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Abstract. Table-top sources of intense multi-terahertz (THz) pulses have
opened the door to studies of extreme nonlinearities in the previously elusive
mid- to far-infrared spectral regime. We discuss two concepts of fully coherent
coupling of phase-locked THz pulses with condensed matter. The first approach
demonstrates two-dimensional multi-THz spectroscopy of the semiconductor
material InSb. By phase- and amplitude-sensitive detection of the nonlinear
optical response, we are able to separate incoherent pump—probe signals from
coherent four-wave mixing and reveal extremely non-perturbative nonlinearities.
While this class of interactions is mediated by the electric field component of
the THz pulse, the second approach is complementary, as it demonstrates that,
alternatively, the magnetic THz field may be exploited to selectively control the
spin degree of freedom in antiferromagnetic NiO.
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1. Introduction

The incentive to study and control low-energy collective excitations in condensed matter on
the femtosecond time scale has spurred on the development of a unique arsenal of sources
and detectors in the terahertz (THz) spectral band [1, 2]. Inherently phase-locked single-cycle
THz pulses have become routinely available while ultrabroadband electro-optic sensors trace
the transient field with respect to absolute phase and amplitude throughout the entire far- and
mid-infrared range [3, 4]. Low-energy dynamics have thus become amenable to observation on
time scales shorter than a single oscillation period of light [5].

The crucial step from ultrafast linear to ultrafast nonlinear THz interactions has been
heralded by the recent boost in energies of THz pulses beyond 1 uJ, whereby peak electric
fields above 1 MV cm™~! have been reached [6—10]. When intense THz electromagnetic pulses
interact with the many-body system of a solid, a variety of non-equilibrium scenarios may result.
Recent experiments have explored intervalley scattering [11-13], interband tunneling [14],
impact ionization [15, 16], and the anisotropy of the effective mass [17] in semiconductors,
anharmonicities of a soft phonon mode in ferroelectrics [18], as well as non-thermal suppression
of electronic localization in strongly correlated systems [19, 20]. Most studies have concentrated
on the effects of THz excitation after the coherence between the external driving field and
the induced polarization has decayed. On the other hand, first examples of coherent THz
nonlinearities have been demonstrated with semiconductors [21-24] and rotational states of
gas molecules [25, 26]. These studies re-emphasize the importance of dynamics occurring on
timescales shorter than the dephasing time of the electron system. Here we report on two novel
classes of coherent nonlinearities. The recent breakthrough in the generation of ultra-intense
multi-THz transients with peak electric fields up to 100 MV cm~! [27, 28] allows us to explore
a regime of a light—matter interaction where the Rabi frequency becomes comparable to the
oscillation frequency of the driving THz field. In this case, the nonlinear response reaches
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Figure 1. Schematic representation of a non-collinear FWM experiment: two
high-field THz pulses are focused into an InSb sample. The dashed lines illustrate
the generated nonlinear signals. The pump—probe signals PP-BA (pump B/
probe A) and PP-AB (pump A/probe B) propagate in the same direction as the
probe pulses A and B, respectively. The coherent FWM signal depends on the
relative phase of the interacting pulses and propagates in a different direction.

the limit of extremely non-perturbative optics [29]. Furthermore, the complementary magnetic
component of THz pulses can strongly couple to a spin subsystem and coherently control the
precession of a macroscopic magnetization [30, 31]. Both aspects are covered in our discussion.

In the first part of this article, we report on the coherent nonlinear THz response of
an interband polarization in the narrowband semiconductor InSb, studied by means of field-
resolved four-wave mixing (FWM) spectroscopy [32]. The carrier frequency of the THz
driving field is set well below the interband resonance. In the limit of perturbative light-matter
interactions, as are considered in classical nonlinear optics, the FWM process is fully governed
by a third-order optical nonlinearity. However, this regime is realized only when the Rabi
frequency is much smaller than the detuning of the driving frequency from a resonance. Our
experiment demonstrates that this condition is violated for peak electric fields in excess of
3MVcm™!, as the FWM signal shows clear signatures of a non-perturbative response caused
by coherent Rabi flopping.

The second part of this article focuses on an ultrafast control of collective spin precession
in antiferromagnetic NiO at frequencies as high as 1 THz [33]. By using intense magnetic THz
transients, we switch a coherent magnon on and off, with sub-cycle precision.

2. Non-perturbative nonlinear response of a bulk semiconductor under off-resonant
terahertz (THz) excitation

Semiconductors, due to our advanced theoretical understanding and experimental control of
their material properties, provide a prime test bed for the investigation of light—matter coupling
in quantum many-body systems. In particular, their interaction with extremely intense THz
electromagnetic fields has attracted attention for potential applications in both modern optics
and high-speed optoelectronics [11, 12, 14, 16, 17, 34]. We utilize high-field multi-THz pulses to
study the coherent response of bulk InSb by means of two-dimensional spectroscopy. Following
the generic concept of a degenerate FWM experiment we address an interaction of two intensive
THz pulses within a sample, as illustrated schematically in figure 1. The temporal position of
pulse A is fixed while pulse B is delayed with respect to the former by a variable delay time 7.
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The leading pulse (A or B, depending on the sign of 7) can induce a change in the optical
constants of the sample and, thus, affect the propagation of the subsequent pulse. This process
gives rise to a nonlinear pump—probe signal which gradually varies as a function of t. The
pump—probe signal temporally coincides with the probe pulse and propagates in the same
spatial direction. An alternative interaction pathway that is also possible proceeds as follows: a
coherent polarization induced by the leading pulse can interfere with a trailing pulse, resulting
in a periodic modulation of the optical constants. Part of the second pulse may then diffract
from the emergent transient grating, generating a FWM signal. In the case of the non-collinear
geometry shown in figure 1, the FWM signal propagates in a different direction than either
pulses A or B, where the direction is defined by the conservation of the wavevectors involved
in the nonlinear interaction. As we will demonstrate below, FWM and pump—probe signals may
also be distinguished directly via the dependence of their respective phases. Complete amplitude
and phase resolution of the nonlinear optical response will provide us with a sensitive tool to
separate various nonlinearities and do so independently of their spatial propagation direction.

2.1. Field-sensitive two-dimensional spectroscopy

In order to test the validity of these considerations we explore the FWM response of a bulk
sample of the semiconductor InSb. This material features a narrow direct bandgap of E, =
170 meV =41.1 THz. A single crystalline window with a thickness of 30 um is investigated
at room temperature. The small energy gap of InSb results in a relatively large density of
intrinsic charge carriers of ng =2 x 10'® cm™3. High-field THz pulses are generated by a table-
top laser system using difference frequency mixing in a GaSe emitter [28]. The duration of the
pulses amounts to 150 fs (full-width at half-maximum (FWHM)) and their carrier frequency
is fo =23 THz. Thus, the complete spectrum is located below the absorption edge of InSb,
ensuring off-resonant driving of the polarization response. The THz radiation is tightly focused
onto the surface of the semiconductor. The electric fields re-emitted by the oscillating
polarization in the sample are collected by an off-axis parabolic mirror with large numerical
aperture ensuring the angle-integrated detection. The field-resolved THz waveforms are
measured electro-optically in a GaSe sensor. Further technical details of the experiment are
summarized in [32].

The total field emitted from InSb, in the presence of both pulses A and B, is measured
as a function of the electro-optic sampling delay time ¢ and the relative pulse delay 7 (see
figure 2(a)). The peak electric fields at the focal spot, which has a diameter (FWHM) of 85 um,
amount to 2 MV cm™! per pulse. This value corresponds to an intensity of 210.6 GW cm~2. The
nonlinear contribution is obtained by subtracting the transmitted fields of the individual pulses
A and B from the total electric field. The resulting two-time-dependent nonlinear response is
shown in figure 2(b).

Even though these data contain all nonlinear optical processes in an angularly integrated
way, the FWM signals may be sharply discriminated from the pump—probe signatures by their
specific phase dependencies. Since the FWM process relies on the interference of both driving
pulses, a FWM signal depends on the relative phase of both excitation fields and, therefore,
the phase periodically varies as a function of . A Fourier transformation in two-dimensional
frequency space allows us to separate FWM from pump—probe nonlinear processes. Figure 2(c)
depicts the amplitude spectrum of the total nonlinear signal in frequency space. Different
contributions to the nonlinear signal appear as distinct pairs of maxima conjugated by the
inversion operation with respect to the origin [35].
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Figure 2. (a) Total electric field of the two THz transients transmitted through
InSb plotted as a function of sampling delay time ¢ and temporal offset t
between the transients. (b) Nonlinear contribution Eyp to the total electric field.
(c) Two-dimensional Fourier spectrum of Eyp with pump—probe and FWM
contributions located at different points of the frequency plane. (d, e) Time-
domain pump—probe signals PP-BA and PP-AB obtained by inverse FT of the
signals at ks and kg, respectively. (f) Time-domain FWM signal obtained by
inverse FT of the signal at 2k — kg.

For a qualitative understanding of the origin of the various maxima in frequency space, it is
instructive to note that the Fourier transform (FT) of pulse A would be centered at the position
ka = (fo, 0) and its conjugate —k 4. This fact is straightforward to understand since the electric
field of pulse A, which is not shifted in time, does not oscillate as a function of t, while it does
oscillate with frequency f; along time 7. As a consequence of this, nonlinear signals observed at
k4 represent changes in pulse A induced by pulse B. In other words, these signatures represent
pump—probe signals with pulses B and A acting as pump and probe, respectively. As a shorthand
we denote this interaction as PP-BA. The temporal evolution of this particular signal is obtained
by the selective inverse FT of the signal at ka (see figure 2(d)). Due to causality, the signature
PP-BA gradually vanishes for ¢ > 0 when the pulse B arrives after the probe pulse A.

Similarly, the spot located at kg = (+fy, —fo) corresponds to changes imprinted on
pulse B. The temporal shift of pulse B leads to oscillations of its electric field along the
T-axis resulting in f; = — f;. The negative sign of the frequency is caused by the positive phase
shift in the field profile when the delay time ¢ increases. The corresponding pump—probe signal
PP-AB appears for T > 0 when the time order of the pulses is reversed (see figure 2(e)).
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Finally, the maximum at the position 2k, — kg = (+ fo, + fo) and its conjugate correspond
to a coherent FWM signal. As pointed out above, the FWM field also oscillates as a function of
7 due to the phase-sensitive character of the interaction between the pulses A and B. However,
in contrast to the PP-AB signal, the FWM signature appears at positive frequency f. = fo.
Therefore, its phase experiences a negative shift with increasing delay time ¢, as it is seen in the
time-domain of the FWM signal shown in figure 2(f).

In contrast to the FWM signal, the pump—probe signals observed in our experiment are
temporally extended far beyond the duration of the interacting THz pulses themselves. This
observation indicates that the main contribution to the pump—probe response in InSb originates
from a long-living electron—hole plasma produced by the intense THz field of the pump pulse.
Possible mechanisms of free carrier generation by an excitation below the bandgap of InSb
such as impact ionization [15], two-photon absorption (TPA) [36] or interband tunneling [37]
have been studied previously. Here we concentrate on the FWM signal, which characterizes
coherence induced in the sample by the phase-stable THz pulses.

2.2. From perturbative to non-perturbative four-wave mixing (FWM)

Figures 3(a)-(c) show the time-domain FWM obtained from measurements performed with
peak electric fields of 2, 3.5 and 5.3 MV cm™! per pulse, respectively. The envelope of the
FWM signal qualitatively changes with increasing field strength and evolves from an oval
shape at the lowest field (figure 3(a)) via an S-shape at 3.5MV cm™! (figure 3(b)) towards a
split area at the highest excitation intensity (figure 3(c)). This splitting results in a minimum of
the FWM signal along the diagonal of the time window (¢ = 7) where the total excitation field
reaches maximal values. In the following discussion we demonstrate that this behavior is an
unambiguous signature of a non-perturbative polarization response in InSb.

In order to understand the character of the light—matter interaction in our experiment, we
perform simulations of the FWM response assuming either a perturbative response due to a
third-order nonlinearity x® or a response of a quantum two-level system coherently driven by
intense THz pulses. In both frameworks, the electric fields of the THz pulses are given by

E(z,t) =+ I1(z,t —t)Zexpli®(z, t)] exp[—ikz +iw(t — T)], (1)

where 7 is the spatial coordinate along the beam axis, 7 (z, t) is the Gaussian intensity envelope
with a FWHM duration of 100fs, Z = /1uo/€o¢ 1s the wave impedance, k and wy = 2 f are
the wavevector and the carrier frequency, and ®(z, ¢) is the phase shift, which is initially set to
zero (Fourier-limited pulses).

2.3. Theory of perturbative FWM

The pulse propagation through the sample affected by x ¥ nonlinearities and free charge carriers
can be described by the following system of equations [37]:

81;2’ 2 =—al(z,1) — BI%*(z, 1), 2)

%ﬁ’” = —AAn(z,t)+BI(z, 1), 3)

dAn(z,1)  BI*(z,1) 4)
ot - 2hwy
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Figure 3. Experimental FWM signals generated by THz transients with peak
electric fields of (a) 2MVcem™', (b) 3.5MVcem™' and (¢c) 5.3MVem™.
Calculated FWM signals for the same driving fields using models which take
into account (d)—(f) only the real part of x©® (Kerr effect), (g)-(i) only the
imaginary part of x® (TPA), (j)—(1) the real and imaginary parts of x® and
the contribution of the field-induced electron—hole plasma, (m)—(o) coherent
excitation of a quantum two-level system.

Here B is the TPA coefficient and An is the excess density of free carriers generated via TPA.
The coefficient « = ogc(ng+ An) describes the linear absorption due to the holes in the valence
band, where opc = 5.6 x 107!® cm? is the interaction cross-section [37]. The TPA coefficient B
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is directly proportional to the imaginary part of the third-order nonlinear coefficient, Im x ®.
In turn, the real part Re x® is responsible for the Kerr effect, which leads to the phase
modulation described by the second term on the right-hand side of equation (3). The first term
in this equation takes into account the phase modulation caused by the plasma response of
free carriers in the sample. The respective coefficients for InSb are A = 1.15 x 10~ m~* [37]
and B =1.7 x 107 m W [38]. Here the main contribution to the Kerr effect stems from the
response of free electrons in the non-parabolic conduction band of InSb [38], which exceeds the
nonlinear response of the bound valence-band electrons by more than an order of magnitude.
The TPA coefficient 8 is set to be 0.3cm MW in order to obtain the closest agreement
with the experimental results. This value is somewhat smaller than the 2cm MW ! typically
reported by studies that use picosecond and femtosecond pulses with peak intensities of several
MW cm~2 [36, 37]. The discrepancy between the two coefficients may indicate a saturation of
the TPA process by Pauli blocking, as our experiment was performed using GW cm~2 peak
intensities. Eventually, the TPA picture may break down due to the onset of a non-perturbative
excitation regime.

Our simulations based on equations (2)—(4) assume plane wave propagation and, thus,
neglect self-focusing effects which are assumed to be minor in the cases of the 30 um-thick
sample and the apertureless electro-optic detection utilized in our experiment. In order to
analyze the FWM response produced by perturbative nonlinear effects we introduce them step
by step in our simulations. Let us first consider only the Kerr effect related to the Re x©
nonlinearity and neglect all other contributions (B # 0, « = 8 = 0). The simulated time-domain
FWM signals are shown in figures 3(d)—(f) for the same peak THz fields as those used in the
experiment. The envelope of the FWM signature remains oval for all excitation intensities with
a noticeable distortion of the constant phase lines due to a strong cross-phase modulation at the
highest peak field of 5.3 MV cm~!. Thus, the pure Kerr effect cannot explain the experimental
observations, even though the amplitudes of the simulated FWM signals are comparable to the
experimental values.

As a second step, we present the results of simulations that take into account solely
the pulse attenuation by the TPA process (only equation (2) where B # 0 and o = 0). At the
lowest field setting, TPA causes an oval-shaped FWM signal, as shown in figure 3(g). Higher
driving fields lead to the characteristic S-shaped FWM signals shown in figures 3(h) and (1).
The shape of these signals resembles the experimentally observed signatures for peak fields
of 3.5MVcm™! (figure 3(b)). However, TPA simulations for even higher driving fields (not
shown) result in the same S-shaped FWM signatures and do not show any sign of the splitting
observed in the experiment. Moreover, the amplitude of the simulated FWM signals saturates
at a level of ~50kV cm~! and stays far below the amplitudes observed in the experiment (see
figures 3(h) and (i)). This fact can be qualitatively understood by keeping in mind that the TPA
is proportional to the radiation intensity: during propagation the intensity of the pulses is mostly
suppressed in the middle of the pulse, where the intensity is highest. Therefore, the intensity
profile of the pulses develops a ‘flat’ top and the nonlinear signal saturates. Obviously, the
TPA process cannot account for the field minimum observed in the center of the FWM signal
(figure 3(c)).

In fact, the switch-off analysis presented above is not completely physical. TPA has to
be considered since 2Awy > E,, while the Kramers—Kronig relations enforce the simultaneous
presence of Re x ¥ [39]. Moreover, the dominating contribution of the free carriers to the phase
modulation and the energy absorption also must be taken into account. The results of such
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simulations are shown in figures 3(j)—(1). The shapes and amplitudes of the modeled FWM
signals are similar to those shown in figures 3(g)—(i). Thus, we conclude that TPA dominates
the simulated perturbative response. A strong nonlinear absorption makes the role of the Kerr
effect almost negligible and the nonlinearity of the free carrier plasma leads to a broadening
of the FWM signature along the time axis ¢ and a partial compression along the t-axis. In
any case, our model demonstrates that neither the shape nor the amplitude of the experimental
FWM signals are adequately described within the framework of perturbative nonlinear
optics.

2.4. Non-perturbative FWM in the two-level approximation

We now proceed by demonstrating that these deficiencies may be cured with numerical
simulations of our FWM experiment using a simplified model of a two-level system,
which represents the interband resonance in InSb. The pulse propagation is modeled by the
Maxwell-Bloch equations [40]. Based on previous reports, we assume a dephasing time
T, = 1ps [41]. Since the timescales involved in our FWM experiment are much shorter than
T,, the exact values of the relaxation time hardly affect the results of the simulations. For
the same reasons we choose a depopulation time 77 = 10 ps. The remaining two parameters
of the model, i.e. the transition dipole moment p, = 2.4 eA and the density of the two-level
systems N = 2.9 x 10%° cm~? are adapted to provide best agreement with the experimental data.
The simulated FWM signals are depicted in figures 3(m)—(0). Remarkably, these simulations
reproduce all essential features observed in the experiment, such as the amplitudes of the
FWM signals and, even more importantly, the characteristic splitting for the peak field of
5.3MVcm~!. This clearly demonstrates the non-perturbative character of the polarization
response in InSb, in spite of the strong detuning of the excitation with respect to the interband
resonance.

Better physical insight can be gained by examining the simulated coherent polarization dy-
namics of the interband resonances in InSb driven by pulses A and B at vanishing delay time 7.
Our simulations assume an ensemble of 50 two-level systems with resonance frequencies dis-
tributed between 41 THz and 51 THz with an energy density proportional to ,/iiw — E,, coarsely
mimicking the continuum of interband transitions. Figure 4(a) shows the normalized temporal
profiles of the driving THz pulses with peak fields of 2MV cm™! per pulse (4 MV cm™! in to-
tal), the total polarization, and the frequency components of the polarization centered around
the fundamental frequency fj, as obtained by Fourier filtering shown in figure 2(c). As one can
see in figure 4(a), the total polarization P, as well as its fundamental component Pg,g closely
follow the driving electric field Ety,. Thus, small deviations of Py, from Ety, can be described
within a perturbative approach. Correspondingly, the simulated FWM signal has an oval shape
(figure 3(m)). The situation changes when the peak driving fields reach 3.5 MV cm™! per pulse.
Figure 4(b) demonstrates that the total polarization oscillates at much higher frequencies after
the driving field has assumed its maximum, i.e. at delay times # > 0. For such excitation condi-
tions, the Rabi frequency Q2r o w1, ETh, characterizing the strength of light—matter interactions
becomes comparable to the detuning of the fundamental frequency from the lowest interband
resonances. This leads to a non-perturbative response of the two-level systems driven into the
regime of carrier-wave Rabi flopping [32, 42]. The major contribution to P, occurs at higher
odd harmonics [43, 44], whereas Pyq starts to decrease (see figure 4(b)). At the highest peak
driving fields of 5.3 MV cm™! this effect becomes very pronounced and a distinct minimum
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Figure 4. Non-perturbative polarization response of an ensemble of two-level
systems simulated for excitation of temporally overlapping THz transients
(t =0) with peak electric fields of (a) 2MVcem™!, (b) 3.5MVcem~! and
(c) 5.3MV cm~!. Black lines correspond to the normalized driving field. The
time evolution of the total polarization P, and the part of P, oscillating at the
fundamental frequency of the driving field Py,g are shown by red and blue lines,
respectively.

develops in the center of Ppyq, as shown in figure 4(c). Notably, this effect is responsible for
the splitting of the time-domain FWM signal observed in our experiment (figure 3(c)). Thus,
we establish an unequivocal manifestation of a non-perturbative response of InSb under an off-
resonant excitation by high-field THz pulses.

3. Spin control in antiferromagnets using magnetic THz transients

In the preceding section, the transient electric field E of intense THz pulses was employed
to coherently drive matter into a non-equilibrium state. The magnetic field component B was
ignored since it exerts a force (the Lorentz force) on an electron that is smaller by a factor of
|v|/c than the electric contribution (the Coulomb force). Here, v is the electron velocity, and
in atoms or molecules, |v|/c is of the order of the fine-structure constant of ~1/137. Similar
arguments indicate that the interaction energy between the B-field and its induced magnetic
dipole is reduced by a factor of (v/c)?> ~ 10~* compared to the interaction energy between E
and its induced electric dipole [45].

On the other hand, magnetic fields represent the most direct handle to control the quantum-
mechanical spin S of an electron. As § is associated with a magnetic dipole moment it couples
to B through the Zeeman Hamiltonian y S - B where y denotes the gyromagnetic constant. As
a consequence, a perturbing magnetic field exerts a torque y S x B, thereby pulling the spin
out of its equilibrium direction, set by an effective internal magnetic field Bj, (figure 5(a)).
Note that the weak Zeeman torque is resonantly enhanced when the driving frequency equals
y By In ferromagnets, this so-called Larmor frequency does not exceed 10 GHz, in contrast
to antiferromagnets in which the perturbing field destroys the perfectly antiparallel spin
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Figure 5. (a) Schematic illustrating the very different response of ferromagnets
and antiferromagnets to an external magnetic field B. (b) THz-pump
magnetooptic-probe scheme. (c) Lattice geometry of NiO along with the incident
THz magnetic field pulse. (d) Polarization micrograph of the NiO sample
studied. Arrows indicate the four T-domain types and the circle indicates the
excited volume.

configuration (figure 5(a)). Thus, the exchange interaction becomes operative and induces a
strong repulsive torque, thereby pushing the resonance frequency of long-wavelength spin
waves into the THz range. These high frequencies make antiferromagnets, which represent the
majority of magnetically ordered solids in nature, particularly interesting for high-speed spin
manipulation.

So far, direct Zeeman-type control of magnons has been demonstrated in ferromagnets on
time scales of ~100 ps [46—48], yet it has been inhibited in antiferromagnets due to a lack of
sufficiently fast and intense magnets. Instead, optical pulses have been used to generate effective
transient magnetic fields either through heating or stimulated Raman processes [49]. Ultrafast
electron heating leads to a rapid change in the internal field B;,, yet the associated cooling
dynamics limit the speed and thus the compatibility of electron heating with coherent control of
THz resonances. The non-thermal Raman approach invokes the electric field of an off-resonant
laser pulse but requires materials with massive spin—orbit coupling. In addition, the underlying
microscopic processes of both optical approaches are not yet fully understood [49] and lack the
simplicity and universality of the generic Zeeman-type control.

Here, we exploit the recent development of sources of high-field phase-locked
electromagnetic transients with amplitudes of ~1 MV cm~! and ~0.5 T that cover the frequency
range below 10 THz [6, 8-10, 17]. Using such pulses, we switch a coherent 1-THz magnon
oscillation in antiferromagnetic NiO on and off on a single-cycle timescale.

3.1. Experimental details

A schematic of our experiment is shown in figure 5(b): an intense THz magnetic field transient
incident on the sample system is expected to perturb the electron spins via direct Zeeman
interaction. The induced magnetization M (¢) is probed by a near-infrared laser pulse as a
function of the delay time ¢ after the THz pump. Here, we take advantage of the Faraday
effect: the projection of the magnetization onto the propagation direction e, of the probe

pulse causes a transient circular birefringence which rotates the probe polarization by an angle
[49]

Or(t) = Vd(ex - M). )
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Figure 6. Coherent control of THz spin precession using various magnetic-field
transients. (a) Magnetic field of an incident single pulse B(¢) and its (b) induced
Faraday rotation 6g(7) as a function of pump—probe delay ¢. (c) Fourier amplitude
spectrum of B and 6g. (d) Double-pulse excitation with the second pulse
in or (e) out of phase with the spin precession triggered by the first pulse.
Thin solid lines in 6g-plots represent simulation results (amplitude scaled by a
factor of 0.7).

Here, V and d are the magneto-optic Verdet constant and the sample thickness, respectively,
whereas (.) denotes averaging over the probed sample volume.

We choose the textbook antiferromagnet NiO as a test system for this study. The high
Néel temperature Ty = 523 K allows us to conduct all experiments under ambient conditions.
Figure 5(c) shows the quasi-cubic crystal structure. Below Ty, the Ni** spins are ordered
ferromagnetically within {111} planes where they point along the (112)-axis [50]. Adjacent
planes are oppositely magnetized due to antiferromagnetic coupling. Each of the four equivalent
(111) stacking directions defines a twin (T) domain which is subdivided into spin-rotation (S)
domains as the spins can point in three equivalent in-plane directions. Birefringence induced by
a slight lattice contraction along the stacking axes allows us to map the domain structure with
a polarization-sensitive microscope as seen in figure 5(d). For our free-standing NiO window
(thickness d =45 um), we find dimensions of the T domains of the order of 100 um. The
S domains are not resolved since they are less than 1 um wide [50]. Inelastic neutron and
light scattering as well as infrared absorption have identified long-wavelength antiferromagnetic
magnon modes in NiO at & 0.2 and 1 THz [51].

A high-field THz transient is generated by optical rectification of 5-mJ, 800-nm, 100-fs
laser pulses in a large-area ZnTe emitter and focused onto a single T domain (white circle
in figure 5(d)). The microscopic geometry depicted in figure 5(c) precisely corresponds to the
experimental situation for one of the three possible S domains. Figure 6(a) shows the time
trace B(¢) of the incident magnetic pulse in its polarization plane as recorded by electro-optic
sampling [17]. This single-cycle transient reaches a magnetic peak field of 0.13 T and covers
a broad spectral range from 0.1 to 3 THz, fully overlapping the magnon resonance at 1 THz
(figure 6(c)). An 8-fs pulse with a central photon energy of 1 eV serves as our probe to map out
the pump-induced Faraday rotation 6g as a function of time 7.
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3.2. Single-pulse excitation

Figure 6(b) displays the experimental results: a harmonic oscillation with a period of 1 ps sets
in within a single cycle, reaches its maximum amplitude at ¢t = 3 ps, and decays exponentially
with a time constant of 39 ps, thereafter. Coherent oscillations exceeding the noise floor may
be resolved even after several hundreds of picoseconds (not shown). Figure 6(c) shows that the
FT of the Faraday transient consists of a narrow peak at 1.0 THz, clearly identifying the signal
as the magnetization signature of a coherent oscillation of a long-wavelength antiferromagnetic
magnon in NiO. The spectrum of the Faraday signal also features a barely discernible faint
peak at about 0.2 THz (figure 6(c)) that can be assigned to a lower-frequency long-wavelength
magnon [51]. Our data do not show indications of broadband excitations such as Joule heating.
Free-carrier and lattice absorption are also negligible because NiO is an insulator, and all optical
phonon resonances are located above 12 THz, far beyond the frequencies considered here.

Most remarkably, the observed spin dynamics are driven by the magnetic field B only.
Using a symmetry argument, the electric field £ may safely be ruled out as an excitation
channel: since the Faraday signal is proportional to the pump field [33], an electric dipole
interaction with magnons (interaction energy o< M - E) would represent a linear magneto-
electric effect. In centrosymmetric materials like NiO such processes are forbidden.

3.3. Microscopic description

In order to gain further insight into the spin motion and its driving force, we also performed
microscopic simulations of the spin dynamics. As the driving THz transient has a wavelength
that is large compared to the NiO lattice constant, spin motion is uniform within each (111)
lattice plane. Thus, the magnetic state of NiO is adequately characterized by the spins S, and
S, of adjacent (111) Ni** planes, and the spin Hamiltonian of [51] simplifies to

2 2

H=-JS-8$;+) [D,S;, +D,S}]+yB(t)- > _S;. (6)

Jj=l1 Jj=1

Here, the first term describes the exchange interaction, and the exchange energy J is negative
as the planes are antiferromagnetically coupled. The second term captures intrinsic anisotropic
effects such as spin—spin magnetic—dipole coupling and the influence of the crystal potential
on the spins mediated by the spin—orbit interaction. This anisotropy ensures that the spins
are preferentially oriented in-plane along the (112) direction. The last term describes the
Zeeman interaction between the spins and the driving magnetic field. Considering S and S,
in equation (6) as classical observables, we obtain Landau—Lifshitz—Gilbert-type equations of
spin motion,

0 Y eff o e

Es,:—m[ijlejﬂ—|S—jlsj><(Sj><15:}.ff)], (7)
where B;’.ff =B(t)—JSs_;/y +(D,S;:, D,S;,,0)"/y is an effective magnetic field acting on
spin j. Apart from the Gilbert damping constant «, which is adjusted to (2.140.1) x 10~*
to best replicate the measurement results, all parameters of equation (6) have been determined

previously [51]. In particular, the driving field B is determined by taking the measured incident
transient B(t) (figure 6(a)) and accounting for multiple reflections at the NiO crystal surfaces.
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By numerically solving equation (7) for S; and S,, we obtain spin dynamics that are
dominated by a precession with a period of 1 ps (figure 7(a)). S;, exhibits an additional weak
component with a period of about 5 ps, corresponding to the lower-frequency long-wavelength
magnon of NiO at a frequency of ~(0.2THz [51]. An image of the three-dimensional spin
trajectory is displayed in figure 7(c): the Zeeman torque pulls the spins along the x-axis, thereby
triggering a precessional motion about the equilibrium (z) direction. While the x component
is antiparallel for both spins, the anisotropy field causes a smaller y component that leads to a
non-vanishing macroscopic transient magnetization component M.

To arrive at the Faraday rotation, we use equation (5) and average M « S| + S, over all S
domains. Figure 6(b) demonstrates a striking agreement between experiment and theory, both
with respect to the shape of the transient and its absolute magnitude. This result shows that
the magnetic field of the incident THz pulse triggers a spin precession corresponding to the
high-frequency long-wavelength magnon at 1 THz through the Zeeman interaction.

3.4. Coherent THz control of magnons by two-pulse excitation

The long lifetime of the spin precession (figure 6(b)) allows for it to be coherently controlled
over quite a large time window. For this purpose, we excite the NiO with different sequences
of two pulses. When the second THz pulse is applied precisely six precession cycles after the
first, the amplitude of the induced magnetization doubles (figure 6(d)). This amplification arises
because the torque of the second pulse is in phase with the spin precession induced by the first
pulse. The amplification effect is reversed if the second pulse arrives 6.5 precession cycles after
the first (figure 6(e)). In this case, the torque of the second pulse is entirely out of phase with
the spin precession and switches the dynamics off. We note that our simulations again provide
curves in excellent agreement with the experimental data.

3.5. Future directions: magnon probes and spin flips

We have successfully demonstrated the coherent control of ultrafast spin precession in
antiferromagnetic NiO using the Zeeman torque of an intense THz transient. Such a control
scheme is minimally invasive (as it leaves the non-spin degrees of freedom of the NiO in their
ground state) and universal (as it is mediated by the Zeeman interaction). Coherent magnons
may now be used as probes for ultrafast interactions of electron spin with orbital motion and
lattice modes in essentially all THz-transparent matter and at all relevant frequencies.

We emphasize that Zeeman-driven spin motion is expected to be widely scalable, and our
simulations based on equation (7) indicate a novel regime of dramatic THz nonlinearities beyond
the perturbative regime. In contrast to the weak-field regime (figure 7(a)), THz peak amplitudes
of 11 T lead to oscillations of S, significantly slower than the high-frequency magnon at 1 THz,
and the evolution of S, is dominated by the low-frequency magnon at ~0.2 THz (figure 7(b)).
Note that both signals exhibit a modulation depth of nearly 100 %. Most remarkably, the
change of S;, from 1 to nearly —1 demonstrates the induction of a spin flip, which also
becomes apparent in an image of the three-dimensional spin trajectory (figure 7(d)). It is not
obvious whether in such an extreme excitation regime the parameters of the spin Hamiltonian
of equation (6) can still be assumed to be constant. However, recent modeling based on an
extended Hamiltonian has demonstrated similar magnetization dynamics [52]. In any case,
future studies of high-field-driven THz spin dynamics will enter an entirely new territory of
many-body physics.
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Figure 7. Simulated dynamics of sublattice spin S; (a) under the excitation
conditions used in the experiment (peak driving field 0.14T) and (b) with a
peak field of 11T. (c, d) Three-dimensional spin trajectories resulting from (a)
and (b), respectively. In (c), spin deflections are numerically enhanced for better
visibility.

4. Conclusions and perspectives

Intense electric and magnetic multi-THz fields have become versatile tools to selectively and
coherently control electronic or spin degrees of freedom of condensed matter in a previously
elusive spectral range, and in the sub-optical-cycle temporal regime. Our study of multi-THz
two-dimensional spectroscopy confirms the onset of a non-perturbative response under even
off-resonant excitation of interband transitions in InSb. Peak electric fields above 5MV cm™!
lead to carrier-wave Rabi flopping between the valence and conduction bands. These results
underpin the large potential of novel strong-field multi-THz technology for high harmonics
generation [53] and coherent quantum control of low-energy excitations [22, 54]. The unique
capability of field-sensitive multi-dimensional spectroscopy to separate purely coherent and
incoherent nonlinearities may open a new chapter in the investigation of collective low-energy
excitations including inter-molecular vibrations in hydrogen-bonded liquids [55] and Cooper
pair breaking transitions in superconductors [56]. On the other hand, all-magnetic spin control
opens the door to the new concept of THz electron spin resonance. Coherent magnons in
systems as diverse as ferro- and antiferromagnets or high-temperature superconductors may,
for instance, be employed as unique probes of ultrafast interactions with lattice and charge
degrees of freedom. Furthermore, our experiments may inspire the development of ultrafast
next-generation memory devices, spin-based quantum computation and spintronics. This is only
the beginning of a new era of sub-cycle multi-THz coherent control of condensed matter.
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