
restricted Hartree-Fock (RHF) ground state wavefunction using the SCF algorithm
discussed in Section 2.1.2. Then a particle was removed from the core orbital.

Before the actual simulation can be performed it is necessary to test the stability
of the integrator used to propagate the TDHF equations in time and to determine a
proper grid size and timestep for the time-propagation. The simulations of the six-
particle system provide as benchmarks as the dynamics of the six-particle system
show a transition we are mainly interested in (for detailed discussion of the results
consider Section 3.3.2). The transition was determined from the time-dependent
one-electron density matrix (OPDM) Dα

00 (t) projected into the space of the initial
molecular orbitals (MOs)

Dα′ (t) = C† (0) Dα (t)C (0) . (3.5)

Similarly to the Mulliken population analysis[58] the diagonal elements of Dα′ (t)
give the occupation of the initial orbitals.

First, the stability of the fourth-order Runge-Kutta integrator was tested. For
this purpose, the converged RHF ground state of the six-particle system was prop-
agated in time. The ground state was obtained using the SCF algorithm sketched
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3 Model System

in 2.1 with a convergence criterion of ∆E < 10−7. As the converged ground state
is an eigenstate no dynamics are expected beyond an oscillating phase factor for
each orbital. This phase factor drops out when the time-dependent OPDM is con-
sidered.

0 200 400 600 800 1000
Time [a.u.]

1.96

1.98

2.00

2.02

2.04

D
ii

D00
D11
D22

Figure 3.2: Time-evolution of the diagonal elements of D′ corresponding to the
doubly occupied molecular orbitals in the six-particle ground state. Note that all
three curves overlay.

Figure 3.2 shows the time-evolution of the diagonal elements of D′ correspond-
ing to the doubly occupied orbitals of the six-particle ground state. As expected
there is no change in the occupation of the MO allowing the conclusion that the
ground state is properly converged and the fourth-order Runge-Kutta integrator is
stable at least within the 1000 a.u. considered here.

Second, an appropriate grid size was determined. For that purpose, dynamics
simulations of the six-particle system were performed using different grid sizes
after removal of a particle from the core-shell χα

0 orbital. All the simulations were
performed using a timestep of 0.001 a.u..

Figure 3.3 shows the respective Dα′
00 (t) elements of the OPDM as a function of

time. For the first 200 a.u. to 600 a.u., depending on the grid size used, there is
no change in the occupation of the initial χα

0 orbital. After this initial delay the
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3.2 Setup

Figure 3.3: Dα′
00 (t) is plotted as function of time for various grid sizes. The inset

shows the time of transition as a function of the grid size. A timestep of 0.001 a.u.
was used for all the simulations.

occupation of the χα
0 orbital increases within about 100 a.u. to about 0.8 a.u. This

means that the initially created hole in the core-shell is refilled.
The inset in Figure 3.3 shows the transition time as a function of the grid size.

The transition time was determined as the time when Dα′
00 (t) has increased to

0.66 a.u. and it converges to about 700 a.u. at 505 grid points. Hence, 505 grid
points were used for the simulations.

Then a appropriate time step was derived using a similar approach as above. The
dynamics in the six-particle system after removal of a particle from the χα

0 orbital
were simulated with different timesteps and a grid size of 101. Like before the
transition time, i.e. the time when the core hole is refilled, was applied to compare
the different simulations.

Figure 3.4 shows the transition of Dα
00 (t) for different timesteps ∆t and 101 grid

points. The three curves cannot be discerned as they overlay. Hence, the transition
time is virtually the same for all timesteps. For the six-particle system the trajectory
with ∆t = 0.001a.u. was already available from the grid size determination and,
hence, analyzed in the following section. The four-particle system was then also
run using the ∆t = 0.001a.u. timestep.
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Figure 3.4: Transition in the six-particle system after instantaneous core-shell ion-
ization for different timesteps. Note that the curves are virtually the same and,
thus, overlay.

3.3 Results

The simple convergence algorithm used (see Algorithm 2.1) only yielded proper
initial states for four- and six-particle systems. For systems with more particles
the algorithm did not provide ground states that were stable enough for time-
propagation. Thus only the four- and the six-particle system are discussed here.

As discussed in the previous section the initial state is prepared by removing a
particle from the core-shell α MO χα

0 of a converged RHF ground state.
In the Auger process a particle from the valence-shell (MO χ2) fills the hole in

the core-shell (MO χ0). In turn, another particle from the valence-shell is emitted
into the continuum. The energy of the emitted particle can be estimated as the
difference of the energy of the core hole initial state Ecore and the energy of the
double ionized system Edi. If this energy difference it larger then zero, the particle
can actually be emitted into the continuum.
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3.3.1 Four-particle System

The difference of the energy of the initial state Ecore and the doubly ionized state
Edi is about Edi− Ecore ≈ 0.23a.u.. Hence, there is enough energy to emit a valence
particle into the continuum.
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Figure 3.5: Occupation of the initial α (left) and β (right) molecular orbitals deter-
mined as the corresponding diagonal elements of the one particle reduced density
matrix in the space of initial orbitals. The thick line is the running average over
10 a.u..

Figure 3.5 shows the dynamics of the system after the instantaneous removal of
a particle from the χα

0 core MO. The occupation of the initial MOs is shown as a
function of time. Right after the ionization of the initial α valence MO (left, green
line) χα

1 starts to oscillate slightly. The onset of the oscillation is accompanied by
a rapid expansion of the χα

1 (t) MO. This expansion is reflected in a rapid increase
of the radius of gyration (ROG) right after the ionization (see insets in Figure 3.6,
right). Afterwards the extension of MO χα

1 (t) oscillates around an increasing mean
value.

The system shows an immediate reaction to the removal of the particle. There
is, however, no transition within the simulation time of about 7000 a.u..

The occupation of the initial χ
β
1 MO (green line) starts to oscillate strongly after

the ionization whereas the occupation of core χ
β
0 MO (red line) is barely affected.

Similar to the α valence MO the valence β MO extends rapidly right a the beginning
(see inset in Figure 3.6) and oscillates afterwards.
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Figure 3.6: The expectation values 〈χα
j |x̂2|χα

j 〉 are plotted for both the α (left) and β

(right) molecular orbitals. The thick line is the running average over 10 a.u..

Also the β valence orbital shows a rapid reaction to the perturbation. Like in the
α case there is no transition observed during this simulation.

The system shows a strong reaction to the removal of the particle. However, no
transition occurs during 7000 a.u. in which the core-hole created by the removal of
the particle is refilled. Although there is enough energy to emit a valence particle
into the continuum, no emission can be observed.

3.3.2 Six-particle System

The energy difference is Edi − Ecore ≈ 1.68a.u.. Thus, an Auger-like process is
energetically possible.

Figure 3.7 shows the dynamics of the six-particle system after the instantaneous
ionization (t = 0a.u.) of the χα

0 MO (red line in Figure 3.7 (left)). The occupation
of both the χα

2 valence orbital and the χ
β
2 valence orbital starts to oscillate strongly.

This oscillation in MO space corresponds to an oscillation in real space. The oscil-
lations in real space are reflected in ROG (

〈
χi
∣∣x̂2
∣∣ χi
〉
) of the valence orbitals (see

Figure 3.8 blue lines). Hence, the system immediately reacts to the perturbation of
removing a particle.

For about 600 a.u these oscillations of the two valence orbitals are the only visible
dynamics. After about 600 a.u. the occupation of the χα

0 MO raises up to 0.9 a.u.
within 200 a.u.. At the same time the occupation of both the χα

1 and χα
2 MOs

decreases. The occupation of the valence χα
2 MOs drops to essentially zero after
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Figure 3.7: Occupation of the initial α (left) and β (right) molecular orbitals deter-
mined as the corresponding diagonal elements of the one particle reduced density
matrix in the space of initial orbitals. The thick line is the running average over
10 a.u..

about 900 a.u.. These changes of the occupations of the initial MO are also reflected
in the ROG (see Figure 3.8 (left)) of the two occupied orbitals. The χα

1 (t) MO
(green line) starts to extend significantly at around 500 a.u. while the extension of
the χα

2 (t) valence MO (blue line) does a jump around 600 a.u. to 800 a.u..
The observed dynamics indicate a transition taking place in the system. During

this transition (600 a.u. – 800 a.u.) the initially created core hole is refilled by charge
coming from the higher MOs. After this transition the initial valence MO χα

2 is
essentially empty.

Also the β MOs show dynamics beyond the oscillation of the valence MO χ
β
2

starting at around 600 a.u.. The occupation of all three initial MOs (see Figure 3.7
(right)) decreases. The occupation of the initial χ

β
2 valence MO (blue line) drops

below 0.2 a.u. after about 800 a.u. and does not increase anymore afterwards. The
strong oscillation of the occupation of the χ

β
2 MO declines during the transition

and essentially vanishes after the occupation has dropped to zero. Similarly the
occupation of the initial χ

β
1 MO drops down to about 0.3 a.u. and oscillates around

this value afterwards. Also the occupation of the initial χ
β
0 core MO decreases. It

drops to 0.6 a.u. after about 800 a.u. but increase again afterwards to about 0.8 a.u..
Again the change in the occupations of the initial MO is accompanied by a

change of the ROG (see Figure 3.8) of the current MOs. All three β MOs expand.
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Figure 3.8: The expectation values 〈χα
j |x̂2|χα

j 〉 are plotted for both the α (left) and
β (right) occupied molecular orbitals. The thick line is the running average over
10 a.u..

The “middle” χ
β
1 expands gradually during the time frame 400 a.u.–800 a.u. while

especially the extension of the χ
β
0 core MO increases rapidly within about 100 a.u..

After the instantaneous removal of a particle from the six-particle ground state
a transition occurs in the system in the time interval 600 a.u.–800 a.u.. During the
transition the initial α core hole is refilled while the occupation of the initial α
valence MO decreases to essentially zero. At the same time the occupations of
all three β MOs decreases. The refilling of the core hole resembles the Auger
process. Although there is enough energy available to ionize the valence MO, no
clear ionization of the β MO is observed. All three β MOs expand instead.

Despite the lack of a clear emission of a β particle into the continuum, the results
are still promising. The simulations indicate, that TDHF is capable of describing
a process in which an instantaneously create core hole is refilled by the remaining
particles. The absence of a clear auto-ionization could still be caused by the specific
interactions in this model system. Hence, the methodology used in the chapter to
simulate the dynamics in the model system will be transferred to atoms in the
following chapter.
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4
Beryllium

In the previous chapter it was shown that a time-dependent Hartree-Fock (TDHF)
based approach answers the purpose of describing the refilling dynamics for the
core hole created by instantaneous ionization of a one-dimensional model system.
Due to this encouraging result, a similar TDHF was applied to single atoms, to test
if TDHF is sufficient to describe the Auger decay in realistic systems.

As atoms are spherically symmetric, they can be seen as one-dimensional be-
cause the angular part can be treated by spherical harmonics[59]. Typically this
decomposition is directly applied to the orbitals

χj (r) = Y
mj
lj

(θ, φ)
Pj (r)

r
(4.1)

and then the differential equations for the radial part Pj (r) are solved directly[19,
54]. Here, I use a different approach that retains the matrix formulation of Chap-
ter 2.1.2. The orbitals χj (r) are expanded in a basis set µ (r) which is in turn
decomposed in an angular and a radial part

µ (r) = Ymµ

lµ (θ, φ)
Rµ (r)

r
. (4.2)

First, the radial part is treated using a numerical grid. The numerical grid has
a great computational advantage as the two-electron integrals reduce to a two
index quantity greatly reducing the number of two-electron integrals and, thus,
the memory requirement. Usually exponential grids are used[19, 54], which allow
a good description of the orbitals in the vicinity of the nucleus. However, for
the (pseudo-) continuum part a uniform grid is necessary. As general non-uniform
grids lead to a non-symmetric representation of the kinetic energy operator[60, 61],
a uniform grid is used throughout the whole radial box.
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4 Beryllium

Second, a B-spline basis[20] is deployed to expand the radial part of the orbitals.
B-spline basis sets are utilized successfully in atomic and molecular physics[21, 22].
They offer the advantage of an analytic representation of the kinetic energy op-
erator. Additionally, the representation of the kinetic energy operator is sym-
metrical irrespective of the choice of the knot sequence. A parabolic-linear knot
sequence[21] is employed, which allows for both a good description of the orbitals
in the vicinity of the nucleus and the (pseudo-) continuum.

Beryllium is the second lightest atomic species showing Auger decay after Lith-
ium[12]. Beryllium was chosen over Lithium as the test system because it has
a closed shell ground state, that simplifies the determination of the initial state.
Furthermore, both bound molecular orbitals (MOs)1 have s symmetry[62]. As the
angular momentum is conserved, also the emitted Auger electron has s symmetry.
Thus, only MOs need to be taken into account in the calculation which simplifies
the implementation of the working equations and reduces the computational effort.

To my knowledge there is no experimental lifetime of the autoionizing core hole
state for atomic Beryllium available. The theoretically determined core hole life-
times range from 7.0 fs to 32.9 fs[63–66]. Therefore, the electron dynamics calcu-
lation should, at least cover about 33 fs to test if the TDHF approach predicts the
Auger decay for Beryllium in the correct time window.

The photo-ionization is again modeled using the sudden approximation[56] (cf.
Section 3.2).

1We adopt the notation that a MO is the solution of the Hartree-Fock (HF) equations even in
an atom. This notation is used to avoid possible confusion with the quantum chemistry notation of
atomic orbitals (AOs) being basis functions used to expand MOs.
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4.1 Numerical Hartree-Fock

4.1 Numerical Hartree-Fock

As in the previous chapter, the matrix formulation from Section 2.1.2 is retained
despite the numerical treatment by defining the “basis”

µ (r) = Ymµ

lµ (θ, φ)
Rµ (r)

r
µ = 1 · · ·N,

Rµ (r) =

{
1, r = µ∆
0

, (4.3)

where the angular part is described by the spherical harmonics Ymµ

lµ
. The 1

r term in

(4.3) ensures the radial part of the MOs
Pj(r)

r has the right asymptotics at the origin
Pj (r → 0)→ 0.

As the basis (4.3) is orthonormal, the overlap matrix equals the unity matrix
S = 1. The nuclear potential integrals are given by

(µ |Vnuc| nu) =
∫

Ω
dω

∫ ∞

0
drY−mµ

lµ (ω)Ymν
lν (ω) δ

(
r− Rµ

) (
−Z

r

)
δ (r− Rν)

= −δµν

(
Z
Rµ

)
, (4.4)

where the integral over the whole space
∫
R3 dr is written as a product of the angu-

lar part
∫

Ω dω and the radial part
∫ ∞

0 drr2. The kinetic energy operator is approxi-
mated by the second order central difference approximation in the radial space(

µ

∣∣∣∣−1
2

∆
∣∣∣∣ ν

)
= δµν −

1
2

(
δµ(ν−1) + δµ(ν+1)

)
. (4.5)

The two-electron electron integrals are calculated from

(µν |λσ) =
∫∫
R3

dr1r2µ∗ (r1) ν (r1)
1

|r1 − r2|
λ∗ (r2) σ (r2)

=
∞

∑
l=0

l

∑
m=−l

(−1)m
√(

2lµ + 1
)
(2lν + 1) (2lλ + 1) (2lσ + 1)

×
(

lµ lν l
0 0 0

)(
lµ lν l
−mµ mν −m

)(
lλ lσ l
0 0 0

)(
lλ lσ l
−mλ mσ m

)
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4 Beryllium

× δRµRν δRλRσ

rl
<

rl+1
>

, (4.6)

where the relation between the spherical harmonics, the Clebsch-Gordan coeffi-
cients and the Wigner 3-j symbols[67, 68] are used together with Laplace expansion[69]
of the electron-electron interaction

1
|r1 − r2|

=
∞

∑
l=0

l

∑
m=−l

4π

2l + 1
Y−m

l (θ, φ)Ym
l (θ, φ)

rl
<

rl+1
>

. (4.7)

With the above relations a simple self-consistent field (SCF) procedure was imple-
mented (see Section 2.1.2) to determine the initial state for the electron dynamics.
The TDHF equations are solved using the constant mean field (CMF) algorithm
discussed in section 2.1.2.
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4.1 Numerical Hartree-Fock

4.1.1 Setup

For the numerical HF calculations two parameters, the grid size and the width of
the radial box, need to be chosen. The grid size N determines the computational
effort for the dynamics simulations and cannot be chosen arbitrarily large. The grid
size N and the box width define the spectrum of the MOs. The energy of the bound
MOs is mainly defined by the quality of the respective MO in the vicinity of the
nucleus. For a good description a small grid spacing is needed. The continuum
part of the orbital spectrum is dominated by the spectrum of the kinetic energy
operator

εn =
2

(∆x)2

(
1− cos

(πn
2N

))
, (4.8)

with the grid spacing ∆x. Thus, the continuum part of the spectrum mostly covers
a high energy part if the grid spacing is too small. Hence, two trade-offs had to
be made, between the computational effort and the quality of the MOs as well as
between the bound orbital energies and the energy range covered by the continuum
spectrum.

The grid size had been chosen such that the expected core-hole lifetime was
covered by the simulation time with reasonable computational effort. The grid size
was picked to be 1000, which yielded a simulation time of about 35 fs with about 4

weeks of computer time.

Figure 4.1: Spectrum of the ground state Fock matrix for 1000 grid points and a
radial box size of 25 a0.
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4 Beryllium

The box width was then chosen to give a balance between the energies of the
bound MOs which also determine the ground state HF energy and the energy
range covered by the continuum spectrum.

The width of the radial box was set to 25 a0. This yields a ground state restricted
Hartree-Fock (RHF) energy of E0 ≈ −14.54 a.u., which reproduces the ground state
RHF energy from the literature[19] to 10−3a.u.. The spectrum of the ground state
RHF Fock operator is shown in Figure 4.1. The continuum part of the spectrum
unfortunately still covers a wide uninteresting energy range > 10 a.u., but further
increasing the grid spacing would diminish the energies of the MOs. Hence, the
parameters described above, grid size of N = 1000 and a box size of 25 a0 were
used in the dynamics simulation.

4.1.2 Results

The energy difference between the initial core-hole and the doubly ionized state
was found to be about 3.8 a.u.. Since the energy difference is positive, there is
enough energy available to ionize the valence MO and the Auger decay is energet-
ically possible.
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Figure 4.2: The expectation values 〈χα
j |x̂2|χα

j 〉 are plotted for both the α (left) and β

(right) molecular orbitals. The thick line is the running average over approximately
40 a.u..

Figure 4.2 shows the time-evolution of the radius of gyration (ROG) 〈χα
j |x̂2|χα

j 〉
of the occupied orbitals after the ionization of the α core MO. Right after the ion-
ization, the two valence MO χσ

1 (green lines) (see Figure 4.2 insets) first quickly
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4.1 Numerical Hartree-Fock

contract and then expand. In addition of the expansion, the extension of the va-
lence MOs starts to oscillate. This oscillation extends over the whole simulation.

Also the β core MO (red line) extends right after the ionization. After the initial
expansion (about 0.2 fs), the extension of the χ

β
0 core MO stays essentially constant

for the rest of the simulation.
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Figure 4.3: Occupation of the initial α (left) and β (right) molecular orbitals deter-
mined as the corresponding diagonal elements of the one particle reduced density
matrix in the space of initial orbitals. The thick line is the running average over
approximately 40 a.u..

This dynamics are also reflected in the occupation of the initial MO (see Figure
4.3). The occupation of both valence MO (green lines) drop right after the ion-
ization. The occupation of the initial χα

1 MO decreases to about 0.7 e−. After the
initial drop, the occupation of the initial χα

1 oscillates around that value. Similarly,
the occupation of the initial χ

β
1 decreases to about 0.55 e− and oscillates strongly

around that value with an amplitude of about 0.3 e−. The occupation of the initial
χ

β
0 core MO decreases slightly after the ionization. Afterwards, the occupation of

the χ
β
0 core MO stays essentially constant until the end of the ionization.

There is no increase in the occupation of the initial χα
0 MO. Accordingly, no

transition observed within the simulation time of about 37fs. Thus, the numerical
HF does not describe the Auger decay within the expected time window (about
33 fs). The lack of the transition could simply be caused by the limitations of
the HF theory, especially the limited description of electron correlation. On the
other hand, the approach used above has additional limitations. Especially the
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4 Beryllium

kinetic energy operator is approximated by second order differencing and the grid
describes a continuum spectrum that mostly covers an energy range that is way
above the expected energy of the Auger electron.

To exclude possible influence of the grid basis on the electron dynamics and to
judge the applicability of TDHF theory to the Auger process, a B-spline basis was
employed the following section.
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4.2 B-spline Hartree-Fock

4.2 B-spline Hartree-Fock

In the previous section it was shown that the TDHF theory with a numerical grid
is probably not capable of describing the Auger process properly. To make sure
that this limitation is caused by the HF approximations and not by the numerical
grid used, a B-spline[20] basis set was used together with TDHF theory in a similar
setting as before.

The B-spline basis offers several advantages over the numerical grid. It allows
an analytic expression of all electron operators, especially the kinetic energy op-
erator. Furthermore, a B-spline basis together with a non-uniform knot sequence
allows a balanced description of both the bound and continuum MOs and, thus, a
compacter basis offering a higher computational efficiency.

A B-spline1 basis set Bτ
i,K is employed as the radial part of the basis

µ (r) = Ymµ

lµ (θ, φ)
Bτ

iµ,K (r)

r
, µ = 1 · · ·N (4.9)

and is defined within the computational box [0, R]. The Kth order B-splines are de-
termined by the recursion relation with respect to the knot sequence τ = {τi}i=1,...,M

Bτ
i,K (x) =

x− τi

τi+K−1 − τi
Bτ

i,K−1 +
τi+K − x

τi+K − τi+1
Bτ

i+1,K−1,

Bτ
i,1 (x) =

{
1, τi ≤ x < τi

0, else
. (4.10)

So the Kth order B-splines Bτ
i,K are polynomials of order K − 1 with compact sup-

port [τi, τi+K]. The derivative of the B-splines are given by[20]

(
Bτ

i,K
)′
(x) =

K− 1
τi+K−1 − τi

Bτ
i,K−1 (x)− K− 1

τi+K − τi+1
Bτ

i+1,K−1 (x) . (4.11)

It is principally possible to derive analytic formulas for the various one- and two-
electron integrals needed in Hartree-Fock calculations. This is, however, tedious
and does not necessarily yield efficient implementations. Instead Gauss-Legendre
quadrature is used to evaluate the integrals over the intervals [τi, τi+1]. The Gauss-

1In the following, B-spline(s) will denote both the individual function and the set of functions,
which is defined by the order K and the knot sequence τ.
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4 Beryllium

Legendre quadrature of order NGLQ = 2K− 2 is able to exactly integrate the over-
lap matrix elements

Sµν = (µ |ν) =
∫

Ω
dωY−mµ

lµ (ω)Ymν
lν (ω)

∫ R

0
drBτ

iµ,K (r) Bτ
iν,K (r)

= δlµlν δmµmν

∫ R

0
Bτ

iµ,KBτ
iν,K (4.12)

and the elements of the representation of the kinetic energy operator

Tµν = −1
2
(µ |∆| ν) (4.13)

− 1
2

∫
Ω

dω
∫ R

0
drY−mµ

lµ (ω) Bτ
iµ,K

(
∂

∂r

(
r2 ∂

∂r

)
− 1

r2 L̂2
)

Ymν
lν (ω) Bτ

iν,K

=
1
2

δlµlν δmµmν

∫ R

0
dr
(

Bτ
i,K
)′
(r)
(

Bτ
i,K
)′
(r) +

lµ(lµ + 1)
r2 Bτ

iµ,K (r) Bτ
iν,K (r) ,

(4.14)

as the integrated functions are polynomials of order ≤ 2K− 2. The potential inte-
grals cannot be integrated exactly by Gauss-Legendre quadrature as the integrands
are rational functions rather then polynomials. In practice the potential integrals
converge rapidly to machine precision with increasing order of the quadrature[21].
The nuclear attraction integrals

Vnuc
µν =

∫
Ω

dωY−mµ

lµ (ω)Ymν
lν (ω)

∫ R

0
dr

1
r

Bτ
iµ,K (r) Bτ

iν,K (r) (4.15)

= δlµlν δmµmν

∫ R

0
dr

1
r

Bτ
iµ,K (r) Bτ

iν,K (r) (4.16)

can simply be evaluated with the increased order quadrature. The two-electron
integrals

(µν |λσ) =
∞

∑
l=0

l

∑
m=−l

(−1)m
√(

2lµ + 1
)
(2lν + 1) (2lλ + 1) (2lσ + 1)

×
(

lµ lν l
0 0 0

)(
lµ lν l
−mµ mν −m

)(
lλ lσ l
0 0 0

)(
lλ lσ l
−mλ mσ m

)

36



4.2 B-spline Hartree-Fock

×
∫∫ R

0
dr1dr2Bτ

iµ,K (r1) Bτ
iν,K (r2)

rl
<

rl+1
>

Bτ
iλ,K (r2) Bτ

iσ,K (r2) (4.17)

are calculated using the cell algorithm[70] for the moment integrals

Rl
µν,σλ =

∫∫ R

0
dr1dr2Bτ

iµ,K (r1) Bτ
iν,K (r2)

rl
<

rl+1
>

Bτ
iλ,K (r2) Bτ

iσ,K (r2) . (4.18)

The evaluation of the B-splines and the calculation of the Gauss-Legendre points
and weights is implemented using the GNU scientific library[71]

4.2.1 Setup

As the first and the last B-splines are non-zero at the origin and the boundary of
the box, they are excluded from the calculation to enforce the boundary conditions
Pj (r → 0) = Pj (r → R) = 0 yielding N = M− 2 B-splines as basis functions.

Figure 4.4: Eigenvalue spectra of the converged closed shell Fock matrix with a B-
spline basis of order K = 9, N = 100 and a linear-parabolic sequence with i0 = 10
for different box sizes.
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R 75 a.u.
N 100
K 9

NGLQ 10

Table 4.1: Parameters of the B-spline calculations.

A knot sequence with K-fold multiplicity for the first and the last knot is em-
ployed

τi = 0, i = 1, . . . , K
τi = R, i = M, . . . , M + K. (4.19)

The interior knots have multiplicity one and are chosen according to a linear-
parabolic sequence[21]

r0 =
R (i0 − 1)

2M− i0 − 1
,

α =
r0

(i0 − 1)2 ,

β =
R− r0

M− i0
,

τi =

{
α (i− K− 1)2 , K + 1 ≤ i < i0 + K
r0 + β (i− K− i0) , i0 + K ≤ i ≤ M

. (4.20)

This sequence allows a balanced description of both the bound orbitals, due to the
high knot density in the vicinity of the nucleus, and the continuum orbitals by
virtue of the linear knot sequence in the rest of the box.

Figure 4.4 shows the eigenvalue spectra of the converged closed shell Fock matrix
for different box sizes R. The size of the B-spline basis was fixed to N = 100,
which is computationally well accessible. The Auger electron is expected to have
an energy of less than 5 a.u.[72] and the grid resulting from a box size of R = 75a.u.
describes the interesting energy range < 10 a.u. well. The parameters from Table
4.1 yield a ground state RHF E0 = −14.573023a.u., which reproduces the ground
state RHF energy from the literature[19] within 10−8. The parameters summarized
in Table 4.1 are thus used in the following.
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4.2 B-spline Hartree-Fock

4.2.2 Results

As in the numerical HF calculation, the difference between the initial core-hole
state and the doubly ionized state is about 3.8 a.u.. Again, the energy difference is
positive and the Auger decay is energetically allowed.
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Figure 4.5: The expectation values 〈χα
j |x̂2|χα

j 〉 are plotted for both the α (left) and β

(right) molecular orbitals. The thick line is the running average over approximately
40 a.u..

Figure 4.5 shows the ROG 〈χα
j |x̂2|χα

j 〉 of all three occupied MOs. Like in the
numerical HF case, both initial valence MOs χσ

1 (green lines) contract right after
the ionization (t = 0fs) (see insets). After the initial contraction both valence MOs
expand quickly within 2.0 fs. After this expansion the extension of the two valence
MOs oscillates. Note that the valence MOs expand three times as much as in the
numerical HF case. In addition to the oscillation, the α MO χα

1 expands slowly
during the time-evolution. Also, the core β MO χ

β
0 expands after the ionization.

After that, it oscillates slightly for the rest of the simulation time.
Figure 4.6 shows the occupation of the initial MOs. The occupation of the initial

χσ
1 MOs decreases rapidly right after the ionization. The occupation of the initial α

valence MO χα
1 drops to 0.82 e− and oscillates around that value with an amplitude

of 0.05 e−. At that time the occupation of the initial β MO χ
β
1 drops down to 0.72 e−.

After that initial decrease the occupation of the χ
β
1 MO oscillated strongly with an

amplitude of about 0.2 e−. The occupation of the initial χ
β
0 core MO decreases
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Figure 4.6: Occupation of the initial α (left) and β (right) molecular orbitals deter-
mined as the corresponding diagonal elements of the one particle reduced density
matrix in the space of initial orbitals. The thick line is the running average over
approximately 40 a.u..

slightly directly after the ionization and stays essentially constant for the rest of
the simulation.

Again no transition, i.e. no refilling of the initial χα
0 core MO (see Figure 4.6

(left)), is observed. As in the numerical HF simulations no Auger decay can be
observed during the simulation.

Despite the better description of the continuum by the B-spline basis compared
to the numerical grid, it still offers only a discrete set of MOs in a certain energy
region. It cannot be excluded that the density of these discrete states is not high
enough for the description of the Auger decay. Another problem arises from the
choice of the box width. A slight change of the box width will shift the energy
of the continuum MOs. Thus, a particular choice of the box might yield a set
of continuum MOs for which the energy of the Auger electron lies between the
energy of two continuum MOs causing a poor description of the wavefunction of
the Auger electron. It is possible to exclude the second problem by systematically
varying the box width within a certain range[21].
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Molecules

In the previous chapter we have seen that time-dependent Hartree-Fock (TDHF)
theory is probably not capable of describing the Auger decay properly due to
the limited description of electron correlation within TDHF theory. For further
investigations of this limitation, the electron dynamics in two small biomolecules
after valence-shell ionization will be studied in this chapter.

Glycine and 2-phenylethyl-N,N-dimethylamine (PENNA) were chosen as test
systems as the electron dynamics after instantaneous valence ionization have been
described by correlated methods[73, 74], so it is possible to compare the dynamics
predicted by TDHF theory to the electron dynamics obtained with a more accurate
method.

As we are in general interested in biomolecules, Glycine (H
2
NCH

2
COOH) was

chosen as a prototype for peptides. As the smallest amino acid it is furthermore
computationally well accessible.

The charge migration dynamics after the ionization from two different molecular
orbital (MO) have been characterized by Kuleff et. al.[73] using a correlated ab
initio method (non-Dyson algebraic diagrammtic construction (ADC)(3)[75]). To
enable a direct comparison to these results a similar computational setup was used,
especially the dynamics after ionization from the same MOs were considered (cf.
Section 5.3).

PENNA was chosen as a second test system because it exhibits very specific
electron dynamics after instantaneous ionization of the highest occupied molecular
orbital (HOMO) allowing an easy comparison of the results of different computa-
tional approaches.

In addition to the charge migration process predicted by Lünnemann et. al.[74]
with the same correlated method as in the Glycine case, it was shown that time-
dependent density functional theory (TDDFT), using a constant Kohn-Sham matrix
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5 Molecules

for the propagation of the MOs, is not sufficient to describe the charge migration
process[76].

The availability of different results from the literature enables us to compare our
TDHF based approach to a more accurate, correlated method as well as to a less
accurate method.

As in the previous chapters the initial states are prepared by removing an elec-
tron instantaneously from an MO, describing the photo-ionization process in the
sudden approximation[56] (cf. Section 3.2).

5.1 Implementation

The most complex part and one of the computational bottlenecks of a Hartree-
Fock (HF) calculation using gaussian basis sets[77] is the integral code used to
calculate the two-electron integrals. For an efficient and stable implementation the
capabilities of the Gaussian 03 program package[78] were used. The integrals as
well as the ground state HF were calculated using the Gaussian 03 program for
the following TDHF calculation. The TDHF equations (2.13) were solved with the
constant mean field (CMF) algorithm 2.2.

5.2 Charge Migration Analysis

To compare the electron dynamics to the results from the literature, the charge
migration analysis (CMA) is employed[24, 79]. To this end, the difference density
Q (r, t) is defined as the difference between the ground state ρ0 (r) and the density
of the time-evolving state ρ (r, t)

Q (r, t) = ρ0 (r)− ρ (r, t) . (5.1)

The difference density Q (r, t) can be written as[24]

Q (r, t) = ∑
pq

χ∗p (r) χq (r) Npq (t) , (5.2)

with the time-dependent hole density matrix given for HF wave functions

Npq (t) = δpqnp −
(

C†
0SD (t) SC

)
pq

, (5.3)
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where np are the orbital occupations in the closed shell ground state. Analogous to
normal density matrices[80] the diagonal elements of the hole density matrices can
be interpreted as the fraction to which the hole occupies the respective initial MO.
For the CMA the hole density matrix N (t) is diagonalized to obtain the natural
charge orbitals and the hole occupation numbers[24]

Q (r, t) = ∑
p

∣∣χ̃p (r, t)
∣∣2 ñp (t) . (5.4)

5.3 Glycine

The structure of the glycine molecule was obtained from a geometry optimization
with the Gaussian 03 program package using the DZP[78] basis set1. The DZP
basis was used in accordance with Reference [73]. Figure 5.1 shows the optimized
structure of Glycine (the exact coordinates are given in the Appendix A.1) and the
11th (blue surface) and 16th (red surface) MOs which are subject to the ionization.
The 11th and 16th are chosen for ionization to enable a direct comparison of the
electron dynamics obtained in this work with the electron dynamics obtained in
Reference [73].

The ground state geometry has a symmetry plane which contains all atoms ex-
cept the hydrogen atoms in the NH2 and CH2 groups. The structure, thus, belongs
to the symmetry group Cs. Hence, the MOs are either symmetric or anti-symmetric
with respect to this symmetry plane.

The DZP basis was also used for the following TDHF calculation.

5.3.1 Ionization from 11th Molecular Orbital

As discussed above, the ionization from the 11th MO (see Figure 5.2 top left) is
considered first. The 11th MO is located on the CO and OH groups on the opposing
site of the amine group. It is symmetric with respect to the symmetry plane of the
glycine molecule.

Figure 5.2 shows the time-evolution of the electronic wavefunction after the ion-
ization of the 11th MO. The diagonal elements of the hole density matrix (see
Equation (5.3)) are plotted.

1As obtained from the Environmental Molecular Sciences Laboratory (EMSL) basis set
exchange[81, 82].
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5 Molecules

Figure 5.1: Hartree-Fock minimum structure of the glycine molecule in the DZP ba-
sis. The isosurfaces show the 11th molecular orbital (blue) and the 16th molecular
orbital (red), which are ionized to generate the initial structure. Both are symmetric
with respect to the symmetry plane of the molecule.

Right after the ionization the hole occupies only the 11th MO (black line). Then
part of the hole is transferred to the 15th (blue line) and the 16th (yellow line)
MO. The hole occupation of the 15th MO oscillates with a period of about 2 fs.
After about 2 fs, also the 13th MO (green line) gains hole occupation. At about
3 fs the occupation of the 13th MO has increased to about 0.4 e. The hole oscillates
once between the 13th and the 11th MO. The 16th MO (yellow) is spread over the
whole molecule while the 15th MO (blue) is mostly located on the amine end of
the molecule. Thus, about 0.15 e is transferred from one end of the molecule (11th
MO) to the other end (16th MO) in about 500 as. In contrast, the charge exchange
between the 11th MO (black) and 13th MO (green) takes places mostly on the
carboxyl group because both MOs are located there.

After about 9 fs the hole occupies the 10th, 11th, 13th, 15th, 16th and 19th MO.
The occupation of the initially ionized 11th MO has a short peak around 10.5 fs.
After 12 fs, the occupation of the 11th MO has dropped below 0.1 e. At the end of
the simulation the hole is spread over all six MOs considered here, especially the
hole occupation of the initially ionized MO 11 (black) has dropped below 0.1 e.
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Figure 5.2: The time-evolution of the Hartree-Fock wavefunction of ionization from
the 11th molecular orbital. The diagonal elements of the time-dependent hole
density matrix are plotted.

Note that the hole only occupies MO that are symmetric with respect to the
symmetry plane of the glycine molecule. Thus, the initial symmetry of the hole is
preserved during the time-evolution of the electronic wavefunction.

The change of the occupation of the initial β MOs is less than 0.1 e. In contrast
to the core-shell ionization considered in the previous chapter the perturbation of
removing a valence electron seems small, so the β MOs show only little dynamics.

The electron dynamics after 8 fs resembles a diffusion of the hole in the space of
symmetric valence MOs without the HOMO (which is the 20th MO). This picture
is supported by the fact that no dynamics of the β MOs are observed.
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5.3.2 Ionization from 16th Molecular Orbital

Now the ionization from the 16th MO (see Figure 5.3 (top left)) is considered. The
16th MO is distributed among the whole molecule. Also the 16th MO is symmetric
with respect to the symmetry plane of the glycine structure.
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Figure 5.3: The time-evolution of the Hartree-Fock wavefunction of ionization from
the 16th molecular orbital. The occupations of the relevant initial orbitals are
shown.

Figure 5.3 shows the time-evolution of the electronic wavefunction after the ion-
ization of the 16th MO. Again, the diagonal elements of the hole density matrix
(see Equation (5.3)) are plotted.

The occupation of the initially occupied MO 16 (black line) decreases to 0.5 e
within about 1 fs. During this first femtosecond the hole is mostly transferred to
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5.3 Glycine

the MOs 11 (red line), 13 (green line) and 19 (yellow line). The hole returns to the
16th MO within 3 fs, when the hole occupation of the 16th MO raises to 0.8 e. The
occupation of the initially ionized MO 16 decreases faster than after the ionization
of the 11th MO as the occupation of the 16th MO drops to 0.3 e within less than
2 fs.

After 4 fs the hole is mostly transferred to the MOs 13 (green line) and 20 (cyan
line), which are located at opposing ends of the molecule. Then (within 8 fs and
12 fs) the hole oscillates between the MO 19, mostly located on the carboxyl group,
and the MO 20, located mostly on the amine group. That means that the hole
moves from one end of the molecule, the carboxyl group, to the other end of the
molecule, the amine group, within 2 fs.

Like in the electron dynamics after ionization of the 11th MO, the β MOs show
no dynamics.

In both cases, ionization of the 11th MO and the 16th MO, the TDHF based
approach predicts dynamics of the valence MOs on a femtosecond time scale. In
both cases the dynamics spreads over the whole molecule. Especially during the
dynamics after the ionization of the 16th MO the hole oscillates between the ends
of the molecule.

The dynamics observed here seem to best described by the hole diffusing through
the valence MOs. This view is supported by the fact that the β MOs only show
little dynamics during the simulations.

To judge the reliability of these predictions, the results will be compared to the
results from Reference [74] in the next section.

5.3.3 Comparison with Literature Results

Kuleff and co-workers[73] used a highly correlated ab initio method (non-Dyson
ADC(3)[75]) to study the electron dynamics in glycine in a similar setup as dis-
cussed above. They interpret their results in terms of the natural charge orbitals
and the corresponding hole occupation numbers (cf. Equation (5.4)).

In case of the ionization of the 11th MO the symmetric MOs 11, 13 and 20 and
the antisymmetric MOs 17 and 21 are involved in the electron dynamics. The hole
essentially oscillates between the MOs 11, 13 and 20. After about 8.3 fs the hole
has moved to the 13th MO. The process is then reverted and the hole is back in the
initially ionized 11th MO after about 11.2 fs. In this process the hole moves from
the carboxyl group through the C− C bond to the opposing end of the molecule.
At the same time an oscillation between the 17th and 21st MO is induced where a

47



5 Molecules

“negative” hole is created in the lowest unoccupied molecular orbital (LUMO), i.e.
part of an electron charge is transferred into the LUMO.

After the ionization from the 16th MO the hole oscillates between the MOs 16 and
15 with a period of 5 fs. The hole is initially distributed over the whole molecule.
After about 2 fs the hole is mostly located on the CO and OH groups.

The results Kuleff and co-workers[73] do not show the diffusion like behavior
observed in this work. The method of Kuleff et al. essentially uses a linear expan-
sion of the cationic states of the molecule. The electron dynamics are determined
by the ionized states to which the removal of the electron from the two MOs 11

and 16 contributes to, which likely explains the clear oscillatory dynamics between
few MOs.

Both approaches show femtosecond dynamics of the electronic wavefunction
after an instantaneous ionization of a MO. However, the dynamics differ between
the two approaches. The dynamics predicted by the TDHF approch are in both
cases faster than those predicted by the non-Dyson ADC(3) approach.

Despite the mean-field description of the electron interaction in TDHF theory
part of the electron correlation is recovered in our explicit time-dependent treat-
ment because the MOs react to the change of the charge density. The explicit
time-dependent treatment does not fit into usual hierarchy of configuration inter-
action (CI) and perturbation treatment of electron correlation in stationary elec-
tronic states. The non-Dyson ADC(3), however, describes the electron correlation
much more accurate than our approach. Thus, our results are probably less reliable
than those obtained by Kuleff and co-workers.
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5.4 PENNA

5.4 PENNA

In the previous section it was shown that the TDHF based approach used in this
work does not reproduce the charge migration dynamics in glycine predicted by a
correlated method. Due to the complex electron dynamics in glycine a comparison
of the different results is somewhat cumbersome.

The PENNA was chosen as a second test system because very distinct electron
dynamics have been predicted after ionization of the HOMO[74].

The equilibrium structure (see Figure 5.4) of the PENNA molecule was deter-
mined using the Gaussian 03[78, 83, 84] program with the 6-31+G∗[85–87] basis
set 1. The extended structure was obtained by extending the C1−C2 bond by 0.2 Å

C1

C2 N

Figure 5.4: Sketch of the PENNA structure.

(for the exact coordinates consider Appendix A.2).
The initial state for the simulation was prepared by instantaneously removing

an electron from the HOMO. The HOMO for in both structures located on the
benzene ring.

Figure 5.5 shows the time-evolution of the wavefunction after the ionization in
both structures (left/solid lines for the equilibrium structure and right/dashed
lines for the extended structure). In both cases the initial HOMO (black line), the
initial HOMO-1 (green line) and the initial HOMO-2 (red line) are involved in
the electron dynamics. The HOMO-1 is also located on the benzene ring like the
HOMO. The HOMO-2 is located on the opposing end of the molecule.

In the equilibrium structure simulation the hole occupation of the initially ion-
ized HOMO (black) decreases by about 0.15 e. About 0.05 e of the hole is transferred
to the HOMO-1 (green), which is located on the benzene ring. About 0.1 e moves
to the other end of the molecule into the HOMO-2 (red). The occupation of the
three MOs then oscillates with a period of about 1.5 fs.

The electron dynamics in the extended structure are similar to the dynamics in
the equilibrium structure. About 0.2 e of the hole travels along the molecule into

1As obtained from the EMSL basis set exchange[81, 82].
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Figure 5.5: Time-evolution of the electronic wavefunction after ionization of the
highest occupied molecular orbital. The left row of isosurface plots shows the ini-
tial molecular orbital of the equilibrium structure. The solid lines indicate the hole
occupation of the initial molecular orbitals of the equilibrium structure. Analo-
gously the right row of isosurface plots and the dashed lines correspond to the
initial molecular orbitals of the extended structure.

the HOMO-2 (red). That is about twice as much as in the case of the equilibrium
structure.

The HOMO and the HOMO-2 differ between the geometries. In the extended
structure the HOMO is more located on the nitrogen than in the equilibrium struc-
ture. Additionally, in the extended structure the HOMO-2 is partly located on the
benzene ring. Thus there is more spatial overlap between these MOs. This contact
presumably induces increased coupling, what increases the hole transfer from the
benzene to the nitrogen group.

Lünnemann and co-workers[74] used the same correlated method as in Kuleff
and co-workers[73] to study the electron in PENNA upon instantaneous ionization
of the HOMO. They use a slightly different geometry (the optimized geometry
using BP86[88, 89],/SV(P)[90]). In case of their equilibrium geometry, a partial
relocation of the hole from the benzene ring to the nitrogen site within 4 fs is
observed. For the extended C

1
−C

2
bond not only an enhancement of the hole
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relocation is observed, but almost the complete hole moves to the nitrogen site in
about 4 fs.

Kuleff et al.[76] applied a single determinant approach to the same problem.
They use the (time-independent) Kohn-Sham operator of the cationic state to prop-
agate the wavefunction. In the extended geometry they observe that a part of the
hole moves to the nitrogen site of the PENNA molecule. This process takes place
in less than 2 fs. However, no complete relocation of the hole is observed.

The electron dynamics predicted by the TDHF used in the current work resem-
ble the electron dynamics predicted in Reference[76] in the equilibrium structure.
The movement of the hole is, indeed, about 4 times faster. In the case of the elon-
gated C

1
−C

2
bond, no complete relocation of the hole is observed for both single

determinant approaches. Both single determinant approaches yield much faster
electron dynamics than the correlated method.
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6
Conclusion & Outlook

In the first part of this work we have used time-dependent Hartree-Fock (TDHF)
theory to study the electron dynamics in multi-electron systems after both core-
and valence-shell ionization.

In Chapter 3 the dynamics in a one-dimensional model system, where the Cou-
lomb interaction was replaced by a soft-core Coulomb potential, were simulated
after instantaneous ionization of the core-shell. In both the four- and six-particle
systems the core-hole state has enough excess energy to emit another particle from
the valence-shell. An emission of a valence particle was, however, not observed
in either of the systems. In the six-particle system a transition occurs during the
simulation in which the core hole is refilled, but there is distinct emission of a
valence particle. Unfortunately, there is no feature in the observed dynamics that
could explain the difference between the two systems. Despite these differences
our TDHF based approach is capable of describing the decay of a core hole state
in the one-dimensional model system.

In Chapter 4 a similar approach was used to simulate the electron dynamics in
beryllium after instantaneous core-shell ionization. In addition to the numerical
grid already deployed for the model system, a B-spline basis was used to exclude
possible limitations introduced by the use of a specific basis set.

Using the numerical grid as a basis set is appealing because the implementation
of the working equations with the numerical grid is simple. Despite the more
complex implementation, the B-spline basis offers two main advantages over the
numerical grid. The use of a non-uniform knot sequence allows a good description
of both the bound and the continuum molecular orbitals (MOs). Furthermore, the
energies of the continuum MOs can be effectively located below a certain threshold.
These properties together allow for a compact B-spline basis, which still describes
both the bound and continuum MOs better than a much larger numerical grid.
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With neither basis set an Auger or Auger-like process was observed during the
expected core-hole lifetime of beryllium (7.0 fs – 32.9 fs[63–66]). It cannot finally be
excluded that the lack of the Auger decay in the simulation is caused by limitations
of the used basis set. As two different flexible basis sets were used, it seems,
however, reasonable to conclude that TDHF theory is not sufficient to describe
the Auger decay properly. Especially, it is likely the limited description of electron
correlation, due to the mean-field interactions among the electrons, that constitutes
that limitation.

Interestingly, the dynamics observed in beryllium resembles the dynamics in the
four-particle model system. In both cases both the α and β valence orbitals oscillate
strongly in space after the ionization. These oscillations are likely to be caused by
the perturbation due to the reduced shielding of the central charge.

In Chapter 5, the electron dynamics after instantaneous ionization of a valence
MO were simulated in two small organic molecules. For the molecules gaussian
basis sets known from quantum chemistry were employed to make the simulations
computationally accessible. The observed dynamics in glycine after valence ioniza-
tion resemble the created hole charge diffusing through the valence MOs. Electron
dynamics obtained with a correlated method by Kuleff and co-workers[73] in a
similar setup show, however, a clear oscillation of the hole among few MOs. Sim-
ilarly, the charge migration process predicted by the same correlated method in 2-
phenylethyl-N,N-dimethylamine (PENNA)[74] is not reproduced by our TDHF ap-
proach. As the charge migration dynamics are driven by electron correlation[23, 24]
the TDHF based approach used in the current work lacks the proper description
of the electron correlation to simulate the charge migration dynamics.

We initially set out to simulate the electron dynamics during the Auger decay
after core-shell photo-ionization to study the impact of these electron dynamics on
the early phase of the Coulomb explosion. As our TDHF based approach does not
properly describe the Auger decay due to the insufficient description of the electron
correlation it cannot be used to simulate the electron dynamics in the early phase
of the Coulomb explosion. Thus, one has to move beyond the TDHF description
of the electron dynamics.

It may be worthwhile to systematically investigate the electron correlation in-
volved in the Auger decay. To disentangle the effects of electron correlation a
linear expansion of the wavefunction in terms of the eigenfunctions of the elec-
tronic Hamiltonian should be used. The different levels of electron correlation are
implemented by using different methods to determine the electronic Hamiltonian
and the respective eigenfunctions. An obvious choice for the excited state method
are configuration interaction (CI)[91] methods like configuration interaction singles
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(CIS)[92], configuration interaction singles with perturbation treatment of doubles
(CIS(D))[93, 94] and configuration interaction singles and doubles (CISD)[91] as
this allows for a systematic enhancement of the inclusion of electron correlation.
The determination of the excited states is, however, not limited to CI methods. E.g.,
Sonk and co-workers successfully used a similar approach employing CI as well as
coupled cluster (CC) methods to simulate the electronic response in butadiene to
a short optical laser pulse[95].

Note that, while the determination of e.g. the ground state is much more ex-
pensive using CI or CC[96] method compared to Hartree-Fock (HF), this is not
necessarily the case for the electron dynamics simulations. In our TDHF based
approach the Fock matrix has to be assembled and diagonalized in every timestep.
When using a linear expansion of the electronic wavefunction in terms of the eigen-
functions of the Hamiltonian instead the Hamiltonian matrix has to be assembled
and diagonalized — at least in principle — only once. With a method that yields
compact Hamiltonian matrices like CIS or CIS(D) the electron dynamics may be
computationally more efficient than with our current TDHF method.

As a first step, the approach discussed above could be applied to atoms employ-
ing the MOs derived from a B-spline HF calculation. To study molecules, a slightly
different approach is, however, necessary because a B-spline basis set would not be
computationally feasible. There are, indeed, methods to construct continuum MOs
in molecules, like the single center expansion[97, 98], that could be adapted to be
used together with a time-dependent approach.
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Photo-Absorption Induced Molecular
Dynamics
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7
Conical Intersections

Conical intersections[99–101] form the basis of photo-isomerization reactions as
they offer the pathway for the molecular dynamics (MD) mediated decay of elec-
tronic excited states in molecules[25, 102]. In contrast to fluorescence, the energy of
the absorbed photon is converted into kinetic energy as the system evolves along
the excited state potential energy surface (PES) through the conical intersection
to the ground state. This kinetic energy then induces a change of the molecular
structure leading to photo-isomerization.

In the following, PESs will be introduced because the conical intersections arise
from crossings of different PESs. Then, conical intersections will be discussed in
terms of the previously derived PESs and the coupling among them.

7.1 Potential Energy Surfaces

Potential energy surfaces are a consequence of the approximated solution of the
molecular Schrödinger equation

i
∂

∂t
Ψ = ĤΨ =

(
T̂N + T̂e + V̂

)
Ψ, (7.1)

where T̂e and T̂N are the electronic and nuclear kinetic energy operators and V̂ is
the potential operator. To simplify Equation (7.1) the Born-Oppenheimer approx-
imation is invoked[103, 104]. Thereto, adiabatic states[105] of the instantaneous
electronic Hamiltonian (2.2)

Ĥe (r, R)Ψe
n (r; R) = Vn (R)Ψe

n (r; R) (7.2)
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7 Conical Intersections

where r are the electronic and R the nuclear coordinates, are used to expand the
total wavefunction

Ψ (t, r, R) = ∑
n

Ψe
n (r; R)ΨN

n (t, R) , (7.3)

which is usually called Born-Oppenheimer expansion[106]. Inserting this expan-
sion into the Schrödinger equation (7.1) and projecting onto another adiabatic state
Ψe

m yields the Hamiltonian[107]

Ĥmn (R) = δmn

(
T̂N + Vm (R)

)
−
〈

Ψe
m

∣∣∣T̂N
∣∣∣Ψe

n

〉
= δmn

(
T̂N + Vm (R)

)
− Λ̂mn (R) . (7.4)

The nonadiabatic coupling Λ̂ results from the parametric dependence of the adi-
abatic states on the nuclear coordinates and it couples different adiabatic states.
If the adiabatic states are energetically well separated, the nonadiabatic coupling
is usually because the nonadiabatic coupling is proportional to the inverse of the
energy difference[107]. The strength of the nonadiabatic coupling is used in one
of the hopping algorithms, the fewest switches surface hopping (FSSH) algorithm,
used in this work as part of the hopping criterion (cf. Section 8.4).

Neglecting the off-diagonal terms of the nonadiabatic coupling renders the Hamil-
tonian (7.4) diagonal and the wavefunction (7.3) reduces to a single product

Ψ (r, R) = Ψe
n (r; R)ΨN

n (R) . (7.5)

The single product ansatz for the wavefunction is usually called the Born-Oppen-
heimer approximation[107]. If the nonadiabatic coupling is neglected entirely, the
nuclear wavefunction evolves according to a single PES Vn (R)

i
∂

∂t
ΨN (t, R) =

(
T̂N + Vn (R)

)
ΨN (t, R) . (7.6)

In this work the nuclear Schrödinger equation (7.6) was not solved explicitly, but
the time-evolution of the nuclear wavefunction was approximated by a swarm of
classical trajectories, which evolve according to the PES VN (R) (cf. Section 8.1).
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7.2 Surface Intersections

Conical intersections are regions in molecular configuration space where two (or
more) PESs are degenerate, i.e.,

V1 (R) = V2 (R) . (7.7)

Conical intersections play a prominent role in photo-chemical reactions as they
allow radiationless decay of excited electronic states via MD[25, 102].

At a conical intersection the off-diagonal elements of the nonadiabatic coupling
diverge[105, 107] and the Born-Oppenheimer approximation breaks down. To
solve the Schrödinger equation (7.1) at a conical intersection, the diabatic electronic
states Φe are introduced[107] via a unitary transformation from the adiabatic states
(7.2)

Φe = U (R)Ψe. (7.8)

In the diabatic representation the Hamiltonian (7.4) is transformed to

Ĥmn (R) = T̂Nδmn + Wmn (R) , (7.9)

with the local potential Wmn (R). This yields the Schrödinger equation in matrix
notation

HΨN =
(
T̂N1 + W (R)

)
ΨN = EΨN. (7.10)

The diabatic states (7.8) are determined only up to a global phase, that is inde-
pendent of R. With this global phase the diabatic states can be constructed such
that they are identical to the adiabatic states at a certain reference geometry R0.
Expanding the diabatic potential for two diabatic states at R0 to first order in the
displacements of the nuclei ∆R, yields

W (R) = W (0) + W (1) + · · · ,

W (0) =
V1 + V2

2
1 +

(
−V2−V1

2 0
0 V2−V1

2

)
= V (R0) ,

W (1) =
1
2
∇R (V2 + V1)

∣∣∣∣
R0

∆R1 +
(
−1

2 h · ∆R g · ∆R
g · ∆R 1

2 h · ∆R

)
, (7.11)
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with the derivative coupling

g = ∇R
〈
Ψe

1
∣∣Ĥe∣∣Ψe

2
〉

(7.12)

and gradient difference vectors

h = ∇R (V2 −V1) . (7.13)

If the adiabatic states are degenerate at the reference point R0, the zeroth order
contribution W (0) to the diabatic potential becomes constant and is set to zero. In
the vicinity of the conical intersection the adiabatic energies are given by diagonal-
izing W (1)

V1,2 (∆R) =
1
2
∇R (E2 − E1)

∣∣∣∣
R0

± 1
2

√
(h · ∆R)2 + 4 (g · ∆R)2. (7.14)

Thus, two conditions need to be fulfilled for the electronic states to be degenerate
at R0

h · ∆R = 0,
g · ∆R = 0. (7.15)

In the space spanned by the gradient difference h and the derivative coupling
vector g the degeneracy of the two electronic states is lifted to first order. This
space is also called branching space or g-h plane. The space perpendicular to the
branching space is usually called intersection or seam space. In this space the
degeneracy persists to at least second order[108].

For the classical trajectories employed in this work, special care needs to be taken
at conical intersections because the PESs become degenerate and there is no unique
force acting on the nuclei. Surface hopping algorithms[29] (cf. Sections 8.3 and 8.4)
were used to determine the PES whereon the trajectories evolve.
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In this chapter the methods necessary to simulate photo-chemical reactions will be
discussed.

To determine the nuclear dynamics it is necessary to solve equation (7.6). This
can be done quantum-mechanically using wavepacket dynamics with precalcu-
lated potential energy surface (PES). This approach, however, poses a serious com-
putational challenge and limits its applicability to systems with only few nuclear
degrees of freedom (DOF)[28]. So we approximate the time-evolution of the nu-
clear wavefunction by classical trajectories. These trajectories are then obtained
by solving the Newton’s equation of motion given the by PES V (R) of a given
electronic state

MR̈ = −∇RV (R) (8.1)

(cf. Section 8.1).
We determined PES “on the fly” by solving the electronic Schrödinger equation

(2.2) for the current molecular geometry. This approach is also called ab initio
molecular dynamics (AIMD)[109]. The AIMD approach is limited by the compu-
tational costs of solving the electronic Schrödinger equation (2.2). Depending on
the model used, the system size is limited to hundreds (density functional theory
(DFT)[110]) to a dozen (highly accurate correlated post-Hartree-Fock methods like
coupled cluster (CC)[96]) of atoms.

Instead of explicitly solving the electronic Schrödinger equation it is also possible
to parametrize the PES V (R) (usually of the electronic ground state) using a force
field (FF) VMM (R) (cf. Section 8.1.1). Molecular dynamics (MD) can successfully
be applied to large proteins or protein complexes (up to 10 million atoms) reaching
timescales up to a millisecond[111].

On the one hand, an ab initio description of the involved electronic states is
necessary. On the other hand, the influence of the surrounding protein and/or
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solvent environment needs to be taken into account. To meet both requirements
a combination of AIMD and MD is used. The explicit quantum mechanical de-
scription of the PES is restricted to a certain region of interest, where the photo-
chemical reaction takes place (i.e. the chromophore). The rest of the system is then
described by classical MD. These two regions are then combined in a quantum
mechanics/molecular mechanics (QM/MM) approach (cf. Section 8.1.2)[112–114].

To simulate photo-chemical processes, a reliable description of almost degen-
erate electronic states in the vicinity of a conical intersection is needed. To this
end, we use the complete active space self-consistent field (CASSCF)[115] (cf. Sec-
tion 8.2) method to solve the electronic Schrödinger equation (2.2). The CASSCF
method is a variant of the multi-configurational self-consistent field (MCSCF) method
[116, 117], which combines Hartree-Fock (HF) (c.f. 2.1) and configuration interac-
tion (CI)[91]. Instead of using a predetermined set of molecular orbital (MO) to
solve the CI problem, the MO and CI coefficients are optimized in parallel. This
allows a balanced description of multiple electronic states as most of the static cor-
relation is accounted for. The MCSCF method also allows the calculation of the
nonadiabatic coupling[118] (c.f. Chapter 7), which are needed for certain surface
hopping algorithms.

When a trajectory of an MD simulation, reaches regions in configuration space
with strong nonadiabatic coupling or even a conical intersection, the Born-Oppen-
heimer approximation breaks down. Especially the approximation of a classical
trajectory evolving on a single PES is not valid anymore. We employed different
surface hopping algorithms, the diabatic surface hopping (DSH)[36] and fewest
switches surface hopping (FSSH)[119, 120] algorithms, to determine, when the tra-
jectory switches from one PES to another.

Both surface hopping algorithms were implemented as QM/MM interfaces in
the MD package Gromacs[121–125]. The necessary CASSCF calculations were per-
formed using the quantum chemistry program Molpro 2009.1[126–135].
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8.1 Molecular Dynamics

For an MD simulation, the Newton’s equation of motions (eq. (8.1)) of the classical
nuclei

Ṙ (t) = V (t)

V̇ (t) = − 1
M
∇RV (R (t)) (8.2)

are solved numerically to generate a (quasi) continuous trajectory of the molecular
geometry R (t). We used the second order leapfrog[136] algorithms, as available in
Gromacs, to solve (8.2) numerically.

To generate other than the NVE, fixed number of particles, fixed volume and
fixed total energy, ensemble, the temperature[137, 138] and pressure[137] coupling
algorithms available in Gromacs were used. To resemble experimental condition
the NpT ensemble was employed in the non-vacuum simulations (cf. Section 9.2
and Chapter 10).

8.1.1 Force Fields

An FF VMM (R) is an parametrization of the PES V (R) of (usually) the elec-
tronic ground state of a molecule. Therefore, the PES is decomposed into different
contributions[139]

VMM =
Nbonds

∑
(A,B)

1
2

kb
AB

(
RAB − R0

AB

)2

+

Nangles

∑
(A,B,C)

1
2

kα
ABC

(
αABC − α0

ABC

)2

+
Ndihedrals

∑
(A,B,C,D)

kθ
ABCD

(
1 + cos

(
nθABCD − θ0

ABCD

))

+
Nimproper

∑
(A,B,C,D)

1
2

kξ
ABCD

(
ξABCD − ξ0

ABCD

)2

+
Npairs

∑
(A,B)

C12
AB

|RAB|12 −
C6

AB

|RAB|6
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+
Npairs

∑
(A,B)

δAδB

4πε0εr |RAB|
. (8.3)

The first four terms describe interactions among bonded atoms. The angular po-
tentials act among three subsequent bonded atoms and likewise the dihedral po-
tential among four subsequent bonded atoms. The improper dihedral potential is
imposed on out of plane angles. The Lennard-Jones potential descibes the van-
der-Waals interactions. The Coulomb potential acts among the partial charges of
all atoms. The parameters in (8.3) are either determined by fitting experimental
data, ab initio calculations or both[140–142].

In our simulations, the FFs were used to describe the molecular mechanics (MM)
region of the system, i.e. the protein environment and the solvent.

8.1.2 QM/MM

We used the electrostatic embedding scheme (see Figure 8.1.1) to combine the
quantum mechanics (QM) description of the chromophore and the MM description
of the rest of the system[36, 112].

The interaction among atoms in the MM region is given by an FF (c.f. section
8.1.1). In the QM region the electronic Schrödinger equation (2.2) is solved explic-
itly to determine the forces on the QM atoms. The partial charges of the MM atoms
are taken into account in the QM calculation polarising the electronic wavefunc-
tion. In turn the electronic wavefunction exerts additional long range forces onto
those MM charges. The van-der-Vaals interaction between QM and MM atoms is
described at the FF level.

If a bond is cleaved in the partitioning, it is capped with a monovalent link atom
like hydrogen in the QM calculation. The QM force acting on this hydrogen is
distributed evenly among the two originally bonded atoms.

8.2 Excited State Quantum Chemistry

There are two main approaches to the calculation of excited states. Due to the
linear parametrization of the wavefunction used in CI[91] methods, the calculation
of excited state is in principle straightforward. The excited states and the excited
state energies are the corresponding eigenvectors and eigenvalues of the Hamil-
tonian matrix. Other excited state methods are based on the (linear) response
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partial
charges

dummy
atoms

QM

MM

Figure 8.1: Sketch of the mechanical embedding scheme.

approach. To calculate excited states, the perturbation is taken to be an oscillating
electric field. The excited states and excitation energies can then be obtained from
the corresponding poles and residues of the linear response function[143]. Time-
dependent density functional theory (TDDFT)[17] and equation-of-motion coupled
cluster (EOM-CC) theory[96] are based on linear response theories.

For the simulation of photo-chemical processes a method is required that is ca-
pable of describing the (quasi-) degenerate electronic states in the vicinity of a con-
ical intersection. Single reference methods like TDDFT and EOM-CC are known to
perform poorly in such multi-configurational configurations and a multi-reference
method is needed[80]. We deployed the CASSCF method, which is a variant of the
MCSCF approach.

In the MCSCF method, the CI ansatz is used

|Ψ〉 = ∑
I

cI |I〉 with ∑
I
(cI)

2 = 1, (8.4)
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where the CI expansion is with respect to a set of Slater determinants {|I〉}I . The
Slater determinants are defined with respect to a set of orthonormal orbitals

{
χp
}

(which are not necessarily the HF canonical orbitals). In an MCSCF calculation
both the CI coefficients and the MO are optimized. Thus, a converged MCSCF
wavefunction is variational.

cl
os

ed
ac

tiv
e

vi
rt

ua
l

configuration interaction
expansion

Figure 8.2: The complete active space decomposition of the molecular orbital space.
The arrows indicate up or down spin electrons.

To obtain multiple electronic states, i.e. to perform excited state calculation, state
averaging is used to avoid root flipping[144, 145]. In state averaging the average
energy Eaverage

Eaverage = ∑
n

ωnEn (8.5)

with the state weights ωn is minimized. For this purpose, all electronic states are
defined with respect to a common set of state averaged MOs. Additionally, the
common set of MOs allows easier calculation of off-diagonal elements of electronic
operators

Omn =
〈
Ψe

m
∣∣Ô∣∣Ψe

n
〉

. (8.6)
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Due to the common set of MOs, the state specific energies En are not fully varia-
tional.

The CASSCF method now defines a scheme to select the Slater determinants
used in the CI expansion (8.4) (c.f. Figure 8.2). The orbital space is split in three
parts. The first set (closed) of orbitals is kept doubly occupied during the calcu-
lation and the second set (virtual) is kept empty. The active space is composed
from both orbitals, which are occupied and virtual in the original MO set. Within
the active space a full configuration interaction (FCI) expansion is made, that is all
possible excited Slater determinants contribute to the CI expansion.

8.3 Diabatic Surface Hopping

In the DSH algorithms[36] hops from one PES to another only occur when the
trajectory crosses the seam of a conical intersection (cf. Section 7.2). Neglecting
any nonadiabatic coupling other than the conical intersection itself, is only a valid
approximation as long as the molecule does not have extended regions of nonadi-
abatic coupling. The validity of this approximation, thus, depends on the system
under consideration (cf. the discussions in Section 9.3 as well as in Chapter 10).

In the adiabatic basis Ψe
n crossing the seam of a conical intersection is indicated

by[146]

Smn = 〈Ψe
m (t) |Ψe

n (t + ∆t)〉 ,
|Smm| ≈ |Snn| ≈ 0,
|Smn| ≈ 1, (8.7)

where the electronic wavefunctions of two subsequent MD steps are compared.
For the implementation it is assumed that the orbitals of two subsequent timesteps

are sufficiently similar so that (8.7) can be approximated by the scalar product of
the CI vectors

Smn ≈ cm · cn. (8.8)

A hop between the adiabatic states Ψe
j and Ψe

k is performed if the energy gap
between the states is smaller than 0.1 Hartree and

|Smm| < 0.5 ∧ |Snn| < 0.5 ∧ |Smn| > 0.5. (8.9)

69



8 Methods

The DSH algorithm was used in all three computational studies presented in the
following (cf. Sections 9.1 and 9.2 and Chapter 10).

8.4 Fewest Switches Surface Hopping

The electronic wavefunction is expanded in the space of adiabatic states

Ψ (t, r, R) = ∑
n

cn (t)Ψn (r, R) . (8.10)

Inserting the ansatz (8.10) into the Schrödinger equation (7.1), projecting onto the
adiabatic state Ψe

m and integrating over the electronic degrees of freedom, yields

iċm = ∑
n

cn
(
δmnEm − iṘ · dmn

)
= ∑

n
Amncn, (8.11)

with the nonadiabatic coupling matrix element dmn (cf. Section 7.2)

dmn = 〈Ψe
m |∇RΨe

n〉 . (8.12)

Tully proposed the fewest switches surface hopping algorithm[147], where the hop-
ping probability from state m to state n in the time interval ∆t is given by

Pm→n = max
(

∆tbnm

cmc∗m
, 0
)

, (8.13)

with

bmn = −2<
(
c∗mcnṘ · dmn

)
. (8.14)

We implemented the time-evolution of the coefficient (8.11) by using the time
evolution operator

c (t + ∆t) = exp (−iA∆t) c (t) . (8.15)

The time evolution operator is determined by diagonalizing the matrix A. The
diagonalization is always possible as Ṙ · dmn is skew-symmetric and, thus, −iṘ ·
dmn is hermitian.

The Equation (8.11) is often solved using a integrator like the fourth-order Runge-
Kutta instead[148]. Integrating Equation (8.11) directly probably has performance
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advantages when a large number of adiabatic states is used in the wavefunction
expansion 8.10, e.g. when using semi-empirical methods[148]. Because the matrix
diagonalizing and thus the evaluation of 8.15 becomes expensive. Here, however,
the use of CASSCF is aimed at. Therefore, only a few states were included in the
wavefunction expansion 8.10 and the computational costs were dominated by the
CASSCF calculation. Hence, there was no need to optimize the propagation of the
electronic wavefunction and the propagation scheme described above was chosen
out of convenience.

With the new coefficients c (t + ∆t) the transition probabilities are calculated
(equation (8.15)). A random number ζ ∈ [0, 1] is drawn and a hop from state m to
state n is performed if

n−1

∑
k

Pm→k < ζ <
n

∑
k

Pm→k. (8.16)

To ensure energy conservation for each trajectory the velocities of the atoms are
scaled along the nonadiabatic coupling vector (8.12) in case a hop occurs

Ṙnew = Ṙold + f n̂, (8.17)

where n̂ is a unity vector parallel to dmn. The scaling factor f is determined from

E
′,new
kin = E

′,old
kin + ∆Emn

⇒ 0 =
1
2

f 2 ∑
A

mA + f ∑
A

mAṘA · n̂A + ∆Emn. (8.18)

The solution with the smaller modulus was used because it perturbs the system
less. In the implementation the vector R contained both the coordinates of the QM
atoms and the point charges taken into account in the QM calculation.

The FSSH algorithm can induce hops at large energy gaps (cf. Section 9.2) what
poses two problems. First, a hop at a large energy gap deposits a large amount of
kinetic energy into the system. Second, with photo-chemical applications in mind,
the hops at large energy gaps take place far away from the seam of the conical
intersection. Thus, trajectories encountering hops at large energy gaps usually
yield little information about the photo-isomerization pathway.

The hops at large energy gaps are mostly caused by the algorithm constantly
building up density in the unoccupied states due to small nonadiabatic coupling.
The decoherence correction (DC) scheme was proposed to remedy this problem[120].
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The density in the unoccupied states is made to decay exponentially. In every step
the following correction is made to the expansion coefficients

c′m = cm exp (−∆t/τmn) ∀m 6= n,

c′n = cn

(
1−∑m 6=n |c′m|

2

|c′n|
2

) 1
2

,

τmn =
1

|Vm −Vn|

(
1 +

α

Ekin

)
. (8.19)

where n is the current state. The correction of the coefficient of the current state cn
ensures the overall normalization of the wavefunction. We used a decay constant
α of 0.1 Hartree[149].

The FSSH algorithm was used in all three computational studies presented in
the following (cf. Sections 9.1 and 9.2 and Chapter 10) while the DC was only
employed in the first two.
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Photo-isomerization is a common process in photo-chemistry. Photo-isomerization
is, for example, the first step in a cascade of processes that lead to vision[27]. It is
caused by photo-absorption that promotes the system to an excited electronic state.
The sudden change of the potential energy surface (PES) due to the switch to a
different electronic state triggers a rotation around a bond changing the molecular
structure. This change of the molecular structure of the chromophore then induces
a cascade of processes that lead to the specific biological function[26, 27].

Protonated Schiff base (PSB) retinals are involved in different light driven bio-
logical processes like vision or opening of membrane channels[150, 151]. In their
protein environment the PSB retinals undergo a photo-isomerization upon photo-
absorption. This structural change in the retinal then triggers the subsequent pro-
cesses.

We have chosen the protonated Schiff base with two double bonds (PSB2)
(C

1
−N

2
−−C

3
−C

4
−−C

5
−C

6
) as a test system to compare possible systematic devi-

ations in the predicted photo-isomerization pathways and products among the
diabatic surface hopping (DSH) and the fewest switches surface hopping (FSSH)
surface hopping algorithms. The PSB2 lends itself to systematic computational
studies as it is small in terms of molecular size, and a small complete active space
(CAS) suffices for a proper description of the ground and first excited state in-
volved in the photo-isomerization.

The photoactive yellow protein (PYP) is found in salt tolerant Halorhodospira
halophila bacteria[30]. The protein is believed to be involved in a light sensing
mechanism that allows the bacteria to escape harmful ultraviolet radiation[30].
Its photo-isomerization has been studied both experimentally[31–35] as well as
computationally[36–39]. The aim is to validate the isomerization pathway pre-
dicted previously with excited state molecular dynamics (MD) using larger active
spaces and different hopping algorithms.
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9.1 Protonated Schiff Base

The PSB2 (see Figure 9.1) was chosen as an example to compare the different hop-
ping algorithms discussed in Sections 8.3 and 8.4. To this end, the excited state
MD of PSB2 were simulated in vacuum using the different hopping algorithms,
and the reaction mechanisms and products predicted by the different algorithms
were compared.

Figure 9.1: The molecular orbitals composing the active space are shown. The two
orbitals in the lower row are mainly occupied in the ground state, whereas the two
upper orbitals are occupied in the excited state.

Forty nine initial configurations were generated from taking snapshots every 1 ps
from a complete active space self-consistent field (CASSCF)(4,4)/3-21G1 ground
state trajectory at T = 300K using the stochastic dynamics integrator available in
Gromacs[152] with the temperature coupling constant τt = 0.01ps. For each initial
configuration, a trajectory was run with each hopping algorithm (DSH, FSSH and
FSSH with decoherence correction (DC) (cf. Sections 8.3 and 8.4). The same seeds
were used for the random number generation for the FSSH and FSSH with DC
trajectories started form the same initial configuration. One of the DSH trajectories
encountered a configuration that the CASSCF calculation does not converge for.
This trajectory was excluded from the analysis.

As the excited state of interest is a (π, π∗) 2 state, the active state was composed
by the four π orbitals shown in Figure 9.1.

1Here the Gaussian notation is used to denote the active space. CAS(e,o) denotes a total e
electrons distributed in o orbitals per spin.

2The notation (π, π∗) indicates, that an electron is promoted from a π occupied molecular
orbital (MO) to π virtual MO.
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Both the ground state trajectory, which the initial configurations were extracted
from, and the orbitals defining the active space were kindly provided by Lela
Vuković1.

In the following section the excited state dynamics, especially the isomerization
pathways and products, are discussed to lay the ground for the comparison of the
different hopping algorithms. In Section 9.1.2 the results predicted by the different
hopping algorithms are compared.

9.1.1 Excited State Dynamics

The dynamics after the vertical excitation follow a common pathway[153]. Fig-
ure 9.2 shows the N

2
−C

3
, C

3
−C

4
and C

4
−C

5
bond lengths and the CN

2
C

3
C and

CC
4
C

5
C dihedral angles of one of the trajectories run with the DSH algorithms.

First the N
2
−C

3
and the C

4
−C

5
extend while the C

3
−C

4
bond shortens. The

N2 C3

C4 C5

Figure 9.2: Excited state dynamics after vertical excitation. The trajectory shown is
one of the diabatic surface hopping trajectories. The vertical dashed line indicates
the hop from the excited to the ground state.

change in the bond lengths is accompanied by a bond order inversion of all three
bonds. The N

2
−C

3
and the C

4
−C

5
bonds change from double to single bond char-

acter. The C
3
−C

4
bond vice versa changes from single to double bond character.

Then the system hits the conical intersection (indicated by the dashed line). After-
wards, the system isomerizes. In this particular case, the CC

4
C

5
C dihedral angle

isomerizes from the trans- to the cis-configuration.

1Department of Chemistry, University Illinois at Chicago
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To compare the excited state dynamics predicted by the different hopping algo-
rithms, the N

2
−C

3
and the C

4
−C

5
bond lengths, the CN

2
C

3
C and CC

4
C

5
C dihe-

dral angles and the products of the isomerization were used.

9.1.2 Comparison of Hopping Algorithms

To compare the different hopping algorithms, the important parameters of the
excited state dynamics (cf. Section 9.1.1), the N

2
−C

3
and C

4
−C

5
bonds and the

CN
2
C

3
C and CC

4
C

5
C dihedral angles, were considered. Furthermore, the excited

state lifetimes and the results of the isomerizations were taken into account. Figure

Figure 9.3: The relative occupation of the excited state for the different hopping
algorithms is shown. For convenience only the time up to 500 fs is shown.

9.3 shows the occupation of the excited state for the different hopping algorithms.
These curves were used to derive the expectation value of the excited state lifetime
τ from

τ =

∫ tMax
0 dt · t · o(t)∫ tMax

0 dt · o(t)
, (9.1)

where o(t) is the occupation of the excited state. The expected lifetimes and their
standard deviations obtained with the different hopping algorithms are summa-
rized in Table 9.1. The curves shown in Figure 9.3 indicate a faster decline of the
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DSH FSSH FSSH DC

93(97) 44(36) 244(326)

Table 9.1: Expectation values and standard deviations of the excited state lifetime.

excited state for the two FSSH algorithms before about 200 fs. This trend is not
reflected in the expected lifetimes. The FSSH DC trajectories have the largest life-
time due to some long trajectories (one trajectory takes about 1.3 ps to reach the
ground state). The standard deviation is large as well. Hence, the data does show
a significant difference in the excited state lifetimes.

Figure 9.4 shows the distribution of N
2
−C

3
and C

4
−C

5
bonds and the CN

2
C

3
C

and CC
4
C

5
C dihedral angles at the hop. None of the two distributions show a

clear distinction among the three hopping algorithms. Table 9.2 summarizes the

Figure 9.4: Distribution of bond lengths (left) and dihedral angels (right) at the
hopping point.

isomerization results for all three hopping algorithms. A bond is considered to
isomerize if it rotates more than 70◦ and then either rotates back to its initial value
or rotates further to more than 150◦ from its initial value. To judge the signifi-
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DSH FSSH FSSH with DC

Ntraj 48 49 49

CN
2
C

3
C Ncis 25 28 29

Ntrans 12 15 12

CC
4
C

5
C Ncis 5 5 6

Ntrans 13 18 17

Table 9.2: The products of the photo-isomerization for the different hopping algo-
rithms. Note that the numbers of the individual isomerizations do not add up to
the total number of trajectories as in some cases no isomerization takes place or
both bonds isomerize.

cance of the differences in the isomerization results among the different hopping
algorithms, I performed a bootstrapping to generate distributions of each number
of isomerization products. For better comparability also for the DSH algorithm
samples of 49 trajectories were generated. Table 9.3 summarizes the bootstrapping

DSH FSSH FSSH with DC

Ntraj 49 49 49

CN
2
C

3
C Ncis 26(3.5) 28(3.5) 29(3.5)

Ntrans 12(3) 15(3.2) 12(3)

CC
4
C

5
C Ncis 4(2.1) 5(2.1) 6(2.3)

Ntrans 14(3.2) 18(3.4) 17(3.3)

Table 9.3: Bootstrapped results of the photo-isomerization. The table summarizes
the mean values and standard deviations derived from 100,000 samples of 49 tra-
jectories each.

results obtained from 100,000 samples each. The distributions of the number of
the isomerization products derived from the bootstrapped were used to calculate
the p-values of the observed number of isomerizations for the different hopping
algorithms. Table 9.4 summarizes the p-values. For each isomerization product
only the p-values with respect to the distribution, that is most different from the
other two, is shown. Most of the p-values are larger than 0.2. Thus, there is no
significant difference in the predicted numbers of N

2
C

3
cis, N

2
C

3
trans and C

4
C

5

cis isomerizations among the three hopping algorithms. Comparing the number
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9.1 Protonated Schiff Base

DSH FSSH FSSH DC

N
2
C

3
cis ref 0.33 0.24

N
2
C

3
trans 0.22 ref 0.22

C
4
C

5
cis 0.27 0.44 ref

C
4
C

5
trans ref 0.07 0.04

Table 9.4: The p-values derived from the bootstrapped distributions for the ob-
served number of each isomerization product are shown. For brevity only the
p-values with respect to the distribution, that is most different from the other two,
are shown (indicated by “ref”) .

of C
4
C

5
trans isomerizations obtained with the FSSH algorithms to distribution of

C
4
C

5
trans isomerization derived from the DSH results (last line in Table 9.4) yields

the lower p-values of 0.07 and 0.04. Hence, the DSH seems to predict less C
4
C

5

trans isomerizations than the FSSH algorithms. There is, however, no indication
for a reason of this deviation.

Overall, there is only a small difference in the reaction products between the
hopping algorithms. This similarity is likely to be caused by the specific excited
state dynamics of PSB2. The excited state dynamics of PSB2 are governed by a
“down hill” process[153]. After the vertical excitation, the molecule drops into
the conical intersection within a couple of hundred femtoseconds. There does not
seem to be any region of nonadiabatic coupling except for the conical intersection
itself, which would lead to different dynamics in the case of the FSSH algorithms.
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9.2 Photoactive Yellow Protein

The PYP1 contains a chromophore, the deprotonated 4-hydroxy-cinnamic acid (p-
coumaric acid (PCA)), which is covalently linked to the γ-sulfur of the Cysteine
(Cys)69 (see Figure 9.5). The photocycle of the PCA chromophore is sketched

Figure 9.5: The photoactive yellow protein. The chromophore and the active site
are shown in the “sticks” representation.

in Figure 9.6. In the resting state of the chromophore, the C
2
−C

3
double bond

(red) adopts the trans-conformation (for the atom names and the definition of the
bond color coding consider Figure 9.7). After absorption of a blue light photon,
in the resting state (pG) a pre-rotation of the double bond to 90◦ takes place. The
molecule then encounters a conical intersection and a radiationless transition from
the excited S1 to the ground state S0 occurs. After the S1/S0 transition, the dou-
ble bond either rotates back to its initial trans-conformation or the double bond
rotates further to adopt the cis-conformation (pR). These isomerization processes

1Protein data base (PDB) code 2ZOH
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9.2 Photoactive Yellow Protein

Figure 9.6: Schematic view of the early phase of the photoactive yellow protein
photocycle[31, 36].

take place on a picosecond timescale[35]. After the isomerization the protonation
state of the chromophore changes triggering structural change. The change in
structure is believed to induce the signal transduction[32, 35].

The full photocycle is beyond the reach of excited state MD simulations due to its
long timescale. Previous computational studies[36] and also the current work focus
on the first part of the photocycle namely the S1/S0 transition and the following
isomerization.

− O C3

C2 C1

O1

Sγ Cβ

Cα

NH

Figure 9.7: Definition of the atom names. The colors of the dihedral angles will be
used in the following.
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First the setup used for the excited state simulations is discussed (cf. Section
9.2.1). In following section the isomerization pathways are discussed on the ba-
sis of three specific trajectories. In Section 9.2.3 the results of all simulations are
summarized and discussed.

9.2.1 Setup

The excited state simulations were started from the same initial configurations as
in Reference[36] which were kindly provided by Dr. Gerrit Groenhof1 In contrast
to Reference[36] the Amber03[142] force field (FF) with the TIP3P water model[154]
and the larger 6-31G∗ basis2[85, 86] was used. Furthermore, two different active
spaces CAS(10,9) and CAS(8,7) were employed in the quantum mechanics (QM)
part of the simulations. The MOs composing the active spaces were derived by
starting from the CAS(12,11) including all π MOs except for the 3π MO of the
sulfur. Then the π MO with the most or the least nodes was removed from CAS and
the wavefunction converged. This was repeated until converged, state averaging
(SA)2-CASSCF(10,9) and SA2-CASSCF(8,7) wavefunctions were obtained.

For each initial configuration, six trajectories were started. One for each of the
hopping algorithms discussed in Sections 8.3 and 8.4, using both active spaces
discussed above. For all trajectories run with the FSSH algorithms starting from
the same initial configuration the random number generation was seeded the same.
This allows a comparison of the influence of the two active spaces on the excited
state dynamics.

9.2.2 Excited State Dynamics

Figure 9.8 shows a trajectory run with the DSH algorithm with the CAS(10,9) that
undergoes a trans-to-cis isomerization of the C

2
−C

3
double bond. The trajectory

follows the pathway sketched in Figure 9.6. The chromophore is excited to its
excited state at t = 0 ps. Right after the excitation the C

2
−C

3
double bond dihedral

(green line) starts to pre-twist to about 100◦. The hop to the ground state takes
place at around t = 0.2 ps (vertical black line). After the hop at about t = 0.3 ps,
the double bond twists further reaching its cis-conformation at around t = 0.5 ps.
At the same time the Sγ−C

1
dihedral starts rotating. The oxygen O1 moves away

from the Cys amine group breaking the hydrogen bond. These dynamics resemble

1Nanoscience Center, University of Jyäskylä
2The cartesian variant of the basis was used as available in the Molpro 2009.1 program.

82



9.2 Photoactive Yellow Protein

Figure 9.8: The DSH CAS(10,9) trajectory 1 showing a trans-to-cis isomerization of
the C

2
−C

3
double bond. The dihedrals along different bonds in the chromophore

are shown. The vertical black line indicates the hop from the excited to the ground
state.

the isomerization dynamics described in Reference[36]. However, no flip of the
thioester linkage (Cβ−Sγ−C

1
) was observed here as there is no rotation around

Cα−Cβ bond.
In addition to the isomerization of the double bond, also single bond (C

1’−C
3
)

isomerization was observed. Figure 9.9 shows the CAS(8,7) trajectory 6 which ex-
hibits a trans-to-trans single bond isomerization. Again, a pre-twisting takes place
prior to the hop to the ground state. In this case, however, the single bond (black
line) rotates to 90◦ prior to the surface hop. The rotation of the single bond corre-
sponds to a rotation of the phenyl ring with respect to the rest of the chromophore.
This time, it takes the trajectory about 1.2 ps to reach the pre-twisting region. The
trajectory hits the seam at around 1.5 ps and hops to the ground state. Right after
the hop the single bond rotates back to its trans-conformation reassuming its initial
structure.

The FSSH algorithms use a stochastic criterion to determine the hop. Thus the
hop can happen essentially anywhere along the trajectory. Figure 9.10 shows the
FSSH CAS(8,7) trajectory 6. The trajectory hops (black vertical line) at around
t = 0.2 ps before any pre-twisting of the single bond (black line) or the double
bond (red line) occurs. The instantaneous hopping probability pn (see Figure 9.10

(bottom)) is below 0.1 at the hop. Right after the hop, the instantaneous hopping
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Figure 9.9: The DSH CAS(8,7) trajectory 6 showing a trans-to-trans isomerization of
the C

1’−C
3

single bond. The dihedrals along different bonds in the chromophore
are shown. The vertical black line indicates the hop from the excited to the ground
state.

probability back to the excited state is large until the end of the simulation. The
hop back to the excited state does not occur, though, because it is energetically
forbidden. The trajectory is essentially trapped in the electronic ground state by
the enforced energy conservation. As the trajectory cannot hop back to the excited
state, it does not properly represent the wavefunction used in the FSSH algorithm
anymore.

9.2.3 Summarized Results

To access whether a FSSH trajectory hops before reaching a region of strong nona-
diabatic coupling and potentially suffers from the trapping problem described
above, the accumulated hopping probability

Phop = 1−
Nhop

∏
n=0

(1− pn) (9.2)

is used. The accumulated hopping probability describes the probability of a tra-
jectory having hopped to the ground state up to the the timestep the hop actually
takes place.
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9.2 Photoactive Yellow Protein

hop

hop

Figure 9.10: The FSSH CAS(8,7) trajectory 6. The dihedrals along different bonds
are shown top. In the bottom part the instantaneous hopping probability is plotted.

Table 9.5 summarizes the results of the trajectories run with the CAS(8,7). Only
two out of the nine FSSH trajectories reach the pre-twisting of either the single or
the double bond and exhibit an isomerization. The rest of the FSSH trajectories
hop before reaching the seam and no isomerization is observed. For most of these
trajectories the accumulated hopping probability is fairly low, meaning that they
all suffer from the trapping problem discussed before. Notably, there are three
unproductive FSSH trajectories (FSSH run 6 and FSSH DC runs 6 and 7) showing a
high accumulated hopping probability without reaching the pre-twisting of either
the single or the double bond. This indicates that there is significant nonadiabatic
coupling beyond the seam of the conical intersection.

The DC to the FSSH remedies this situation to a certain extend as five out of nine
trajectories reach the pre-twisting region.

Both the FSSH and the DSH trajectories show single as well as double bond trans-
to-trans isomerization. Double bond trans-to-cis isomerizations are, however, not
observed in either case.

For the FSSH trajectories, the exited state lifetime of the “productive” trajectories
is shorter than that of the DSH trajectories as all FSSH trajectories hop back to the
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DSH FSSH FSSH DC

run thopps result thopps Phop result thopps Phop result
1 1.184 DB trans 0.434 0.98 DB trans 0.235 0.79 DB trans
2 1.303 DB trans 0.056 0.15 -2

0.590 0.62 SB trans
3 1.213 DB trans 0.027 0.22 -2

0.027 0.18 -2

4 1.532 DB trans 0.152 0.26 -2
0.769 0.88 DB trans

5 3.008 -1
0.230 0.92 DB trans 0.657 1.00 DB trans

6 1.468 SB trans 0.214 0.72 -2
0.214 0.80 -2

7 0.947 SB trans 0.011 0.06 -2
0.761 1.00 -2

8 2.649 -1
0.003 0.00

3 -2
0.003 0.00

3 -2

9 0.811 SB trans 0.046 0.08 DB trans 0.339 1.00 SB trans

Table 9.5: Summary of the results obtained with the CAS(8,7).
1 The trajectory has not hopped yet. The time stated is the current simulation time as of

the 07.02.2013. This time is a lower bound for the hopping time.
2 The hop occurred before the pre-twisting of either the single or the double bond. Hence,

no isomerization was observed.
3 The hopping probability is less then 0.005.

ground state in less than 0.8 ps while the DSH trajectories stay in the excited state
for at least 0.9 ps.

Table 9.6 summarizes the results of the trajectories run with the larger CAS(10,9).
Unfortunately, most of the DSH trajectories have not reached the seam region yet.
Thus, these trajectories have not hopped to the ground state and the only informa-
tion drawn from these trajectories is a lower bound of their excited state lifetime.

Again, only two of the FSSH trajectories show an isomerization. Here, the DC
scheme cannot really remedy the trapping problem as only three of the nine FSSH
DC trajectories undergo an isomerization. Similar to the CAS(8,7) simulations the
trajectories run with either FSSH algorithm suffer from the trapping problem.

Like in the CAS(8,7) there are some FSSH trajectories (FSSH runs 5 and 6 and
FSSH DC run 7) that have a large accumulated hopping probability at the hop
without actually reaching the seam region. Hence, also the CAS(10,9) PES seems
to have regions of nonadiabatic coupling except for the seam itself.
A thorough comparison of FSSH to the DSH trajectories for the CAS(10,9) is not
possible because most of the DSH have not reached the seam of the conical in-
tersection yet. The excited state lifetimes of the DSH trajectories are going to be
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9.2 Photoactive Yellow Protein

DSH FSSH FSSH DC

run thop result thop Phop result thop Phop result
1 0.235 DB cis 0.154 0.82 DB trans 0.226 0.81 DB trans
2 1.947 -1

0.056 0.17 -2
0.165 0.048 -2

3 1.886 -1
0.027 0.21 -2

0.027 0.20 -2

4 1.899 -1
0.179 0.46 SB trans 0.569 0.32 SB trans

5 1.488 -1
0.923 0.99 -2

1.626 0.99 DB trans
6 1.097 SB trans 0.385 0.89 -2

0.214 0.75 -2

7 1.445 -1
0.404 0.94 -2

1.859 - -1

8 1.649 -1
0.003 0.00

4 -2
0.00

4
0.002766 -2

9 -3 - 0.046 0.095642 -2
0.164 0.17 -2

Table 9.6: Summary of the results obtained with the CAS(10,9).
1 The trajectory has not hopped yet. The time stated is the current simulation time as of the

07.02.2013. This time is a lower bound for the hopping time.
2 The hop occurred before the pre-twisting of either the single or the double bond. Hence, no

isomerization was observed.
3 Trajectory is broken.
4 The hopping probability is less then 0.005.

larger than the FSSH excited lifetimes, because the current DSH simulation times
are already larger than FSSH lifetimes.

Despite the unproductive trajectories encountered with the FSSH algorithms the
isomerization mechanism is the same for all hopping algorithms and CASs. Iso-
merization can only occur if the trajectory reaches the region of pre-twisted single
or double bond dihedral.

Unfortunately, there is only one trajectory showing the trans-to-cis isomerization.
This trajectory, indeed, shows that the isomerization pathway found in Reference
[36] with a smaller active space and a smaller basis set (3-21G) also occurs with the
large CAS(10,9) with the 6-31G* basis set.

One should note, however, that the statistics are rather limited. Especially no
trans-to-cis isomerization were observed in the CAS(8,7) simulations. Hence, we
do not make any quantitative predictions of the excited state lifetimes or quantum
yields.
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9.3 Conclusion

In the PSB2 simulations, there is only a small difference between the results ob-
tained with the DSH and the FSSH algorithms. The model free estimation of the
excited state lifetimes does not yield a significant difference among the different
hopping algorithms.

That all three hopping algorithms predict the same reaction mechanism and
products is probably caused by the excited state dynamics of the PSB2. The tra-
jectories follow a “down hill” pathway without any barriers in the S1 PES or equi-
libration in a S1 minimum. Hence, there does not seem to be a region of strong
nonadiabatic coupling except for the conical intersection itself. Furthermore, the
seam is usually reached in less than 200 fs. There is simply little time for any
deviations due to the wavefunctions propagation used in the FSSH algorithms.

Due to the specific excited state dynamics of the PSB2, the small differences
found among the hopping algorithms cannot be generalized to different systems
which do not follow a similar “down hill” process, e.g. the PYP. Thus, the PSB2 is
probably not a good test system to judge the applicability of the DSH and FSSH
algorithms to molecules which exhibit a more complex excited state MD.

For the PYP simulations the situation is different. The current implementation
of the FSSH algorithms used in this work enforces energy conservation during the
hops by adjusting the kinetic energy accordingly. This implementation cause the
trapping of several FSSH trajectories in ground state because the hop back to the
excited state is energetically forbidden despite a large hopping probability. In such
cases, the time evolution of the trajectory does not describe the system properly
anymore as the FSSH algorithms predicts a time-evolution according to the excited
state PES.

The DC scheme does not entirely solve this problem because in the CAS(10,9)
simulations most of the trajectories hop prior to the pre-twisting and at large
S1 − S0 energy gaps still. An obvious solution to the frustrated hop problem is
enhanced sampling, i.e. starting with multiple trajectories with different seeds for
the random number generator for each initial condition. Especially in the case of
the CAS(10,9), the quantum mechanics/molecular mechanics (QM/MM) calcula-
tions are expensive. So, just increasing the number of trajectories is not practical.

For the two systems studied in this work, there is little incentive of choosing
either of the FSSH algorithms in the specific implementation used here over the
DSH algorithm. In the PSB2 simulations, there is only a small difference among
the different hopping algorithms. For the PYP, the trapping problem diminishes

88



9.3 Conclusion

the statistics achieved with the FSSH algorithms compared to the DSH algorithm.
Hence, the use of the DSH seems preferable in this case as well.

For systems where the nonadiabatic coupling is essentially a located conical in-
tersection, the DSH algorithm seems to be preferable. However, there might be
situations where the excited state dynamics are dominated by extended regions of
nonadiabatic coupling without an actual conical intersection. For such a system
the DSH does not describe the excited state MD properly because the DSH only
describes hops at conical intersections.

Due to the trapping problem found for the implementation of the FSSH algo-
rithms used in this work, a different scheme to cope with the energy conservation
in the FSSH algorithms[155] or a different simulation protocol should be used[156].
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10
Excitation Energy Transfer

Excitation energy transfer (EET) processes take place in systems containing two
or more chromophores. The excitation is transferred from the excited state donor
to the ground state acceptor by coupling between the two chromophores. Foerster
resonance energy transfer (FRET)[40] is an example of an EET process, which forms
the basis for the experimental technique with the same name[42, 43]. In FRET the
donor absorbs a photon but the excitation energy is released by photo-emission
from the acceptor. To facilitate FRET, the excitation has to be transferred from one
part of the system to another. In FRET theory[40], as well as for instance in Dex-
ter’s theory[41], the excitation transfer is attributed to weak interaction between
the (distinct) wavefunctions of the two chromophores. The interaction between the
donor and the acceptor is, hence, treated in terms of perturbation theory. In FRET
theory, the coupling derived by Fermi’s golden rule is further approximated to the
dipole-dipole coupling between the transition dipole moments of the wavefunc-
tions of the two chromophores.

In contrast to the conventional interpretation of EET in terms of perturbation
theory, it has been proposed[44–47] that in small molecules nonadiabatic coupling
between different excited state potential energy surface (PES) (cf. Chapter 7) can
induce the intra-molecular EET. There are two plausible pathways by which molec-
ular dynamics (MD) through regions of nonadiabatic could lead to EET.

The first pathway is a “down hill” process, in which the nuclear wavepacket
passes from the S2 through a conical intersection to the S1. Figure 10.1 sketches a
PESs which can induce an EET process. The nuclear wavepacket is excited from the
ground state (black) to the second excited state (red), for which the excitation is lo-
cated on the left part of the molecule. The wavepacket follows the red surface until
it reaches the conical intersection. Depending on the detailed shape of the conical
intersection, a part of the wavepacket will follow the red surface diabatically reach
the minimum of the red surface. The other part of the wavepacket, however, will
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Figure 10.1: Sketch of two excited potential energy surfaces leading to a “down hill”
excitation energy transfer. The potential energy surfaces are colored according to
the diabatic states.

be transferred to the other (blue) surface. For the blue surface, the excitation is
located on the right side of the molecule. Thus, the nonadiabatic coupling between
different PESs induces MD that leads to an EET.
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Figure 10.2: Sketch of two excited potential energy surfaces leading to a excitation
energy transfer by excited state barrier crossing. The potential energy surfaces are
colored according to the diabatic states.
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The second possibility is sketched in Figure 10.2. Here, the S1 surface exhibits
a barrier, which is caused either by an avoided crossing (shown) with the S2 or a
conical intersection between the S1 and the S2. Due to the nonadiabatic coupling,
the excited states exchange their diabatic character. The wavepacket is now excited
from the ground state PES to the S1 blue surface for which the excitation is located
on the right end of the molecule. Part of the wavepacket can now cross the barrier
reaching the red surface by thermal activation which transfers the excitation to the
left side of the molecule. Again, the nonadiabatic coupling shapes the PESs so that
the MD can induce EET from one part of the molecule to the other.

C

C

O

O

[CH2]n

[CH2]n

Figure 10.3: Pnn structure.

Speiser and co-workers[48] used spectroscopy to study the intra-molecular EET
for a set of bi-chromophoric p-cyclophanes (Pnn, see Figure 10.3), m-cyclophanes
(Mnn), and benzocycloalkenediones (Onn). The absorption spectra of these com-
pounds are dominated by the absorption spectrum of the xylene, as the (n, π∗)
excitation of the bi-acetyl is essentially optically dark. The emission spectrum of
e.g. the P

44
is, however, essentially the emission spectrum of the bi-acetyl. Thus,

the excitation energy has to be transferred from the xylene to the bi-acetyl. The
authors attribute the EET to a process driven by short range exchange interaction
between the chromophores and interpret their results in terms of Dexter’s theory
accordingly.

The distance between the xylene and the bi-acetyl is about 0.5 nm. The perturba-
tive treatment of the interaction between the chromophores is somewhat artificial
as it assumes two distinct wavefunctions. Instead, we here propose to to study the
excited state MD of P44 using one wavefunction for the whole molecule to reveal
possible MD induced EET mechanism.

Accordingly, we have performed both ab initio calculations as well as excited
state MD simulations to investigate a possible MD induced EET process in P

44
.

The ab initio calculations (especially the optimization of the conical intersections)
were performed by Dr. Martial Boggio-Pasqua1 who kindly provided his data.

1Laboratoire de Chimie et Physique Quantiques, Université de Toulouse
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First, the setup used for our calculations is discussed in the following section.
Then the minimal energy pathway (MEP) is presented on the basis of the ab initio
results (cf. Section 10.2.1). In the Sections 10.2.2 and 10.2.3 the results of the excited
state MD are considered and compared to the MEP.

10.1 Setup

The initial conditions for the quantum mechanics/molecular mechanics (QM/MM)
dynamic simulations are determined from a B3LYP[157–160]/6− 31G∗[85, 86] tra-
jectory run on the ground state. From this trajectory snapshots were taken every
1 ns. At these snapshots the electronic wavefunction is vertically excited to the
π−π∗ state. The π−π∗ is either of the S2 or S3 state, depending on the molecular
geometry.

The dynamics were run using state averaging (SA)4-complete active space self-
consistent field (CASSCF)(14,12)/6− 31G∗1 for the dryad and the Gromos43a2[140,
141] force field (FF) for the hexane solvent. As hexane is apolar, there are no
charges from the MM region polarizing the wavefunction. A timestep of 1 fs was
used for the MD. The setup was done mostly by Dr. Gerrit Groenhof2 who kindly
provided me his data.

One successful trajectory was run with the diabatic surface hopping algorithm
which happens to follow the MEP suggested by the ab initio calculations.

The fewest switches surface hopping (FSSH) was used despite the poor perfor-
mance seen in the photoactive yellow protein (PYP) simulations (cf. Section 9.2)
because the choice of the hopping algorithm might influence the observed pathway
(cf. the discussion in Section 10.2.1).

Only 3 out of 10 trajectories started with the fewest switching surface hopping
algorithm were successful. For the other starting geometries it was not possible
to derive the state character from the transition density matrices due to “broken”
orbital subspace. Hence, it was impossible to start the trajectories on the correct
(π, π∗) state.

The successful trajectories were stopped shortly after reaching the fluorescent
S1(n, π∗) surface.

1The cartesian variant of the basis was used as available in the Molpro 2009.1 program.
2Nanoscience Center, University of Jyväskylä
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10.2 Results

10.2.1 Ab Initio Results

Intersecting surfaces Relative energy [ev] Dimensionality of the seam

S1(n, π∗)/S2(n, π∗) 5.972/5.986 n− 2
S2(n, π∗)/S3(π, π∗) 4.750/4.784 n− 1
S1(n, π∗)/S2(π, π∗) 4.829/4.899 n− 2

Table 10.1: Minimal energy conical intersections between the electronic states for
the C2 geometries. The energies are given with respect to the ground state energy
minimum. The two energies are the energies of the two states involved in the
conical intersection a its location. The seam of the S2(n, π∗)/S3(π, π∗) conical
intersection is n − 1 dimensional because the gradient difference and derivative
coupling vectors are parallel and, thus, the branching space is one dimensional.

We located conical intersections between all three excited states (see Table 10.1).
The vertical excitation energy from the ground to the S3(π, π∗) state is 4.966 eV.
So, at least the S2(n, π∗)/S3(π, π∗) and the S1(n, π∗)/S3(π, π∗) are in principle
energetically accessible. The conical intersection between the S2(n, π∗) and the
S3(π, π∗) state is n− 1 dimensional because the gradient difference and the deriva-
tive coupling vectors are parallel and, thus, the branching space is one dimensional.

The ab initio data suggests an MEP sketched in figure 10.4. Starting from the S0
(black curve) minimum the system is excited to the S3(π, π∗) state (green curve).
The trajectory then travels towards the minimum of the potential energy surface
of the (π, π∗) state. The trajectory crosses the S2(n, π∗)/S3(π, π∗) conical in-
tersection without hopping to the second (n, π∗) state (blue curve), because the
seam of this conical intersection is n − 1 dimensional. When the system hits the
S1(n, π∗)/S2(π, π∗) conical intersection, it can hop to the S1(n, π∗) (red curve) as
the seam is n − 2 dimensional. It then relaxes on the S1(n, π∗) potential energy
surface until the fluorescent decay to the ground state takes place.

Note, however, that the pathway sketched above assumes that the hopping al-
gorithm sticks to the instantaneous diabatic surface while passing through the
conical intersection. This is certainly true for the diabatic surface hopping (DSH)
algorithm which can only pass from one diabatic state to another in the vicinity of
a two-dimensional conical intersection (see Figure 10.5).
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Figure 10.4: Sketch of the minimal energy pathway of the excitation energy trans-
fer reaction derived from the CASSCF(14,12)/6− 31G∗ ab initio calculation. Note
that only single point calculations were performed. Thus, only the minimal energy
points of the respective states and the conical intersection are known. No informa-
tion about the curvature or shape of the potential energy surfaces were obtained
and the curves are merely to guide the eye. In the sketch not a single reaction
coordinate is used, but there are three different motions connecting the different
energy minima. The different states are labeled according to their ordering at the
ground state energy minimum geometry.

The hops in the FSSH algorithm, however, are determined from the strength
of the nonadiabatic coupling and the hops can essentially occur anywhere along
the trajectory. The seam of the S2(n, π∗)/S3(π, π∗) conical intersection is n − 1
dimensional because the derivative coupling and the gradient difference vectors are
parallel. Hence, there still is nonadiabatic coupling between the S2 and S3 surfaces.
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Figure 10.5: DSH trajectory switching diabatic state while evolving around a con-
ical intersection. Before the trajectory reaches the conical intersection itself, it
switches from one diabatic state D1 to the other diabatic state D2 by moving around
the upper cone. Then, it switches to the lower surface by evolving through the con-
ical intersection.

So, the FSSH trajectories will not necessarily follow the pathway described above
but rather hop to the S2(n, π∗) rather than following the diabatic (π, π∗) state.

The de-excitation pathway that leads the system from the S3 surface to the flu-
orescent S1 surface might, thus, depend on the surface hopping algorithm used
in the simulations. Therefore, trajectories with both the DSH as well as the FSSH
algorithms were run.

The MEP sketched in Figure 10.4 implements the “down hill” EET mechanism
discussed in Figure 10.1 but with three instead of two excited states determining
the excited state dynamics.

This MEP explains the experimental findings [exp. paper] that the absorption
takes place at a wavelength corresponding to the π − π∗ transition on the xylene
motif whereas the emission wavelength corresponds to the n−π∗ transition on the
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di-acetyl motif. The excitation energy transfer from the xylene to the di-acetyl is,
thus, explained by the molecular dynamics on the excited state potential energy
surfaces and the nonadiabatic coupling among them.

10.2.2 DSH Trajectory

Time [fs] Transition Angle between derivative
coupling and gradient dif-
ference vector

5 S2(π, π∗)→ S3(π, π∗) 30.9◦

10 S3(π, π∗)→ S2(π, π∗) 78.6◦

18 S2(π, π∗)→ S1(n, π∗) 172.4◦

Table 10.2: Conical intersections encountered in the diabatic surface hopping tra-
jectory.

The trajectory was started on the S2(π, π∗) state. After 5 fs the trajectory reaches
the S2(π, π∗)/S3(n, π∗) conical intersection (figure 10.6). It stays on the (π, π∗)
state while hopping to the S3 surface. There the trajectory proceeds until it hits
the S2(π, π∗)/S3(n, π∗) conical intersection again after 11 fs. Again, the trajectory
stays in the (π, π∗) state in hopping back to the S2 surface. After 17 fs, the trajec-
tory reaches the S1(n, π∗)/S2(π, π∗) conical intersection and hops to the S1(n, π∗)
surface. After the first hop after 5 fs, the trajectory resembles the MEP pictured
in figure 10.4. However, the topology of the conical intersections is not the same
as in the MEP (see table 10.2). The trajectory hits the S2(n, π∗)/S3(π, π∗) twice
(after 5 fs and 10 fs). In both cases the seam is n − 2 dimensional. This means
that the DSH simulations as well are not bound to stay on the (π, π∗) state while
passing through the S2(π, π∗)/S3(n, π∗) conical intersection. Thus, the DSH do
not necessarily follow the MEP suggested by the ab initio results.

10.2.3 FSSH Trajectories

This trajectory was started from the 1 ns snapshot on the S2(π, π∗) surface (figure
10.7). The trajectory stays on the S2(π, π∗) surface for more then 50 fs. It then hops
directly to the ground state. The steep increase of the potential energy after the
hop is most likely caused by the large amount of kinetic energy (the difference of
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Figure 10.6: Potential energies of the three excited states of the diabatic surface
hopping trajectory.
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Figure 10.7: Potential energies of the three excited states of the fewest switches
trajectory started from the 1 ns snapshot
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the potential energy at the hopping point, about 0.17 Hartree) put into the system
during the hop. At the geometry of the 6 ns snaphot, the trajectory was started
on the S3(π, π∗) surface. The trajectory hops immediately to the S2(n, π∗) surface,
where it stays for 15 fs. After that, the trajectory hops to the S1(n, π∗) surface. Note
that the S3(π, π∗) surface crosses with a doubly excited (n, π∗) state after around
7 fs. The last successful trajectory was started from the 9 ns snapshot (figure 10.9).
It was started on the S3(π, π∗) surface. After 13 fs, it hops to the S2(n, π∗) surface,
where is stays for about 20 fs. After that it hops further to the S1(n, π∗) surface.
After about 75 fs the trajectory hops back to the ground state, depositing a large
amount of kinetic energy into the system. Note that, again, the (π, π∗) crosses
multiple times with a doubly excited (n, π∗) state.

The two FSSH trajectories (the 6 ns and 9 ns) that reach the fluorescent S1(n, π∗)
state do not follow the MEP suggested by the ab initio data. Both also visit the
S2(n, π∗) state. However, the nonadiabatic molecular dynamics can again explain
the excitation energy transfer from the xylene to the di-acetyl motif.

10.3 Conclusion & Outlook

Both, the ab initio and the QM/MM data, show that the excitation energy transfer
from the xylene to the di-acetyl motif can be mediated by the molecular dynamics.
However, the exact mechanism cannot be deduced, as the pathways suggested by
the ab initio data does not fit the pathways observed in the QM/MM dynamics.
This discrepancy can be due to several reasons.

First, the QM/MM trajectories were run at 300 K, whereas the ab initio data is
based on single point calculations, which essentially represent the system at 0 K.
In a high dimensional system, it is highly improbable that any trajectory at room
temperature will follow the MEP. Additionally, the FSSH algorithm determines the
hopping probability solely from the nonadiabatic coupling between the different
states (equations (8.13) and ((8.14)). Thus, the trajectory can cross from one state
to the other (e.g. from the (π, π∗) to the (n, π∗) state) even if a conical intersection
with a one-dimensional seam or no conical intersection at all is encountered — as
long as there is significant nonadiabatic coupling. The ab initio data shows that
the S2(n, π∗)/S3(π, π∗) seam is n− 1 dimensional because the gradient difference
and derivative coupling vectors are parallel (Table 10.1) and there is nonadiabatic
coupling. So it is plausible that the FSSH trajectories hop from the S3(π, π∗) to the
S2(n, π∗) state. Due to the problems in the setup and the large computational costs
of the QM/MM calculations, we were only able to run a few trajectories. Therefore,
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Figure 10.8: Potential energies of the three excited states of the fewest switches
trajectory started from the 6 ns snapshot.
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Figure 10.9: Potential energies of the three excited states of the fewest switches
trajectory started from the 9 ns snapshot.
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no quantum yields can be estimated. The excitation energy transfer driven by the
MD is apparently very fast (≤ 100 fs) in the P

44
molecule. This timescale might be

accessible to recent femtosecond laser experiments.
Irrespective of the discrepancy between the ab initio data and the QM/MM

molecular dynamics, both show that the excitation energy transfer from the xy-
lene to the di-acetyl motif can be explained in terms of the molecular dynamics on
the potential energy surfaces of the different electronic states and the nonadiabatic
coupling between them. This provides an alternative and a more general explana-
tion of excitation energy transfer that does not rely on a perturbative treatment of
the chromophore interaction.

A systematic study of the excited state dynamics is currently not possible for
the P44 molecule due to the large computational costs of the complete active space
(CAS)(14,12) calculations. Therefore, as a possible next step, the methods used
above should be applied to a computational cheaper system, i.e. a molecule the
excited states of which are well described by a smaller active space. Additionally,
a molecule is preferable where only two excited states are involved in the excited
state dynamics for easier interpretability of the dynamics simulations.
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A
Molecular structures

A.1 Glycine

Atom x [Å] y [Å] z [Å]

N -0.58781 -1.82985 0.00000

C 0.48192 -0.86468 0.00000

C 0.00000 0.57555 0.00000

O 1.04901 1.40704 0.00000

O -1.11966 0.96581 0.00000

H 0.72348 2.29818 0.00000

H 1.13065 -0.96572 0.86523

H 1.13065 -0.96572 -0.86523

H -0.59823 -2.40286 -0.81480

H -0.59823 -2.40286 0.81480

Table A.1: Glycine HF/DZP equilibrium structure used for electron dynamics sim-
ulations in Section 5.3.
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A.2 PENNA

Atom x [Å] y [Å] z [Å]

C -0.01600 -0.36200 -0.02800

C 0.00500 -0.30400 -1.41400

C 1.16900 0.05400 -2.08000

C 2.30900 0.35400 -1.34700

C 2.28300 0.29400 0.03900

C 1.12200 -0.06600 0.72200

C 1.10600 -0.16200 2.23300

C 1.47600 -1.56200 2.73200

N 1.58200 -1.65100 4.17300

C 0.31800 -1.59200 4.86500

C 2.38600 -2.76700 4.60800

H 3.22100 0.64000 -1.85600

H 1.18600 0.10300 -3.16100

H 3.17800 0.53600 0.60000

H 1.81500 0.54800 2.66100

H -0.89100 -0.53600 -1.97600

H 0.11800 0.12200 2.59500

H -0.93200 -0.63800 0.48000

H 3.37800 -2.71600 4.15800

H 2.44600 -1.82200 2.30800

H 0.75900 -2.29700 2.32900

H 1.94800 -3.74400 4.35200

H 2.51300 -2.73400 5.69100

H -0.22100 -0.67900 4.61800

H 0.48500 -1.58500 5.94300

H -0.33900 -2.44600 4.63200

Table A.2: PENNA HF/6− 31G∗ equilibrium structure used for electron dynamics
simulations in Section 5.4.
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A.3 Ab Initio Data of P44

Figure A.1: CASSCF(14,12)/6− 31G∗ optimized C2 structure of P44.

C1 − C2 C2 − C3 C3 − C4 C5 − C6 C6 −O7

S0 C2 min 1.399 1.394 1.401 1.529 1.208
S1(n, π∗) C2 min 1.398 1.394 1.400 1.439 1.271
S2(n, π∗) C2 min 1.398 1.394 1.401 1.387 1.316

S3(π, π∗) C2 min∗ 1.437 1.433 1.438 1.529 1.208
S1/S2 C2 CI 1.398 1.394 1.401 1.244 1.549
S2/S3 C2 CI 1.429 1.425 1.430 1.497 1.228

Table A.3: CASSCF(14,12)/6− 31G∗ optimized C2 structures. ∗ The S3(π, π∗) C2
minimum lies on the S2 potential energy surface.
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S0 S1(n, π∗) S2(n, π∗) S3(n, π∗)

S0 C2 min −767.399367 −767.257960 −767.217871 −767.216873
S1(n, π∗) C2 min −767.385862 −767.270032 −767.245312 −767.203231
S2(n, π∗) C2 min −767.362311 −767.270032 −767.245312 −767.203231

S3(π, π∗) C2 min∗ −767.391310 −767.266308 −767.251033 −767.179816
S1/S2 C2 CI −767.193918 −767.179901 −767.179368 −767.040529
S2/S3 C2 CI −767.393227 −767.259357 −767.224818 −767.223540

Table A.4: CASSCF(14,12)/6− 31G∗ energies. ∗ The S3(π, π∗) C2 minimum lies on
the S2 potential energy surface.
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