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Abstract. We study two kinds of integral Menger-type curvatures. We find a threshold
value of α0, a Hölder exponent, such that for all α > α0 embedded C1,α manifolds have
finite curvature. We also give an example of a C1,α0 injective curve and higher dimensional
embedded manifolds with unbounded curvature.

1. Introduction

Geometric curvature energies are functionals defined on submanifolds of an Euclid-
ean space, whose values can be considered as “total curvature” of the set. We study
two families of such functionals. First of them, defined for one dimensional sets, is
a generalization of a notion of total Menger curvature introduced by Melnikov in
[12] and it is defined as

Mp(γ ) :=
∫

γ

∫

γ

∫

γ

R−p(x, y, z) dH1
x dH1

y dH1
z

where R−1(x, y, z) is the Menger curvature of a triple (x, y, z), i.e. the inverse
of the radius of the smallest circle passing through x , y and z (cf. Definition 2.1).
Throughout this paper we use this notion for a special class of sets i.e. rectifiable
curves and for p ∈ (2,∞). For m-dimensional manifolds � ⊆ R

n another family
of geometric integral curvatures is used, namely

Ep(�) =
∫

�m+2

K(x0, . . . , xm+1)
p dHm

x0
· · · dHm

xm+1
, �m+2 = � × · · · ×�︸ ︷︷ ︸

(m+2) times

,

where K is an analogue of the Menger curvature in higher dimensions (see Defini-
tion 2.2).

In this article we give a direct and elementary proof of the following

Theorem. (1) If the arc length parametrization of γ is an injective C1,α function
for some α > 1− 2

p , then Mp(γ ) is finite.

S. Kolasiński (B): M. Szumańska: Institute of Mathematics, University of Warsaw,
Banacha 2, Warsaw 02-097, Poland. e-mail: s.kolasinski@mimuw.edu.pl
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(2) If α > 1− m(m+1)
p and � is compact and C1,α regular then Ep(�) is finite.

Moreover, α0 = 1 − m(m+1)
p is the minimal Hölder exponent above which the

energies Mp and Ep become finite.

While working on this article Simon Blatt provided us with his result [2] char-
acterizing C1-curves γ with Mp(γ ) < ∞ for some p > 3 exactly as curves
having arc-length parametrization in the Sobolev-Slobodeckij space W 2−2/p,p.
His result implies part (1) of our Theorem due to the embedding C1,α((0, 1)) ⊆
W 2−2/p,p((0, 1)) for α > α0 := 1− 2/p. Later, as the result of cooperation of the
first author with Blatt [3], a second result was achieved - a full characterization of m-
dimensional, embedded C1-manifolds � with Ep(�) < ∞ for some p > m(m+1)

as having local graph representations in W 1+s,p, where s = 1−m(m+1)/p. Since
C1,α(Rm) ⊆ W 1+s,p(Rm) for α > α1 := 1−m(m+1)/p the result of [3] implies
also part (2) of our Theorem. Nevertheless, our work was done independently and
we employed completely different techniques. Our proof omits the use of Sobolev-
Slobodeckij and Besov spaces, embedding theorems for these objects and interpo-
lation theory. Instead, we apply elementary methods from calculus and geometry.
To prove the second part we construct specific examples of a C1,1−2/p curve γ and
a C1,1−m(m+1)/p m-manifold � for which Mp(γ ) = ∞ and Ep(�) = ∞.

The functional M2 proved to be useful in harmonic analysis. Using roughly
the same formula, one can define Mp for any Borel set E . David and Léger [8]
showed that 1-dimensional sets with finite M2 total curvature are 1-rectifiable.
This was a crucial step in the proof of Vitushkin’s conjecture and allowed to fully
characterize removable sets for bounded analytic functions. Surveys of Mattila [11]
and Tolsa [22] explain in more detail the connection between these subjects.

The need to study energies like Mp and Ep grew out from natural sciences.
Finiteness of Mp(γ ) or Ep(�) enforces higher regularity of γ or � and excludes
self-intersections (see [7,19]). These properties make curvature energies extremely
useful in modeling long, entangled objects like DNA molecules, protein structures
or polymer chains; see for example the paper by Banavar et al. [1] or the book
by Sutton and Balluffi [21] and the references therein. In this context, functionals
similar to Mp were studied earlier by Gonzalez and Maddocks [5]. The authors
suggest also the use of Mp as so called knot energy, i.e. an energy which separates
knot types by infinite energy barriers. In [5] the authors introduce the notions of the
global radius of curvature and the thickness of a curve γ , by taking the supremum
of R−1(x, y, z) over all x, y, z ∈ γ . Gonzalez et al. [6] proved that rectifiable curves
with finite thickness are C1,1 regular.

Functionals similar to Mp, where one or two integrations were replaced by
taking the supremum, were examined in [18,14]. A 2-dimensional close analogue
of Ep was also studied by Strzelecki and von der Mosel [15]. Yet another exam-
ple is the tangent-point energy defined by integrating the radius of a circle passing
through one point of a curve and tangent to the curve at some other point. Properties
of curves with finite tangent-point energy were investigated by Sullivan [20] (in C2

case) and by Strzelecki and von der Mosel [17] (in continuous case). A similar
tangent-point energy in higher dimensions was also studied in [16]. In all cases,
finiteness of these functionals (for sufficiently large p) implies self-avoidance and



Minimal Hölder regularity implying finiteness 127

smoothing effects. Moreover one can use some of these energies to apply topolog-
ical constraints in variational problems. In [15, Section 7] Strzelecki and von der
Mosel proved existence of area minimizing surfaces in a given isotopy class under
the constraint of bounded curvature.

Lerman and Whitehouse [9,10] suggested a whole class of curvature energies
for higher dimensional objects. However, the integrands in their definitions scale
differently and it seems that these energies can not serve our needs. Nevertheless,
the authors proved [9, Theorems 1.2 and 1.3] that their integral curvatures can be
used to characterize d-dimensional rectifiable measures in the sense of David and
Semmes [4].

Remark 1.1. We shall use a letter C to denote a general constant, whose value may
change from line to line even in one series of transformations.

2. Preliminaries

In this section we introduce the notation that will be used throughout the paper.
We also explain the relations between two types of energies we consider.

We use the symbol B(x, r) for the ball with radius r centered at x , while we
write Br if the ball is centered at the origin and B

m
r , when we additionally want

to emphasize the dimension of the ball. We denote the m-dimensional Hausdorff
measure by Hm and Ta� denotes the vector space tangent to � at the point a.
The symbol SL stands for the circle of length L , i.e. SL = R/LZ. For U ⊆ R

n ,
a vector space, and f : U → U⊥ a function, we set

Graph( f ) = {
(x, f (x)) ∈ R

n : x ∈ U
}
.

For a tuple T = (x0, . . . , xk) of (k+1) points in R
n , we write� T to denote the

convex hull of the set {x0, x1, . . . , xk}, i.e. the smallest convex subset of R
n which

contains all the points x0, …, xk . Typically� T will just be a k-simplex (a triangle
for k = 2 and a tetrahedron for k = 3).

As we mentioned in the introduction, Menger curvature of three points is a recip-
rocal of the radius of the smallest circle passing through these points. Using the
sine theorem, we can define it as follows

Definition 2.1. Let x0, x1, x2 be three points in R
n . The radius of Menger curvature

of x0, x1 and x2 is given by the formula

R(x0, x1, x2) = |x1 − x0||x2 − x0||x2 − x1|
4H2(�(x0, x1, x2))

.

We can use the above definition to compare Menger curvature and its higher dimen-
sional generalizations.1 In this paper we use integral curvature functional Ep defined
in [7] whose integrand is the pth power of the discrete curvature K given by

1 Natural generalization of Menger curvature of three points would be the inverse of the
radius of the sphere passing through four points. However this definition is not rewarding
for integral curvature energies—see [15, Appendix B].
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Definition 2.2. Let T = (x0, . . . , xm+1) be an (m + 2)-tuple of points in R
n . The

discrete curvature of T is given by the formula

K(T ) = Hm+1(� T )

diam(T )m+2 .

Now we introduce the definition of our functional.

Definition 2.3. Let � ⊆ R
n be some m-dimensional subset of R

n . We define the
p-energy of � by the formula

Ep(�) =
∫

�m+2

K(x0, . . . , xm+1)
p dHm

x0
· · · dHm

xm+1
.

The quantity K(T ) should be seen as a generalization of the Menger curvature to
higher dimensions. It behaves in the same way as R−1 under scaling, i.e. K(λT ) =
λ−1K(T ). Notice that we always have R−1(x, y, z) > K(x, y, z). Furthermore,
for a class of roughly regular triangles T = (x, y, z) (i.e. satisfying hmin(T ) ≥
η diam(T ), where hmin(T ) is the minimal height of T and η ∈ (0, 1] is some fixed
number) the two quantities K(T ) and R−1(T ) are comparable up to a constant
depending only on η. However they are not comparable, when considered on the
family of all triangles so we cannot infer finiteness of Mp(γ ) from finiteness of
Ep(γ ).

The definition of K is based on another notion of discrete curvature KSvdM
introduced by Strzelecki and von der Mosel in [15] for 4-tuples of points (tetrahe-
drons). Yet again, the quantities K(T ) and KSvdM(T ) are comparable for the class
of roughly regular tetrahedrons, i.e. such that hmin(T ) ≥ η diam(T ) for some fixed
η ∈ (0, 1].

In the proofs we will use the Jones’ β-numbers. For a set E ⊂ R
n , for any

x ∈ R
n and r ∈ R we define

βm
E (x, r) := inf

H
sup

y∈E∩B(x,r)

dist(y, x + H)

r
,

where the infimum is taken over all m-hyperplanes H in the Grassmannian G(m, n).
The quantity βm

E (x, t) measures, in a scale invariant way, how well the set is approx-
imated by hyperplanes in the ball B(x, t). We omit the indices E and m if the choice
of the set and its dimension is clear from the context. The relations between total
Menger curvature (M2) and double integral of β-numbers for rectifiable curves
and Ahlfors regular sets were investigated by Peter Jones, who never published
those results, however they are presented in Herve Pajot’s book [13, chapter 3].

3. Injective C1,α curves have finite Mp curvature

The main step of the proof of the finiteness of Mp(γ ) for C1,α curves with α >

1 − 2/p, is to show that one can control the angle between secants on small arcs
on the curves. This leads to the estimation of Menger curvature.
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Theorem 3.1. If � : SL → R
3 is an injective arc-length parametrization of γ and

� ∈ C1,α(SL), where α > 1− 2
p for some p > 2, then Mp(γ ) is finite.

To formulate the next lemma we need to introduce geometric objects we will
use. Let C+(P, �v, α) be a “half cone” with a vertex P, an axis parallel to the given
vector �v and an opening angle α

C+(P, �v, α) :=
{

P + x : |�(�v, x)| < α

2
and x �= 0

}
.

Intersection of two half-cones with vertices P and Q, common axis P Q and open-
ing angle α will be denoted as follows

D(P, Q, α) := C+(P, �P Q, α) ∩ C+(Q, �Q P, α)

Now we are ready to formulate and prove the lemma.

Lemma 3.2. Let � : SL → R
3 be injective, and

|�′(x)− �′(y)| ≤ λ|x − y|α for all x, y ∈ SL

Then for any x, y ∈ SL satisfying 5
2λ|x − y|α < 1 the following inclusion holds

�((x, y)) ⊂ D(�(x), �(y), η|x − y|α),

where η is a constant which depends only on λ.

Proof of Lemma 3.2. Let x, y, z ∈ SL be such that x < z < y. We are going to
estimate the angle between two secant lines: one passing through �(x) and �(y)

and the other one passing through �(x) and �(z). First, note that for any two unit
vectors u, v ∈ Sn−1 forming a small angle �(u, v) = θ we have θ � |u−v|. Hence,
it suffices to estimate the difference �(x)−�(y)

|�(x)−�(y)| and �(x)−�(z)
|�(x)−�(z)| . Let us calculate

∣∣∣∣ �(x)− �(y)

|�(x)− �(y)| −
�(x)− �(z)

|�(x)− �(z)|
∣∣∣∣ ≤

∣∣∣∣ �(x)− �(y)

|�(x)− �(y)| − �′(x)

∣∣∣∣
+
∣∣∣∣ �(x)− �(z)

|�(x)− �(z)| − �′(z)
∣∣∣∣+ |�′(x)− �′(z)|.

We have∣∣∣∣�′(x)− �(x)− �(y)

|�(x)− �(y)|
∣∣∣∣ ≤

∣∣∣∣�′(x)− �(x)− �(y)

|x − y|
∣∣∣∣

+
∣∣∣∣�(x)− �(y)

|x − y| − �(x)− �(y)

|�(x)− �(y)|
∣∣∣∣

≤ 2

∣∣∣∣�′(x)− �(x)− �(y)

|x − y|
∣∣∣∣ ,

where the last inequality holds, because the distance between vector v = �(x)−�(y)
|x−y|

and its projection onto the unit sphere �(x)−�(y)
|�(x)−�(y)| is not greater than the distance
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between v and any arbitrarily chosen unit vector (recall that � is an arc-length
parametrization, so |�′| ≡ 1).

∣∣∣∣�′(x)− �(x)− �(y)

|x − y|
∣∣∣∣ =

∣∣∣∣∣∣∣
�′(x)− 1

y − x

∫

[x,y]
�′(s) ds

∣∣∣∣∣∣∣
≤ 1

y−x

∫

[x,y]
|�′(x)−�′(s)| ds ≤ 1

y−x

∫

[x,y]
λ(s−x)α ds

≤ λ(y−x)α.

Combining the above inequalities we obtain∣∣∣∣ �(x)− �(y)

|�(x)− �(y)| −
�(x)− �(z)

|�(x)− �(z)|
∣∣∣∣ ≤ 2λ|x − y|α + 2λ|x − z|α + λ|x − z|α

≤ 5λ|x − y|α.

This implies that �((x, y)) is included in the cone

C
(
�(x), �(y)− �(x), 2 arcsin

( 5
2λ|x − y|α)) .

Analogously

�((x, y)) ∈ C
(
�(y), �(x)− �(y), 2 arcsin

( 5
2λ|x − y|α)) .

Thus

�((x, y)) ∈ D
(
�(x), �(y), η|x − y|α) .

��
The lemma proven above gives an estimation for Jones β-numbers; it is easy

to notice that there exists R0, such that for r < R0 we have

β(x, r) < rα.

In case of plane curves it is possible to use the estimation to prove this finiteness
of Mp, (one can modify the reasoning from [13]), but it is not clear if it is possible
to adapt it to curves in R

3 and even in 2-space the arguing is long and complicated.
Here, Lemma 3.2 gives us additional information. We not only know that the curve
is close to a line in a small ball, but we can also point out the line. This information
makes the proof of the finiteness of Mp much easier, as the following lemma holds.

Lemma 3.3. Let � : SL → R
3 be an injective, arc-length parametrization of a

curve γ and let p > 2 and α > 1 − 2
p . If there exist constants η and ε > 0 such

that ηεα < π
2 and for each |x − y| < ε we have

�((x, y)) ⊂ D(�(x), �(y), η|x − y|α), (1)

then Mp(γ ) < ∞.
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Proof of Lemma 3.3. We start with a simple geometric observation. If S∈D(P,Q,β)

and 0 < β < π
2 then

c(P, Q, S) = 1

R(P, Q, S)
≤ 2 sin β

|P Q| .

Thus, from (1), for |x − y| < ε and z ∈ [x, y] we have

c(�(x), �(y), �(z)) ≤ 2 sin (η|x − y|α)

|�(x)− �(y)| ≤ 2η|x − y|α
|�(x)− �(y)|

As �′ is Hölder continuous, � is locally bi-Lipschitz (see e.g. [18, Lemma 3.2]);
using a compactness argument one can show that � is globally bi-Lipschitz, thus
there exists a constant d > 0 such that

c(�(x), �(y), �(z)) ≤ d|x − y|α−1. (2)

Now we are ready to estimate the triple integral

Mp(γ ) =
∫

SL

∫

SL

∫

SL

cp(�(x), �(y), �(z)) dx dy dz

≤ C
∫

SL

∫

{y∈SL | |x−y|<ε}

∫

[x,y]
cp(�(x), �(y), �(z)) dz dy dx

+
∫

SL

∫

{y∈SL | |x−y|>ε}

∫

SL

cp(�(z), �(y), �(x)) dz dy dx

(2)≤ C
∫

SL

∫

{y∈SL | |x−y|<ε}
|x − y|p(α−1) · |x − y| dy dx

+C
∫

SL

∫

{y∈SL | |x−y|>ε}

∫

SL

ε p dz dy dx

≤ C
∫

SL

∫

{y∈SL | |x−y|<ε}
|x − y|pα−p+1 dy dx + const < ∞,

as α > 1− 2
p . ��

The proof of Theorem 3.1 follows immediately from the Lemmas 3.2 and 3.3.

Proof of Lemma 3.1. As � satisfies assumption of Lemma 3.2, we know that there
exists ε > 0 such that if |x − y| ≤ ε then

�((x, y)) ⊂ D(�(x), �(y), d|x − y|α),

where d is a constant which depends only on Hölder constant C . Thus using Lemma
3.3 we obtain the thesis. ��
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4. Manifolds of class C1,α have finite integral curvature

In this section we prove a counterpart of Theorem 3.1 for m-dimensional subman-
ifolds of R

n .

Theorem 4.1. Let p > m(m + 1) be some number and let � ⊆ R
n be a compact

manifold of class C1,α . If α > 1− m(m+1)
p then Ep(�) is finite.

Lemma 4.2. Let � ⊆ R
n be a compact manifold of class C1,α for some α ∈ (0, 1).

Then there exist constants R = R(�) > 0 and C = C(�) > 0 such that for each
a ∈ � and each r ≤ R

β(a, r) ≤ Crα.

Proof. Since � is compact, we can find a radius R > 0 and a constant C > 0 such
that for each a ∈ � there exists a function fa ∈ C1,α(Ta�, Ta�⊥) such that

� ∩ B(a, R) = (a + Graph( fa)) ∩ B(a, R),

fa(0) = 0, D fa(0) = 0 and ∀x, y ∈ Ta� |D fa(x)− D fa(y)| ≤ C |x − y|α.

Fix some a ∈ � and a radius r ≤ R. Let b ∈ � ∩ B(a, r). Since � ∩ B(a, R) is
the graph of fa , there exists a point x ∈ Ta� such that b = a + x + fa(x). By the
fundamental theorem of calculus we have

| fa(x)| =
∣∣∣∣∣∣

1∫

0

d
dt fa(t x) dt

∣∣∣∣∣∣ ≤ |x | sup
y∈Ta�∩B|x |

|D fa(y)− D fa(0)|

≤ C |x |1+α ≤ C |b − a|1+α.

Note that | fa(x)| is just the distance of b from the affine plane a + Ta�. Hence

sup
b∈�∩B(a,r)

dist(b, a + Ta�) ≤ Cr1+α

and we obtain

β(a, r) = 1

r
inf

H∈G(n,m)

(
sup

b∈�∩B(a,r)

dist(b, a + H)
)

≤ 1

r
sup

b∈�∩B(a,r)

dist(b, a + Ta�) ≤ Crα.

��
Lemma 4.3. ([3, Lemma 3.4]) Let � ⊆ R

n be an m-dimensional manifold. Choose
m + 2 points x0,…,xm+1 of � and set T = �(x0, . . . , xm+1) and d = diam(T ).
There exists a constant C = C(m, n) such that

Hm+1(T ) ≤ Cβ(x0, d)dm+1, hence K(x0, . . . , xm+1) ≤ C
β(x0, d)

d
.
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A similar result is proven in [7, Proposition 1.51 and Corollary 1.52]. The proof
presented here follows the lines of the proofs presented there. Note that we assumed
� to be a manifold but the proof works also for an arbitrary set � of Hausdorff
dimension m or even for any set.

Proof. If the affine space {x0, . . . , xm+1} is not (m+1)-dimensional then
Hm+1(T ) = 0 and there is nothing to prove. Hence, we can assume that T is
an (m + 1)-dimensional simplex. The measure Hm+1(T ) can be expressed by the
formula

Hm+1(T ) = 1

m + 1
dist(xm+1, {x0, . . . , xm})Hm(�(x0, . . . , xm)).

In the same way, one can express the measure Hm(�(x0, . . . , xm)), so certainly

Hm+1(T ) ≤ 1

(m + 1)!d
m+1.

Hence, if β(x0, d) = 1, then there is nothing to prove, so we can assume that
β(x0, d) < 1.

Due to compactness of the Grassmannian G(n, m) we can find an m-plane
H ∈ G(n, m) such that

sup
y∈�∩B(x0,d)

dist(y, x0 + H) = dβ(x0, d). (3)

Set h = dβ(x0, d) < d. Without loss of generality we can assume that x0 lies at
the origin. Let us choose an orthonormal coordinate system v1, …, vn such that
H = span{v1, . . . , vm}. Because of (3) in our coordinate system we have

T ⊆ [−d, d]m × [−h, h]n−m .

Of course T lies in some (m + 1)-dimensional section of the above product. Let

V := {x0, . . . , xm+1} = span{x1, . . . , xm+1},
Q(a, b) := [−a, a]m × [−b, b]n−m,

Q := Q(d, h)

and P := V ∩ Q.

Note that all of the sets V , Q and P contain T . Choose another orthonormal basis
w1, …, wn of R

n , such that V = span{w1, . . . , wm+1}. Set

S := {x ∈ V⊥ : |〈x, wi 〉| ≤ h for i = m + 2, . . . , n}.
Observe that S is isometric with the cube [−h, h]n−m−1, so diam S= 2h

√
n−m− 1

=: 2Ah, where A = A(n, m) = diam([0, 1]n−m−1). In this setting (in the basis
v1, …, vn) we have

P × S = P + S ⊆ Q(d + 2h A, h + 2h A). (4)
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Recall that h = dβ(x0, d) < d. We obtain the following estimate

Hn(T × S) ≤ Hn(P × S) ≤ Hn(Q(d + 2h A, h + 2h A))

≤ (2d + 4h A)m(2h + 4h A)n−m

≤ (2d + 4dβ(x0, d)A)m(2dβ(x0, d)+ 4dβ(x0, d)A)n−m

≤ (2+ 4A)ndnβ(x0, d)n−m .

On the other hand we have

Hn(T × S) = Hm+1(T )Hn−m−1(S) = Hm+1(T )2n−m−1hn−m−1

= 2n−m−1Hm+1(T )dn−m−1β(x0, d)n−m−1.

Hence

2n−m−1Hm+1(T )dn−m−1β(x0, d)n−m−1 ≤ (2+ 4A)ndnβ(x0, d)n−m

⇐⇒ Hm+1(T ) ≤ (2+ 4A)n2−(n−m−1)dm+1β(x0, d).

We may set C = C(n, m) = (2+ 4A)n2−(n−m−1). ��
Now we can prove the main result of this section.

Proof of Theorem. 4.1. Let

μ = Hm ⊗ · · · ⊗Hm︸ ︷︷ ︸
m+1

.

If T = (x0, x1, . . . , xm+1) ∈ �m+2, we shall write T = (x0, x̄). Using Lemma 4.3
we obtain

Ep(�) =
∫

�m+2

K(x0, x̄)p dμ(x̄) dHm(x0)

≤
∫

�

∫

�m+1

(
β(x0, diam(x0, . . . , xm+1))

diam(x0, . . . , xm+1)

)p

dμ(x̄) dHm(x0).

For x0 ∈ � and k ∈ Z we define the sets

�k(x0) := {(x1, . . . , xm+1) ∈ �m+1 : diam(x0, . . . , xm+1) ∈ (2−k−1, 2−k]}.
Choose K0 ∈ Z such that 2−K0 ≥ 2 diam(�). Now we can write

Ep(�) ≤
∫

�

∞∑
k=K0

∫

�k (x0)

(
β(x0, diam(x0, x̄))

diam(x0, x̄)

)p

dμ(x̄) dHm(x0).

Fix some small number ε > 0. Since � is compact, we can find a radius R > 0
such that for each a ∈ � there exists a function fa ∈ C1,α(Ta�, Ta�⊥) such that

� ∩ B(a, R) = (a + Graph( fa)) ∩ B(a, R),
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fa(0) = 0, D fa(0) = 0 and ∀x, y ∈ B
m
2R | fa(x)− fa(y)| ≤ ε|x − y|.

For r < R and x0 ∈ � we have the following estimate

Hm(� ∩ B(x0, r)) ≤ (1+ ε)mHm((x0 + Tx0�) ∩ B(x0, r)) = (1+ ε)mωmrm .

Choose k0 ∈ Z such that 2−k0 ≤ R. Then for each k ≥ k0 we have

∀x ∈ � Hm(m+1)(�k(x)) ≤ (ωm(1+ ε)m2−km)m+1 = C(m, ε)

2km(m+1)
. (5)

Of course we have
∫

�

k0−1∑
k=K0

∫

�k (x0)

(
β(x0, diam(x0, x̄))

diam(x0, x̄)

)p

dμ(x̄) dHm(x0)

≤ (Hm(�)
)m+2

(k0 − K0)2
pk0 < ∞,

so to show that Ep(�) is finite it suffices to estimate the sum from k0 to ∞. Using
Lemma 4.2 and (5) we can write

∫

�

∞∑
k=k0

∫

�k (x0)

(
β(x0, diam(x0, x̄))

diam(x0, x̄)

)p

dμ(x̄) dHm(x0)

≤ C(m, p, �, ε)Hm(�)

∞∑
k=k0

1

2km(m+1)

( 2−kα

2−k−1

)p

= C ′(m, p, �, ε)

∞∑
k=k0

2−k(m(m+1)+p(α−1)).

This sum is finite if and only if α > 1− m(m+1)
p . ��

5. Construction of a C1,1−2/p curve with infinite Mp energy

In this section we shall prove the following theorem.

Theorem 5.1. Let p > 2 and set α = 1− 2
p . There exists a function F ∈ C1,α(R)

such that Mp(Graph(F) ∩ B2) = ∞.

The construction of our function is based on the van der Waerden saw. Let

f̃ (x) =
{

2x for x ∈ [
0, 1

2

]
2− 2x for x ∈ ( 1

2 , 1
] and f0(x) = f̃ (x − [x]).

Fix some α ∈ (0, 1) and N ∈ N - the values of these constants shall be determined
later on. For k = 1, 2, . . . we set

fk(x) = f0(N k x)

Nαk
, f (x) =

∞∑
k=0

fk(x) (6)
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and F(x) =
x∫

0

f (t) dt =
∞∑

k=0

x∫

0

fk(t) dt. (7)

First we show that F is C1,α .

Lemma 5.2. The function F : R → R defined by (7) is of class C1,α and we have

∀x, y ∈ R |F ′(x)− F ′(y)| ≤ C(N , α)|x − y|α.

The proof can be considered as a simple exercise in calculus. Given two points
x, y ∈ R, to estimate | f (x)− f (y)| one has to divide the sum

∑
fk into two parts:

k < − logN |x − y| and k ≥ − logN |x − y|. Then estimate each part separately
using the fact that a finite sum of a geometric series with ratio q > 1 is comparable
to the last term in the sum and an infinite sum of a geometric series with ratio
q < 1 is comparable to the first term in the sum. Below we give the proof for
the convenience of the reader.

Proof. Since F ′(x) = f (x), it suffices to indicate that f : R → R is Hölder
continuous. Note that f is periodic with period 1, so it is enough to show that
| f (x)− f (y)| � |x − y|α for x ∈ [0, 1] and y ∈ [0, 1].

Fix two numbers x ∈ [0, 1] and y ∈ [0, 1] such that x < y. Let h = y − x and
let l = �− logN h�, so that N−l ≤ |x − y| ≤ N−l+1. We can express x and h as
infinite sums

x =
∞∑
j=0

x j

N j
and y − x = h =

∞∑
j=l

h j

N j
,

where x j , h j ∈ {0, 1, . . . , N − 1} for each j ∈ N. For convenience we set h0 =
· · · = hl−1 = 0. Now, we calculate

| f (y)− f (x)| = | f (x + h)− f (x)|

=
∣∣∣∣∣∣
∞∑

k=0

1

Nαk

⎛
⎝ f0

( ∞∑
j=0

N k x j

N j

)
− f0

( ∞∑
j=0

N k x j+N k h j

N j

)⎞⎠
∣∣∣∣∣∣

≤
∞∑

k=0

1

Nαk

∣∣∣∣∣∣f0

( ∞∑
j=max(k+1,l)

N k x j

N j

)
− f0

( ∞∑
j=max(k+1,l)

N k x j+N k h j

N j

)∣∣∣∣∣∣.

Hence, using the fact that f0 is Lipschitz continuous with Lipschitz constant 2 we
obtain

| f (y)− f (x)| ≤
l−1∑
k=0

2

Nαk

∞∑
j=l

N kh j

N j
+

∞∑
k=l

2

Nαk

∞∑
j=k+1

N kh j

N j

≤ 4

Nl

l−1∑
k=0

N k(1−α) + 2
∞∑

k=l

N k

Nαk

∞∑
j=k+1

N − 1

N j

≤ 4

Nαl

(
N

N 1−α − 1
+ Nα

Nα − 1

)
≤ C(N , α)|y − x |α. ��
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Recall that α = 1 − 2
p . Now we shall prove that the p-integral curvature

Mp(Graph(F) ∩ B2) is infinite.

Lemma 5.3. The function F : R → R defined by (7) satisfies Mp(Graph(F) ∩
B2) = ∞.

Proof. The graph of F is not a closed curve, thus we express the Mp energy in the
following way

Mp(Graph(F) ∩ B2) :=
L∫

0

L∫

0

L∫

0

R−p(�(x), �(y), �(z)) dx dy dz,

where � is an arc-length parameterization of Graph(F) and L = H1(Graph(F) ∩
B2). It is easy to notice that

Mp(Graph(F) ∩ B2) >

1∫

0

1∫

0

1∫

0

R−p((x, F(x)), (y, F(y)), (z, F(z))) dx dy dz

We denote by �t a point of the graph given by argument t ; i.e. �t = (t, F(t)).
Since F is a Lipschitz function, for any two points of the graph we have

|t − s| ≤ ‖�t − �s‖ =
√

(t − s)2 + (
F(t)− F(s)

)2 ≤ C(α)|t − s|.
Let us start with the following estimation of the Menger curvature of three points
of the graph. If 0 ≤ x ≤ z ≤ y ≤ 1 we have

1

R(�x, �y, �z) =
4H2

(�(�x, �y, �z))
‖�x − �y‖‖�y − �z‖‖�x − �z‖ ≥

2h

‖�x − �y‖2

= 2 sin �(�x − �y, �x − �z)
‖�x − �y‖2 ‖�x − �z‖,

where h denotes the height of the triangle�(�x, �y, �z) which is perpendicular to �x−�y.
In order to find a lower bound for the above expression we estimate the tangent of
the angle between �x − �y and �x −�z. Using the mean value theorem and the fact that
F ′ = f is nonnegative and bounded we obtain

| tan(�(�x − �y, �x − �z))| =
∣∣∣ F(y)−F(x)

y−x − F(z)−F(x)
z−x

∣∣∣
1+ F(y)−F(x)

y−x
F(z)−F(x)

z−x

≥ C(N , α)

∣∣∣∣ F(y)− F(x)

y − x
− F(z)− F(x)

z − x

∣∣∣∣ .
Therefore if �(�x − �y, �x − �z) ≤ π

3 we have

1

R(�x, �y, �z) ≥
C(N , α)

∣∣∣ F(y)−F(x)
y−x − F(z)−F(x)

z−x

∣∣∣ (z − x)

(y − x)2 . (8)
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We will prove that the energy is infinite even when we consider a much smaller
domain of integration. For k ∈ N and m ∈ {0, 1, . . . , N k − 1} we define the
following intervals

Xk,m =
[

m

N k
,

m

N k
+ 1

16N k

]
,

Yk,m =
[

m + 1/2

N k
− 1

16N k
,

m + 1/2

N k

]
,

Zk,m =
[

m + 1/4

N k
− 1

16N k
,

m + 1/4

N k
+ 1

16N k

]
.

It is easy to notice that the family Ak,m = Xk,m×Yk,m×Zk,m indexed by k, m ∈ N,
m < N k is pairwise disjoint. Indeed if k1 > k2 and N is sufficiently large, then
either (Xk1,m1 ∪ Yk1,m1 ∪ Zk1,m1) ⊂ Xk2,m2 (which implies Yk1,m1 ∩ Yk2,m2 = ∅ )
or (Xk1,m1 ∪ Yk1,m1 ∪ Zk1,m1) ∩ Xk2,m2 = ∅. Thus

Mp(Graph(F) ∩ B2) ≥
∞∑

k=1

N k−1∑
m=0

∫

Xk,m

∫

Yk,m

∫

Zk,m

R−p(�x, �y, �z) dx dy dz.

Let us fix k ∈ N, m ∈ {0, 1, . . . , N k − 1} and x ∈ Xk,m , y ∈ Yk,m and z ∈ Zk,m .
Obviously if N is sufficiently large, for such x, y, z we have �(�x − �y, �x − �z) ≤ π

3
and estimation (8) holds. Recall that we have

F(x) =
∞∑
j=0

x∫

0

f j (t) dt.

For convenience we denote Fj (x) = ∫ x
0 f j (t) and we notice that

∣∣∣∣ F(y)− F(x)

y − x
− F(z)− F(x)

z − x

∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=0

Fj (y)− Fj (x)

y − x
− Fj (z)− Fj (x)

z − x

∣∣∣∣∣∣ .

We need to divide the above sum into two parts which behave differently.

• For j ≤ k there are two possibilities. Either

Fj (y)− Fj (x)

y − x
= 1

y − x

y∫

x

(
1

N j

)α

f0(N j t) dt

= 1

y − x

y∫

x

(
1

N j

)α

2N j t dt =
(

1

N j

)α−1

(x + y)

and

Fj (z)− Fj (x)

z − x
=
(

1

N j

)α−1

(x + z)
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or

Fj (y)− Fj (x)

y − x
= 1

y − x

y∫

x

(
1

N j

)α

2(1− N j t) dt

=
(

1

N j

)α

−
(

1

N j

)α−1

(x + y)

and

Fj (z)− Fj (x)

z − x
=
(

1

N j

)α

−
(

1

N j

)α−1

(x + z).

Denoting by

δ j (x, z, y) := Fj (y)− Fj (x)

y − x
− Fj (z)− Fj (x)

z − x
,

in both cases we have

|δ j (x, z, y)| = (N j )1−α(y − z).

Now, taking N sufficiently large:
∣∣∣∣∣∣

k∑
j=1

δ j (x, z, y)

∣∣∣∣∣∣ ≥
1

2
(N k)1−α(y − z) ≥ 1

2
(N k)1−α 3

16

1

N k
= 3

32
N−kα. (9)

• For j > k we notice that

Fj (y)−Fj (x) =
y∫

x

f j (t) dt ≤
⌊
(y − x)2N j

⌋ 1

4N j

(
1

N j

)α

+ 1

2N j

(
1

N j

)α

≤ (y − x)
1

2

(
1

N j

)α

+ 1

2

(
1

N j

)α+1

and

Fj (y)− Fj (x) ≥ 1

2
(y − x)

(
1

N j

)α

− 1

4

(
1

N j

)α+1

.

As y − x ≥ 3
8

1
N k we have

1

2

(
1

N j

)α

−2

3
N k

(
1

N j

)α+1

≤ Fj (y)−Fj (x)

y−x

≤ 1

2

(
1

N j

)α

+4

3
N k

(
1

N j

)α+1

.
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Analogously, since z − x ≥ 1
8

1
N k

1

2

(
1

N j

)α

− 2N k
(

1

N j

)α+1

≤ Fj (z)− Fj (x)

z − x

≤ 1

2

(
1

N j

)α

+ 4N k
(

1

N j

)α+1

.

Thus

|δ j (x, z, y)| < 5N k
(

1

N j

)α+1

.

We can choose N large enough to estimate the geometric series from above by
its first term∣∣∣∣∣∣

∞∑
j=k+1

δ j (x, z, y)

∣∣∣∣∣∣ <

∞∑
j=k+1

5N k
(

1

N j

)α+1

< 10N k
(

1

N k+1

)α+1

,

enlarging N if necessary we get
∣∣∣∣∣∣

∞∑
j=k+1

δ j (x, z, y)

∣∣∣∣∣∣ <
1

32

(
1

N k

)α

. (10)

Putting both estimates (9) and (10) together we obtain
∣∣∣∣∣∣
∞∑
j=0

δ j (x, z, y)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

k∑
j=0

δ j (x, z, y)

∣∣∣∣∣∣−
∣∣∣∣∣∣

∞∑
j=k+1

δ j (x, z, y)

∣∣∣∣∣∣
≥ 3

32

(
1

N k

)α

− 1

32

(
1

N k

)α

= 1

16

(
1

N k

)α

.

Thus for each k ∈ N, m ∈ {1, 2, . . . , N k − 1} and x ∈ Xk,m , y ∈ Yk,m , z ∈ Zk,m

we have ∣∣∣∣ F(y)− F(x)

y − x
− F(z)− F(x)

z − x

∣∣∣∣ ≥ 1

16

(
1

N k

)α

. (11)

Using (11) we can estimate the integral

Mp(Graph(F) ∩ B2)

≥
∞∑

k=1

N k−1∑
m=0

∫

Xk,m

∫

Yk,m

∫

Zk,m

R−p(�x, �y, �z) dz dy dx

≥
∞∑

k=1

N k−1∑
m=0

∫

Xk,m

∫

Yk,m

∫

Zk,m

C(α)

(
1
16 N−kα(z − x)

(y − x)2

)p

dz dy dx
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≥ C(α)

∞∑
k=1

N k−1∑
m=0

(
1
16 N−kα 1

8 N−k

1
4 N−2k

)p

|Xk,m | · |Yk,m | · |Zk,m |

≥ C(N , α)

∞∑
k=1

N k−1∑
m=0

(N k)(1−α)p−3 ≥ C(N , α)

∞∑
k=1

(N k)p−pα−2.

Hence, the energy of the graph of F is infinite whenever

p − pα − 2 ≥ 0 ⇐⇒ α ≤ 1− 2

p
.

��

6. Higher dimensional case

Here we establish an analogue of Theorem 5.1 for the energy Ep.

Theorem 6.1. Let p > m(m+ 1) and set α = 1− m(m+1)
p . There exists a compact

manifold � of class C1,α such that Ep(�) is infinite.

Our construction is based on the same idea as the construction presented in
Sect. 5. Let N ∈ N be a big natural number and let F : R → R be defined by (7).
We define

G : R
m → R

m+1 by the formula G(x1, . . . , xm) = (x1, . . . , xm, F(x1))

and we set � = G([0, 1]m). From Lemma 5.2 it follows that � is a C1,α manifold.
To perform the proof of Theorem 6.1 we need to introduce some additional

notation. By (e1, . . . , em) we denote the standard basis of R
m . We adopt the con-

vention to typeset points and vectors in R
m with the bold font x, y, z etc. and to

number the components with a superscript, so we shall have x = (x1, . . . , xm).
Also, vectors and points in R

m+1 will always be marked with an arrow �x, �y, �z etc.
and we silently assume that x and �x always satisfy

πRm (�x) = πRm (x1, . . . , xm+1) = (x1, . . . , xm) = x.

Let U and V be any m-dimensional subspaces of R
m+1. We define

QU := πU⊥ = id−πU and �(U, V ) := ‖πU − πV ‖ = ‖QU − QV ‖.
For z ∈ R

m and r > 0 we also write

B
m+(z, r) = B

m(z, r) ∩ (
(z1,∞)× R

m−1) and

B
m−(z, r) = B

m(z, r) ∩ (
(−∞, z1)× R

m−1).
Let ε > 0 be a small constant - its value will be fixed later on depending only

on m. Let A = A(N , α, ε) ∈ (0, 1) be such that |F ′(t)| ≤ ε whenever t ≤ A. For
n ∈ N we set

Jn = N−n
Z

m ∩ [0, A)m

=
{(

k1
N n , . . . , km

N n

)
: ∀i ∈ {1, . . . , m} ki ∈ {0, 1, . . . , �AN n − 1�}

}
.
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For any x ∈ Jn we define

x(x)
0 = x, x(x)

k = x + ek

2N n
for k = 1, . . . , m and x(x)

m+1 = x + e1

4N n
.

Of course x(x)
i depends on n but we do not highlight it in our notation. For δ ∈ (0, 1

32 )

we set

U δ
n (x) = B

m+
(
x(x)

0 , δ
N n

)× B
m−
(
x(x)

1 , δ
N n

)× B
m(x(x)

2 , δ
N n

)× · · · × B
m(x(x)

m+1,
δ

N n

)
.

Note that

H0(Jn) = �AN n�m ≥ Am N nm, (12)

∀n1, n2 ∈ N ∀x ∈ Jn1 ∀y ∈ Jn2 (x �= y ∨ n1 �= n2) ⇒ U δ
n1

(x) ∩U δ
n2

(y) = ∅
(13)

and ∀x ∈ Jn Hm(m+2)(U δ
n (x)) = 1

4

(
ωmδm

N nm

)m+2

. (14)

Let T = (z0, . . . , zm+1) ∈ (Rm)m+2 and G(T ) = (G(z0), . . . , G(zm+1)) =
(�z0, . . . , �zm+1). We define

fc(T ) = �{�z0, . . . , �zm}- the face of G(T ) spanned by �z0, . . . , �zm,

p(T ) = span{�z1 − �z0, . . . , �zm − �z0}- the vector space containing fc(T )− �z0

and h(T ) = dist(�zm+1, �z0 + p(T ))- the height of G(T ) lowered from �zm+1.

For brevity we also write

KG(T ) = K(G(T )) = K(G(z0), . . . , G(zm+1)).

Note that |J G(x)| = √
det(DG(x)T DG(x)) ≥ 1, so we have

Ep(�) ≥
∫

[0,1]m(m+2)

KG(z0, . . . , zm+1)
p dz0 · · · dzm+1. (15)

Proposition 6.2. There exists δ0 = δ0(m, N , α) ∈ (0, 1
32 ) such that for all n ∈ N

and for any δ ≤ δ0, if x ∈ Jn and T = (z0, . . . , zm+1) ∈ U δ
n (x), then we have

h(T ) ≥ 1

320N n(1+α)
and KG(T ) ≥ C(δ, m)N n(1−α).

Using Proposition 6.2 we can finish the proof of the main theorem.
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Proof of Theorem. 6.1. Using (12), (13) and (14) together with (15) we get

Ep(�) ≥
∞∑

n=1

∑
x∈Jn

∫

U δ
n (x)

KG(T )p dz0 · · · dzm+1

≥ C(δ, m, p)

∞∑
n=1

Am N nm ωm+2
m δm(m+2)

4N nm(m+2)
N n(1−α)p

= Ĉ(δ, m, p, N , α, ε)

∞∑
n=1

N n(m−m(m+2)+(1−α)p),

which is infinite if and only if α ≤ 1− m(m+1)
p . In particular, for α = 1− m(m+1)

p
we have Ep(�) = ∞. ��

Now we only need to prove Proposition 6.2.

Proof of Theorem. 6.2. Recall that T = (z0, . . . , zm+1) ∈ U δ
n (x) and x ∈ Jn , so

T and x depend on n. Note that the vectors zi − z0 for i, j = 1, . . . , m and i �= j
satisfy

(1− 4δ)
1

2N n
≤ |zi − z0| ≤ (1+ 4δ)

1

2N n

and |〈zi − z0, z j − z0〉| ≤ 3δ

N 2n
.

Hence, the vectors zi − z0 for i = 1, . . . , m form a roughly orthogonal basis of
R

m . Recall that |F ′(t)| ≤ ε for all t ∈ [0, A]. We can find δ1 = δ1(m) > 0 and
ε = ε(m) > 0 such that for any δ ≤ δ1 and for each n ∈ N (see [7, Proposition 1.23]
for the proof)

�(p(T ), R
m) = ‖πp(T ) − πRm‖ = ‖Qp(T ) − QRm‖ ≤ 1

2
. (16)

Since the vector zm+1 − z0 lies in R
m , it can be expressed as

zm+1 − z0 =
m∑

i=1

ζi (zi − z0),

for some ζ1, …, ζm . Observe that when we decrease δ to zero, the point zm+1
approaches the midpoint 1

2 (z0 + z1), so ζ1 converges to 1
2 and all the other ζi for

i = 2, . . . , m converge to 0. The values |ζ1 − 1
2 | and |ζi | can be bounded above

independently of the scale we are working in (i.e. independently of the choice
of n) and also independently of the choice of T in U δ

n (x). Hence

∣∣∣∣ζ1 − 1

2

∣∣∣∣ ≤ �(δ) and |ζi | ≤ �(δ) for i = 2, . . . , m, where �(δ)
δ→0−−→ 0

(17)
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and �(δ) is a term depending only on δ and m. Therefore, we can find δ2 = δ2(m) ∈
(0, δ1) such that for each δ ≤ δ2 the following holds �(δ) < 1

32m . We shall always
assume that δ ≤ δ2 in the sequel.

For i = 1, . . . , m + 1 we set

�zi = G(zi ) and we define �w = �z0 +
m∑

i=1

ζi (�zi − �z0) ∈ �z0 + p(T ).

Then zm+1 = πRm (�zm+1) = πRm ( �w) and (�zm+1−�w) ⊥ R
m and also Qp(T )(�zm+1−

�w) = Qp(T )(�zm+1 − �z0). Therefore, using the angle estimate (16) we obtain

h(T ) = dist(�zm+1, �z0 + p(T )) = |Qp(T )(�zm+1 − �z0)|
= |Qp(T )(�zm+1 − �w)| = |QRm (�zm+1 − �w)− (QRm − Qp(T ))(�zm+1 − �w)|
≥ |�zm+1 − �w| − 1

2
|�zm+1 − �w| = 1

2
|�zm+1 − �w|. (18)

Hence, to get a lower bound on h(T ) it suffices to estimate |�zm+1− �w| from below.
We calculate

|�zm+1 − �w|

=
∣∣∣∣∣
(
zm+1, F(z1

m+1)
)− (

zm+1, F(z1
0)+

m∑
i=1

ζi
(
F(z1

i )− F(z1
0)
))∣∣∣∣∣

=
∣∣∣∣∣F(z1

m+1)− F(z1
0)−

m∑
i=1

ζi
(
F(z1

i )− F(z1
0)
)∣∣∣∣∣

≥
∣∣∣F(z1

0 + ζ1(z
1
1 − z1

0))− F(z1
0)− ζ1

(
F(z1

1)− F(z1
0)
)∣∣∣

−
∣∣∣∣
(

F
(

z1
0 + ζ1(z

1
1 − z1

0)+
m∑

i=2

ζi (z
1
i − z1

0)
)
− F

(
z1

0 + ζ1(z
1
1 − z1

0)
))

−
m∑

i=2

ζi
(
F(z1

i )− F(z1
0)
)∣∣∣∣. (19)

Observe that, since δ < 1
32 , there exists an l ∈ {0, 1, . . . , N n − 1} such that z1

0 ∈
Xn,l , z1

1 ∈ Yn,l . Moreover, since �(δ) < 1
32 we also have z1

0 + ζ1(z1
1 − z1

0) ∈ Zn,l .
Using the estimate ζ1(z1

1 − z1
0) ≥ 1

5N n and applying (11) we obtain2

∣∣∣F(z1
0 + ζ1(z

1
1 − z1

0))− F(z1
0)− ζ1(F(z1

1)− F(z1
0))

∣∣∣ ≥ 1

80N n(1+α)
. (20)

2 Here z1
0, z1

1 and z1
0 + ζ1(z1

1 − z1
0) play the roles of x , y and z from (11) and z−x

y−x = ζ1.



Minimal Hölder regularity implying finiteness 145

We estimate the remaining terms using the mean value theorem for F . First we
have

F
(
z1

0 + ζ1(z
1
1 − z1

0)+
m∑

i=2

ζi (z
1
i − z1

0)
)− F(z1

0 + ζ1(z
1
1 − z1

0))

= F ′(ξm+1)

m∑
i=2

ζi (z
1
i − z1

0), (21)

where ξm+1 lies between z1
0+ ζ1(z1

1− z1
0) and z1

0+ ζ1(z1
1− z1

0)+
∑m

i=2 ζi (z1
i − z1

0).
Recall that for δ ≤ δ2 we have �(δ) < 1

32m , so for such δ we easily get the estimate∣∣∣∣ξm+1 −
(

x1 + 1

4N n

)∣∣∣∣ <
1

2N n
.

In the same way we obtain
m∑

i=2

ζi (F(z1
i )− F(z1

0)) =
m∑

i=2

F ′(ξi )ζi (z
1
i − z1

0), (22)

where ξi lies between z1
0 and z1

i , so |ξi − x1| < 1
32N n . Note that for i = 2, . . . , m

we have

|ξm+1 − ξi | ≤ 1

N n
, |z1

i − z1
0| ≤

2δ

N n

and

|F ′(ξi )− F ′(ξm+1)| ≤ C(N , α)|ξi − ξm+1|α ≤ C(N , α)N−nα.

Putting (21) and (22) together we get∣∣∣∣
(

F(z1
0 + ζ1(z

1
1 − z1

0)+
m∑

i=2

ζi (z
1
i − z1

0))− F(z1
0 + ζ1(z

1
1 − z1

0))

)

−
m∑

i=2

ζi (F(z1
i )− F(z1

0))

∣∣∣∣ =
∣∣∣∣∣

m∑
i=2

(F ′(ξi )− F ′(ξm+1))ζi (z
1
i − z1

0)

∣∣∣∣∣
≤ Č(N , α)δ

N n(1+α)
. (23)

Plugging (20) and (23) into (19) and recalling (18) we obtain

h(T ) ≥ 1

2
|�zm+1 − �w| ≥

1
80 − Č(N , α)δ

2N n(1+α)
.

Setting δ0 = min{δ1, δ2, (160Č(N , α))−1} the first part of Proposition 6.2 is proven.
The second part follows from a simple calculation

KG(T ) = Hm+1(�(G(T )))

diam(G(T ))m+2 = h(T )Hm(fc(T ))

(m + 1) diam(G(T ))m+2

≥ h(T )Hm(πRm (fc(T )))

(m + 1) diam(T )m+2 ≥ C(m, δ)
N−n(1+α)N−nm

N−n(m+2)
= C(m, δ)N n(1−α).

��
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[7] Kolasiński, S.: Integral Menger curvature for sets of arbitrary dimension and co-
dimension. PhD thesis, Institute of Mathematics, University of Warsaw (2011).
arXiv:1011:2008

[8] Léger, J.C.: Menger curvature and rectifiability. Ann. Math. (2) 149(3), 831–869 (1999)
[9] Lerman, G., Whitehouse, J.T.: High-dimensional Menger-type curvatures. II. d-sepa-

ration and a menagerie of curvatures. Constr. Approx. 30(3), 325–360 (2009)
[10] Lerman, G., Whitehouse, J.T.: High-dimensional Menger-type curvatures. Part

I: Geometric multipoles and multiscale inequalities. Rev. Mat. Iberoam. 27(2),
493–555 (2011)

[11] Mattila, P.: Rectifiability, analytic capacity, and singular integrals. In: Proceedings of
the International Congress of Mathematicians, vol. II (Berlin, 1998), number Extra vol.
II, pp. 657–664 (electronic), 1998

[12] Melnikov, M.S.: Analytic capacity: a discrete approach and the curvature of mea-
sure. Mat. Sb. 186(6), 57–76 (1995)

[13] Pajot, H.: Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral,
vol. 1799 of Lecture Notes in Mathematics. Springer, Berlin (2002)

[14] Strzelecki, P., von der Mosel, H.: On rectifiable curves with l p-bounds on global
curvature: self-avoidance, regularity, and minimizing knots. Math. Z. 257(1),
107–130 (2007)

[15] Strzelecki, P., von der Mosel, H.: Integral Menger curvature for surfaces. Adv.
Math. 226(3), 2233–2304 (2011)

[16] Strzelecki, P., von der Mosel, H.: Tangent-point repulsive potentials for a class of
non-smooth m-dimensional sets in R

n . Part I: smoothing and self-avoidance effects. J.
Geom. Anal. (2011). doi:10.1007/s12220-011-9275-z.

http://dx.doi.org/10.1016/j.aim.2012.03.007
http://dx.doi.org/10.1016/j.aim.2012.03.007
http://dx.doi.org/10.1007/s12220-011-9275-z


Minimal Hölder regularity implying finiteness 147

[17] Strzelecki, P., von der Mosel, H.: Tangent-point self-avoidance energies for curves.
J. Knot Theory Ramifications 21(5), 28 pp (2012)
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