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1 Introduction

A crucial ingredient in understanding the role, or otherwise, of string theory in nature is

to understand string theory beyond the low energy effective supergravity description. Of

course, supergravity plays an important role in guiding this understanding, particularly via

non-perturbative insights. However, it is ultimately corrections to the supergravity limit

that makes string theory a desirable candidate for a theory of quantum gravity. These

corrections can be viewed as coming from two distinct sources: α′ corrections, which arise

due to the finite length of the fundamental string, and quantum corrections in the string

coupling gs. From a spacetime point of view, the α′ expansion corresponds to a higher

derivative expansion beyond classical two-derivative supergravity, while the gs expansion

contributes at each given order in derivatives.

The ultimate goal is to find an effective action that incorporates all such corrections,

including non-perturbative effects. This is clearly a difficult problem. A more modest

starting point in this direction is to understand these corrections order by order. The most

direct approach is string perturbation theory. The novelty of string theory is that at each

order in the quantum expansion there are an infinite number of terms in an expansion in

α′. A remarkable observation is that the equations of motion for the massless states found

from the string S-matrix coincide perturbatively with the vanishing of the β-functional

of the string sigma model, thereby ensuring conformal invariance. It is expected that

this equivalence will hold to all orders. For string theories admitting a Green-Schwarz

formulation, the κ-invariance of the action can also be used to determine higher derivative

corrections. This is one of the ways in which string theory is different from field theories,

where the effective action is solely determined by the S-matrix.
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In light of the fact that the low energy effective action is constrained, or even deter-

mined, in a number of ways, it is reasonable to ask in what way the duality symmetry of the

action under reduction constrains the higher derivative corrections. The existence of dual-

ity symmetries is a ubiquitous feature of gravitational theories. In the context of general

relativity, it has been known for a long time that a rich, unexpected symmetry structure

appears in the presence of Killing isometries; a fact that has been utilised extensively to

generate new interesting solutions. In supergravity theories, the inclusion of form-fields

and fermions results in a yet richer structure [1, 2]. Viewing supergravity as a low energy

effective description of string theory, a relation is made [3] between these duality symme-

tries and the duality symmetries, such as T-duality, emerging from string theory, leading

to the conjecture [4] that discrete versions of the Cremmer-Julia exceptional symmetry

groups are in fact duality symmetries of string theories that encompass T and S-dualities.

Using duality symmetries to understand new aspects of the theory, such as constraining

or determining higher derivative corrections, is not a new idea and indeed significant work

has been done in this regard.1 In this paper, however, we present a new method for

completing higher derivative corrections given the existence of duality symmetries under

reduction. In particular, we show how duality in the reduced theory can be used to provide

a completion of a higher derivative term in the unreduced theory. Our approach is based on

the observation [3, 27–29] that string dualities imply that the reduced low energy effective

action can be written in a duality manifest way in terms of a duality group element à la

Cremmer-Julia. This observation can also be extended to the higher derivative corrections.

Specifically, Meissner [30] showed that the α′ corrections to the closed bosonic string low

energy effective action when reduced to one dimension can be expressed solely in terms

of a duality invariant dilaton field and an O(d, d) group element. The new perspective

that we have in this paper is that the insistence that the reduced theory, in particular the

scalars, be written in terms of a group-theoretic duality element highly constrains, to the

point of uniqueness, the unreduced theory. Thus, rather than finding the duality group

element by reducing the known action and explicitly demonstrating the duality invariance

of the reduced theory, we show how given a duality symmetry, the unreduced action can

be derived. The method presented in this paper is particularly important given the fact

that in many cases only a part of a higher derivative correction is known. In general, the

most well-understood terms are purely gravitational terms, which using our approach can

be completed to find couplings to matter fields. The higher derivative corrections including

matter couplings are important in a number of areas, including string phenomenology and

cosmology and string theoretic studies of black hole entropy.

In section 2, we present the arguments for the duality completion of known terms in a

theory given the existence of a duality symmetry. Central to this method is the observation

that the scalars in the reduced theory parametrise the duality coset. These scalars are

related to the internal components of higher dimensional fields. We argue that general

covariance provides a precise relationship between the action for the internal components

1A non-exhaustive list of references on duality and higher derivative corrections in the context of

string/M-theory includes [5–23]. For work on duality and higher derivative corrections in the context

of four-dimensional gravity see [24–26].
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of the fields and the full higher-dimensional (unreduced) action. Therefore, by completing

the scalars from the reduction of a known term in the reduced theory, we can uplift to find

the completion in the unreduced theory.

To demonstrate the utility of this method, we apply our reasoning to find the T-duality

completion of the Riemann squared correction to the low energy effective action of closed

bosonic string theory and rederive the full tree-level correction at first order in α′. We give

a detailed derivation of our result in order to emphasise the simplicity of the method and

the uniqueness of the completion. Furthermore, we would like to highlight the constructive

nature of this method and provide the necessary framework for applying it to other theories.

First, in section 3.1, we use group theory to find the duality group element that the

scalars of the reduced theory parametrise. Then, in section 4, we begin with the Riemann

squared term and find the action for the scalars coming from the reduction of this term. We

rewrite this action using the duality group element with all other fields turned off. Then,

we turn on the other fields and calculate the scalar action in the reduced theory. Finally,

we uplift this new scalar action to the full theory. Remarkably, we find that the uplift is

unique and, up to field redefinitions, coincides precisely with the complete tree-level closed

bosonic effective action to order α′ [31–35]. Of significant importance is the simplicity with

which these terms are found using this approach in stark contrast to previous derivations

in the literature.

We comment on the application of this work to other string theory corrections, inclusion

of fermions and its relation to generalised geometry and double field theory in the discussion

section at the end of the paper.

Our index conventions throughout the paper are as follows: D-dimensional indices are

denoted µ, ν, ρ . . .; d-dimensional (internal) indices are denoted by a, b, c, . . . and (D − d)-

dimensional (reduced) indices are denoted by i, j, k, . . ..

2 Duality completion of a gravitational sector

In this section, we present an argument as to how one can use consistency with a duality

symmetry that appears upon a dimensional reduction of a gravitational theory to determine

the coupling of the gravitational sector to the matter content in the full theory. The

argument presented here applies more generally for any sector of the theory and need not

be confined to a completion of the gravitational sector. However, given that it is generally

the gravitational sector that is most well-understood in any given theory we shall confine

our attention to this sector for clarity.

Consider a D-dimensional gravitational theory with some matter content. In addition,

assume that upon a reduction of the theory to (D − d) dimensions hidden symmetries

appear. That is, the reduced theory possesses a symmetry, given by a coset G/H, that

is larger than that which one would naively expect. The precise way in which the coset

G/H controls the dynamics of the reduced theory is only important here at the level of

the scalars. In particular, what we require here is the following:

Upon a dimensional reduction of the D-dimensional gravitational theory to (D−
d) dimensions, the scalars of the reduced theory parameterise a coset G/H.

– 3 –
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Moreover, the scalar sector of the theory can be written, solely, in terms of the

metric of the reduced theory, a coset element of G/H and any scalar invariant

under the action of G/H.

In some cases, an appropriate dualisation of fields needs to be performed in order to find

the scalar sector of the reduced theory. For the purposes of this argument, we neglect

this possibility and only consider the case where the scalar sector of the reduced theory

manifests itself naturally upon dimensional reduction and dualisation of fields need not be

carried out. A simple modification of the argument presented here can be applied to the

former case as will hopefully become apparent. However, for simplicity, we disregard this

possibility here.

The claim, which we shall clarify below, is that any (non-gauge invariant) term that

must appear in the D-dimensional action for consistency with the hidden symmetry ob-

served upon a reduction of the theory can be completed to a unique gauge invariant term

that is consistent with the appearance of the hidden symmetry in lower dimensions. This

is a non-trivial statement for two reasons. It is certainly not necessarily true that any non-

gauge invariant term can be completed to a gauge invariant term in the sense described

above; nor should it be obvious to the reader why any such term must be unique.

Let us begin by splitting the lagrangian of the D-dimensional theory in the follow-

ing way:

L = RS(∂̃, f) +RR(∂̃, f, F ) + G(∂̂, f) + C(∂̃, ∂̂, f, F ), (2.1)

where ∂̃ denotes partial differentiation with respect to a (D − d)-dimensional coordinate,

i.e. the coordinates of what would be the reduced theory if dimensional reduction were

to be carried out; ∂̂ denotes partial differentiation with respect to the complementary

coordinates; f denotes all fields with only d-dimensional (internal space) indices2 and

F denotes the remaining fields. These could have mixed indices or have only (D − d)-

dimensional indices. In RS(∂̃, f), F type fields are required in order to contract with the

partial derivatives and form a scalar. However, in the notation, the emphasis is on those

fields on which the derivatives act. Note that the decomposition above changes depending

on whether one chooses to perform integration by parts on some terms. Thus, there is

an integration by parts ambiguity in the decomposition described above. However, at the

level of the scalars, which is what we are interested in here, this will not make a difference.

This is because, for the scalar sector, the integration by parts in the full theory is reflected

in integration by parts in the reduced theory.

For concreteness, consider the following term

gµν∂µg
ρσ∂νgρσ (2.2)

that appears in the Ricci scalar and is thus present in the lagrangian of any gravitational

2We refer to these as internal space indices in view of the terminology that would be used in the reduced

theory.
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theory based on Einstein’s theory. For this term,

RS(∂̃, f) = gij∂ig
ab∂jgab, (2.3)

RR(∂̃, f, F ) = gij∂ig
kl∂jgkl + 2gij∂ig

ak∂jgak, (2.4)

G(∂̂, f) = gab∂ag
cd∂bgcd, (2.5)

C(∂̃, ∂̂, f, F ) = gab(∂ag
ij∂bgij + 2∂ag

ic∂bgic) + 2gia(∂ig
cd∂agcd + 2∂ig

jb∂agjb + ∂ig
kl∂agkl).

(2.6)

Together, RS and RR correspond to the reduced theory, while terms in G correspond

to the sector of the theory for which a generalised geometric formulation may be possible.

It is clear that such a splitting of the lagrangian can always be done.3 The terms that

interest us here are those contained in RS . To reiterate, these are terms for which partial

differentiation is taken only along (D − d)-dimensional coordinates and all fields on which

the derivatives act appear only with internal space indices. From the perspective of the

reduced theory, these terms are in the scalar sector of the theory.4 It is this observation

that allows us to argue the duality completion of any gravitational term in the lagrangian.

Consider a lagrangian with a gravitational term. Dimensionally reduce the action to

(D−d) dimensions and consider the scalar sector of the reduced theory. By assumption, the

scalar sector can be rewritten in terms of a coset element of G/H and any scalar invariant

under the coset, so that

R̃S(g̃, f) = R̃S(g̃,VG/H , {Φ})
∣

∣

∣

matter fields=0
(2.7)

where g̃ is the metric and f are the scalars of the reduced theory; VG/H denotes a coset

element of G/H and {Φ} denotes the set of scalars that are formed from f and are in-

variant under the action of the coset. Thus, R̃S(g̃,VG/H , {Φ}) gives the full coupling of

the scalars corresponding to the matter fields in the reduced theory, given a particular

gravitational term.

Now, the question is how to extend this observation to the unreduced theory. This is

where the splitting of the lagrangian of theD-dimensional theory, described above, becomes

useful. The terms in R̃S(g̃, f) are in one-to-one correspondence with the terms in RS(∂̃, f),

as emphasised earlier. That is, the terms in RS(∂̃, f) reduce trivially to terms in R̃S(g̃, f).

As such, the structure of the terms in each are identical.5

3Of course, it is not possible to decompose the measure in such a way as to split the action into a piece

corresponding to the reduced theory; a piece corresponding to the generalised geometry and the rest of the

terms. Thus, we should really be working at the level of the equations of motion rather than the action.

However, this is equivalent to splitting the lagrangian, as described, and assigning a particular measure to

each term of interest.
4If dualisation of fields were required in the reduced theory to determine the scalar sector, then these

terms would only form a part of the scalar sector. The other terms that would contribute to the scalar

sector would then come from RR. The precise nature of these terms would obviously depend on the precise

matter content and the value of d.
5The only difference is that when reduction is carried out, some fields are redefined so that they have the

right transformation properties in the reduced theory. For example, gij is not the inverse of gij . Whereas

g̃ij is indeed the inverse of g̃ij , as one would expect.
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If the D-dimensional theory is to be consistent with the appearance of duality sym-

metry in the reduced theory it must contain terms that reduce to

R̃S(g̃,VG/H , {Φ}),

which controls the coupling of the matter to the gravitational field. From the argument

set out above, we conclude that RS must contain terms of the same structure as those

contained in R̃S(g̃,VG/H , {Φ}), once it is expanded in terms of the canonical fields in the

theory. Inspecting equation (2.1), it is straightforward to determine what kind of terms

must appear in the unsplit lagrangian in order to give RS once splitting takes place. For

example, given RS of the form

gij∂ig
ab∂jgab + gijgab∂iAa∂jAb,

where A is a 1-form, the D-dimensional lagrangian must contain terms of the form

gµν∂µg
ρσ∂νgρσ + gµνgρσ∂µAρ∂νAσ.

Of course, as is clear from the example above, such terms will certainly not be diffeomor-

phism nor gauge invariant. However, if the D-dimensional action is to be diffeomorphism

and gauge invariant, which is what one would expect, then one should be able to complete

the non-gauge invariant terms into gauge invariant terms without spoiling the structure

of RS . It is certainly not clear a priori that this should be possible. In the example we

consider, we find that this is indeed the case. Furthermore, we find that any such gauge in-

variant completion leads to a unique D-dimensional lagrangian. While this task may seem

daunting at the abstract level, in practice it is straightforward, as should be clear from the

example below. The only subtlety in practical terms is finding the coset element VG/H .

Of course, depending on the value of (D − d) this procedure will fail to (re)produce

terms in the higher dimensional action that do not contribute to RS . For example, if we

consider a reduction of the theory to more than two dimensions, then it is not possible

to find a two-derivative Chern-Simons term in the D-dimensional action. This means

that one needs to reduce to a low enough dimension in order to be able to find all possible

terms at a particular derivative order in the D-dimensional lagrangian. For a two derivative

theory, it suffices to reduce to two dimensions. In general, the duality coset of gravitational

theories reduced to two dimensions is infinite-dimensional [36–38]. However, this will not

be important for the purposes of this paper as we are principally concerned with completing

higher derivative terms.

To clarify the abstract arguments presented above, consider the specific example of a

gravitational theory with a 2-form potential B and a scalar φ. In addition, assume that

upon a toroidal reduction on T d, the scalars of the reduced theory parameterise the coset

O(d, d)/O(d)×O(d) [3]. Furthermore, assume that the gravitational sector of the theory is

given by the following action

Sgrav =

∫

dDx
√

det(gµν)e
−2φR(gµν), (2.8)

– 6 –
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where R(gµν) is the Ricci scalar of metric gµν . This theory should be familiar to the reader.

It can be identified with the low energy limit of closed bosonic string theory for D = 26;

heterotic string theory with non-abelian gauge fields turned off for D = 10 and the NSNS

sector of type II string theories for D = 10.

Define the T-duality invariant field [39, 40]6

e−2d =
√

ĝe−2φ. (2.9)

Equivalently,

logĝ = 4(φ− d), (2.10)

where ĝ is the internal metric.

Using the results of appendix A, we find that in the reduction to (D − d) dimensions,

√−ge−2φR(gµν) =
√

−g̃
√

ĝe−2φ

(

R(g̃)− 1

4
ĝg̃ikg̃jlĝabfij

afkl
b +

1

4
g̃ij(∂iĝ

ab)(∂j ĝab)

+
1

4
g̃ij(ĝab∂iĝab)(ĝ

cd∂j ĝcd)− 2ĝ−1g̃ij∂iĝ∂jφ

)

, (2.11)

where g ≡ det(gµν) and

fij
a = 2∂[ibj]

a.

Assuming that (D − d) > 3 so that the d 1-forms bi
a cannot be dualised into scalars, the

field content of the reduced theory includes a metric g̃ij , d 1-forms bi
a and d(d+1)/2 scalars

coming from the internal metric ĝab.

The third, fourth and fifth terms on the right hand side of equation (2.11) correspond

to the scalar sector of the theory. Given the arguments above one should be able to embed

this sector into an expression written only in terms of a coset element of O(d, d)/O(d)×O(d)

and the invariant measure d, defined in equation (2.9).

The coset element of O(d, d)/O(d)×O(d) is after all a group theoretic object and

can derived without any assumptions regarding the matter couplings of the theory. As

explained in section (3.1), it is more convenient to work with the duality group element

G = VT
G/HVG/H , (2.12)

which is derived in that section. Written in a canonical form such that it coincides with

the O(d, d) group element that is familiar from the literature [3, 41, 42],

G =

(

ĝ −Bĝ−1B Bĝ−1

−ĝ−1B ĝ−1

)

, (2.13)

where all indices in the matrix, which have been suppressed, take d-dimensional internal

space values, i.e. they are of the form a, b, c, . . ..

6It should be obvious from the context whether d refers to this new field or the dimension of the internal

space.
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Consider [3]
√

−g̃e−2d

(

1

8
g̃ijTr(∂iG

−1∂jG) + 4g̃ij∂id∂jd

)

. (2.14)

Expanding out the above term using the definition of G, equation (2.13), and d, equa-

tion (2.9), we find the terms in the scalar sector of the reduced theory above as well as

other terms:

√

−g̃e−2d

(

1

8
g̃ijTr(∂iG

−1∂jG) + 4g̃ij∂id∂jd

)

=
√

−g̃
√

ĝe−2φg̃ij
(

1

4
∂iĝ

ab∂j ĝab +
1

4
(ĝab∂iĝab)(ĝ

cd∂j ĝcd)− 2ĝ−1∂iĝ∂jφ

− 1

4
ĝacĝbd∂iBab∂jBcd + 4∂iφ∂jφ

)

. (2.15)

Of course, the coefficients in (2.14) were fixed so as to recover the first two terms in the

scalar sector. Thus, the first two terms on the right hand side of the equation above

appear by construction. The third term in the scalar sector also appears as one would

expect. Hence, we find that in order for the reduced theory to be invariant under the coset

O(d, d)/O(d)×O(d), as has been assumed, the terms in the second line on the right hand

side of the equation above must, also, appear in the scalar sector of the reduced theory.

From this knowledge, we now hope to construct the coupling of the matter fields to gravity

in the D-dimensional lagrangian.

Inspecting the extra terms on the right hand side of equation (2.15), it is clear that

these can only come from a D-dimensional action containing the following terms

∫

dDx
√
ge−2φ

(

−1

4
gµνgρσgτη∂µBρτ∂νBση + 4gµν∂µφ∂νφ

)

. (2.16)

A gauge invariant term that contains the first term must be, schematically, of the form

g−1g−1g−1HH, (2.17)

where H = dB. Furthermore, using the antisymmetric nature of H and the nature of the

contractions in the first term in (2.16), we conclude that the gauge invariant term must be

of the form

gµνgρσgτηHµρτHνση = 3gµνgρσgτη(∂µBρτ∂νBση − 2∂ρBµτ∂νBση). (2.18)

The second term in (2.16) is already diffeomorphism invariant. Putting all this together

gives the full action, which should be familiar to the reader

S =

∫

dDx
√
ge−2φ

(

R+ 4(∂φ)2 − 1

12
H2

)

, (2.19)

where (∂φ)2 = gµν∂µφ∂νφ and H2 = gµνgρσgτηHµρτHνση.

– 8 –
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3 Duality group element

In this section, we construct the duality group element required for the duality completion

of the Riemann squared correction in closed bosonic string theory. The relevant duality

group in this case is the T-duality group, which is given by the indefinite orthogonal group

O(d, d). In particular, upon reduction, the scalars parametrise the corresponding duality

coset O(d, d)/O(d)×O(d). Worldsheet arguments [40] show that this symmetry is valid to

all orders in α′, and even perturbatively in gs [43]. However, this has only been shown

from the spacetime perspective for the first order correction in α′ in the reduction to

one-dimension [30],7 see also [44].

The analysis of Meissner shows that in order to realise T-duality in the aforementioned

theory it is necessary to carry out non-gauge invariant field redefinitions of the metric and

the gauge 3-form. These field redefinitions can equivalently be regarded as an α′ correction

to the coset element. Note that this is somewhat dissimilar to the situation encountered

when higher derivative corrections are constructed. Namely, the α′ correction to the metric

is given by the Ricci tensor and can be removed by a gauge invariant field redefinition.

Hence the higher derivative corrections are given in terms of the original fields. Therefore,

even though there is a stringy modification to geometry, this can be removed by a field

redefinition. However, when considering the duality-manifest formulation of the higher

derivative corrections in terms of the coset element this is no longer possible. Evidence

for this comes from considerations in string field theory where diffeomorphisms and gauge

transformations of the NS-NS 2-form are modified by α′ corrections.

Further evidence for the fact that the duality coset in string theory must be corrected

comes from generalised geometry and double field theory [45–48]. This geometry extends

the tangent space to include 2-forms which results in a unification of diffeomorphisms and

gauge invariance. In this framework, while it is possible to construct analogues of the Ricci

tensor and scalar, the Riemann tensor has proved to be elusive [49–55]. In fact it can be

shown that there is no concomitant of the O(d, d) generalised metric (which is the square of

the duality coset element), its derivative and η, which is the bilinear form of O(d, d), that

transforms as a connection. Moreover, the only objects that are formed from the above

and second derivatives of the generalised metric that transform covariantly are the Ricci

tensor and scalar curvature already found in double field theory [56] (see also [49–55]).

Hence in this section, using group theory, we construct the duality coset element in O(d, d)

that is corrected by higher derivative terms. Note that these corrections can be viewed as

non-gauge invariant field redefinitions.

In practice, we use the square of the duality coset element

G = VTV , (3.1)

which we call the duality group element. Of course, when considering fermions, which

transform under O(d)×O(d), it is crucial to use the coset element, V . However, since we

are only considering bosonic fields here, it is more convenient to use G because it is invariant

under local O(d)×O(d) transformations.

7We would like to thank Axel Kleinschmidt for drawing our attention to this work.

– 9 –



J
H
E
P
0
9
(
2
0
1
3
)
1
4
0

3.1 O(d, d)/O(d)×O(d) group element

The duality group element for O(d, d) is well known from the literature [3, 41, 42]. It is

given in terms of the metric g and the 2-form NSNS field by

(

gab −Baeg
efBfb Baeg

ed

−gceBeb gcd

)

. (3.2)

This is the central object in T-duality manifest formulations such as double field theory

where it is called the generalised metric. We rederive the form of the duality group element

using the fact that it is given by a generic element of the O(d, d)/O(d)×O(d) coset. This

will be a warm up for finding the form of the α′ corrected duality group element.

Let

G = G+ α′H +O(α′2) (3.3)

be an element of O(d, d). In particular, from equation (3.1), G is a symmetric matrix.

Therefore, G satisfies

GT = G, (3.4)

GT ηG = η. (3.5)

The block 2d× 2d matrix η is

η =

(

0 1

1 0

)

,

where 1 and 0 in η denote the d-dimensional identity and zero matrices, respectively. Hence,

equation (3.5) implies that G is an indefinite orthogonal matrix.

From equation (3.3) and (3.4), it is clear that both G and H are symmetric. Further-

more, substituting equation (3.3) into (3.5) gives

GηG+ α′ (GηH +HηG) +O(α′2) = η. (3.6)

Hence,

GηG = η, (3.7)

GηH +HηG = 0. (3.8)

To show that G is of the form (3.2), let

G =

(

Q R

S T

)

, (3.9)

where Q,R, S, T are d× d matrices. Since G is symmetric,

QT = Q, T T = T, (3.10)

RT = S. (3.11)
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Now consider equation (3.7),
(

RQ+QS R2 +QT

TQ+ S2 TR+ ST

)

=

(

0 1

1 0

)

. (3.12)

Since we want the duality group element to contain the spacetime metric gab, we assume

that G is symmetric and non-degenerate on a d-dimensional vector subspace. By an ap-

propriate choice of basis, we can let T be the symmetric, non-degenerate part of G. Now,

using the non-degeneracy of T, the matrix equation (3.12) can be solved for Q and S:

Q = (1−R2)T−1, (3.13)

S = −TRT−1, (3.14)

where T−1 is the inverse of T. Using equation (3.11), the second equation above, (3.14),

can be rewritten

RTT−1 = −RT−1 =⇒ (RT−1)T = −RT−1. (3.15)

Hence, we define the antisymmetric matrix

B = RT−1. (3.16)

Moreover, letting

T = g−1, (3.17)

the inverse spacetime metric, we recover the duality group element in the literature, equa-

tion (3.2). Note that different choices for R and T in terms of B and g correspond to field

redefinitions.

Given the expression for G we can now solve equation (3.8) to find

H =

(

W X

Y Z

)

, (3.18)

where W,X, Y, Z are d× d matrices, which from equation (3.8), satisfy

RW +QY +XQ+WS = 0, (3.19)

RX +QZ +XR+WT = 0, (3.20)

TW + SY + ZQ+ Y S = 0, (3.21)

TX + SZ + ZR+ Y T = 0, . (3.22)

The above equations are solved by

W = −(RX +QZ +XR)T−1, (3.23)

Y = −(TX + SZ + ZR)T−1. (3.24)

Recall, however, that H is symmetric. Hence, W and Z are symmetric, while

X = Y T .
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From the above equation and equation (3.24) we can show that

X̃ = (X −RT−1Z)T−1 (3.25)

is antisymmetric. Therefore, H is fully determined in terms of g,B, a symmetric matrix Z

and an antisymmetric X̃:

W = −(Bg−1X̃ + X̃g−1B + gZg +BZB), (3.26)

X = X̃g−1 +BZ, (3.27)

Y = −(g−1X̃ + ZB). (3.28)

The matrices Z and X̃ are general symmetric and antisymmetric matrices in terms

of the fields of the theory g and B. Note that the dilaton and the determinant of g are

described by a scalar density in the duality invariant manifest formulation of the reduced

theory. Hence, we expect H to also be independent of the dilaton and the determinant of

g. Since α′ has length dimension two, we also expect Z and X̃ to have two derivatives.

Thus the most general forms of these matrices are8

Zab = a1g̃
ijgbf∂ig

ae∂jgef + a2g̃
ij
(

gbf∂ig
ae∂jBef + gaf∂ig

be∂jBef

)

+ a3g̃
ijgaegbfggh∂iBeg∂jBfh, (3.29)

X̃ab = a4g̃
ijgef (∂igae∂jBbf − ∂igbe∂jBaf ) . (3.30)

We leave the coefficients a1, a2, a3, a4 arbitrary, since for any value of these coefficients

G in equation (3.3) is a symmetric element of O(d, d). In principle, we are free to choose any

value for these constants because different choices correspond to different field redefinitions.

However, as will become clear, a certain choice is preferable in that the higher dimensional

action can be written covariantly.

In summary, the duality group element that we consider is

G =

(

g −Bg−1B Bg−1

−g−1B g−1

)

+ α′

(

−Bg−1X̃ − X̃g−1B − gZg −BZB X̃g−1+BZ

−g−1X̃ − ZB Z

)

+O(α′2), (3.31)

where Z and X̃ are given in equations (3.29) and (3.30). We stress once more that while the

second term is not strictly required, given that it merely corresponds to a field redefinition,

it is useful in that it packages the necessary non-gauge invariant field redefinitions that may

be required to write the scalar sector of the reduced theory in a duality invariant manner.

8We exclude terms where the two-form field B is not differentiated, since such terms would lead to

manifestly non-gauge invariant terms in the unreduced action. In any case, such terms would be related to

those considered here by non-gauge invariant field redefinitions.
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4 Duality completion of Riemann squared term in closed bosonic string

theory

In this section we apply the arguments of section 2 to the Riemann squared α′ term

in closed bosonic string theory. The α′ corrections to the low energy effective theory

of closed bosonic string theory at tree-level can be found by string scattering amplitude

calculations [31, 32], or equivalently [57–59] it is given by the two-loop vanishing of the

closed bosonic string sigma-model β-functionals [32]. However, here we assume that the

only known α′ correction to the effective action is Riemann squared. For various reasons

it has been argued in the literature [31, 60] that the Riemann squared should come as part

of a Lovelock term. However, this term is related to Riemann squared by field redefinition.

Therefore, consider

Sbosonic =

∫

dxµ
√
ge−2φ

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2 + α′λ0R

µνρσRµνρσ

)

, (4.1)

where here µ, ν, · · · = 1, . . . , 26 and λ0 = 1/4;

Hµνρ = 3∂[µBνρ] (4.2)

is the field strength of the 2-form of closed bosonic string theory and φ is the dilaton.

The scalar part of the reduction of

S(0) =

∫

dxµ
√
ge−2φ

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2

)

is given, up to integration by parts by

S
(0)
redS

=

∫

dx̃i
√

g̃
√

ĝe−2φg̃ij
(

1

4
∂iĝ

ab∂j ĝab +
1

4
∂ilog ĝ∂j log ĝ

−2∂iφ∂j log ĝ + 4∂iφ∂jφ− 1

4
ĝabĝcd∂iBac∂jBbd

)

, (4.3)

where we have used equations (A.30)–(A.36) in appendix A for the action of the scalars in

the reduction of the Einstein-Hilbert term. Meanwhile, using the results of appendix A,

the scalar part of the reduction of the α′ correction is

RµνρσRµνρσ

∣

∣

∣

scalars
=−g̃ij g̃kl

(

∂i∂kĝ
ab∂j∂lĝab+ĝab∂i∂kĝac∂j ĝ

cd∂lĝbd−
1

8
∂iĝ

ab∂kĝab∂j ĝ
cd∂lĝcd

−1

2
∂iĝ

ab∂j ĝbc∂kĝ
cd∂lĝda +

3

8
∂iĝ

ab∂kĝbc∂j ĝ
cd∂lĝda

)

. (4.4)

For ease of reading, we will simply denote the internal metric ĝ by g in the rest of this

section.

Since duality in the reduced theory dictates that the scalars parametrise the duality

coset element, we must be able to write the terms in (4.4) in terms of the O(d, d)/O(d)×O(d)

coset element derived in section 3.1, expression (3.31), and the invariant measure defined in

– 13 –
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equation (2.9). As we are only working to first order in α′, for the terms in equation (4.4)

the only relevant part of the coset element in equation (3.3) is

GAB =

(

gab + gefBaeBbf Baeg
ed

−gceBeb gcd

)

. (4.5)

The inverse of G, from equation (3.7), is

GAB = ηACGCDη
DB (4.6)

=

(

gab −gaeBed

Bceg
eb gcd + gefBceBdf

)

. (4.7)

Recall that the determinant of the internal metric and the dilaton appear in the invari-

ant combination

e−2d =
√
ge−2φ. (4.8)

It is straightforward to see that

g̃ij g̃kl∂i∂kg
ab∂j∂lgab =

1

2
g̃ij g̃kl∂i∂kG

AB∂j∂lGAB

∣

∣

∣

B=0
, (4.9)

g̃ij g̃kl∂ig
ab∂kgab∂jg

cd∂lgcd =
1

4
g̃ij g̃kl∂iG

AB∂kGAB∂jG
CD∂lGCD

∣

∣

∣

B=0
, (4.10)

g̃ij g̃kl∂ig
ab∂jgbc∂kg

cd∂lgda =
1

2
g̃ij g̃kl∂iG

AB∂jGBC∂kG
CD∂lGDA

∣

∣

∣

B=0
, (4.11)

g̃ij g̃kl∂ig
ab∂kgbc∂jg

cd∂lgda =
1

2
g̃ij g̃kl∂iG

AB∂kGBC∂jG
CD∂lGDA

∣

∣

∣

B=0
. (4.12)

However, note that the second term in equation (4.4) is not expressible in terms of G.

For example,

g̃ij g̃klGAB∂i∂kGAC∂jG
CD∂lGBD

∣

∣

∣

B=0

= g̃ij g̃kl
(

gab∂i∂kgac∂jg
cd∂lgbd + gab∂i∂kg

ac∂jgcd∂lg
bd
)

,

= g̃ij g̃kl∂ig
ab∂kgbc

(

∂jg
cd∂lgda − ∂lg

cd∂jgda

)

. (4.13)

The reason for the fact that the second term in equation (4.4) cannot be expressed in

terms of G is essentially equation (4.6). If there are an odd number of coset elements that

are differentiated, there is a relative minus sign between raising (or lowering) the coset

elements that are differentiated with G−1 (or G) and with η. This observation was made

in the reduction of the closed bosonic string effective action with α′ corrections to one

dimension by Meissner [30] and more recently in the context of double field theory [55]. In

the reduction to one dimension, Meissner showed that these terms can be obtained from

the rewriting of the two-derivative terms in the scalar part of the reduced theory action in

terms of a modified coset element.

In section 2, it was shown that the expression for the two-derivative, scalar part of the

reduced action, (4.3), can be written as

S
(0)
redS

=

∫

dx̃i
√

g̃g̃ije−2d

(

1

8
∂iG

AB∂jGAB + 4∂id∂jd

)

. (4.14)
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Now, we replace the zeroth-order coset element G in the above expression with the full

coset element G. Using equation (3.3),

1

8
g̃ij∂iGAB∂jGAB =

1

8
g̃ij∂iG

AB∂jGAB +
1

4
α′g̃ij∂iH

AB∂jGAB +O(α′2). (4.15)

In the above expression

GAB = GAB + α′HAB +O(α′2) (4.16)

is the inverse of GAB. However, note that

HAB = ηACHCDη
DB (4.17)

is not the inverse of HAB.

Consider the term that is first-order in α′ on the right-hand-side of equation (4.15).

Using equation (3.31),

g̃ij∂iH
AB∂jGAB = g̃ij

(

2∂iZ
ab∂jgab − 2Zabgac∂igbd∂jg

cd

−2gabgcd∂iX̃ac∂jBbd − 2gabZcd∂iBac∂jBbd

)

. (4.18)

Substituting equation (3.29) in the expression above we obtain

g̃ij∂iH
AB∂jGAB

∣

∣

∣

B=0
= 4a1g̃

ij g̃kl
(

gab∂i∂kgac∂jg
cd∂lgbd + ∂ig

ab∂(j|gbc∂|k)g
cd∂lgda

)

, (4.19)

where we have ignored a derivative on g̃ij in the above because this term does not contribute

to the scalar sector of the reduced theory. Comparing equation (4.15) and the equation

above with equation (4.4), we see that

a1 = −λ0. (4.20)

Therefore, in summary

(

R+ α′λ0R
µνρσRµνρσ

)

∣

∣

∣

scalars
= LredS

∣

∣

∣

B,φ=0
, (4.21)

where

LredS = g̃ij
(

1

8
∂iGAB∂jGAB + 4∂id∂jd

)

− 1

2
α′λ0g̃

ij g̃kl
(

∂i∂kGAB∂j∂lGAB − 1

16
∂iGAB∂kGAB∂jGCD∂lGCD

−∂iGAB∂jGBC∂kGCD∂lGDA − 1

8
∂iGAB∂kGBC∂jGCD∂lGDA

)

. (4.22)

Now that we have written the gravitational part of the scalar sector of the reduced

theory in terms of the O(d, d) coset element we can evaluate the right hand side of the

above equation, (4.22), to find the dependence of the scalar part of the reduced lagrangian

on the 2-form B and the dilaton φ.
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We have already established that the zeroth order term in α′ in the first two expressions

on the right hand side of equation (4.22) reduce to the lagrangian in equation (4.14) and

thus reproduces the scalar sector of the two-derivative part of the theory. We now evaluate

the first order term, which using equation (4.15) is

1

4
g̃ij∂iH

AB∂jGAB =− λ0g̃
ij g̃kl

(

gab∂i∂kgac∂jg
cd∂lgbd + ∂ig

ab∂(j|gbc∂|k)g
cd∂lgda

)

+ a2g̃
ij g̃kl

(

∂igab∂jg
ad∂kg

bc∂lBcd + gab∂i∂kgac∂jg
cd∂lBbd

−gab∂i∂kBac∂jgbd∂lg
cd
)

+
1

2
g̃ij g̃kl

(

(a3 + λ0)g
abgcd∂ig

ef∂jgae∂kBfc∂lBbd

− a3∂ig
ab∂jg

cd∂kBac∂lBbd

− 2a4g
abgcd∂ig

ef∂kgae∂jBbd∂lBcf

− 2a4g
abgcdgef∂i∂kgae∂jBbd∂lBcf

− 2(a3 + a4)g
ab∂i∂kBac∂jg

cd∂lBbd

)

− a2g̃
ij g̃klgabgcd∂ig

ef∂jBed∂kBaf∂lBbc

− 1

2
a3g̃

ij g̃klgabgcdgefggh∂iBac∂jBbe∂kBdg∂lBfh, (4.23)

where we have used equations (4.18), (3.29), (3.30) and (4.20).

Since the rest of the terms in equation (4.22) are already at order α′, the order to

which we are working to, we can simply replace G by G in these terms

−1

2
α′λ0g̃

ij g̃kl
(

∂i∂kG
AB∂j∂lGAB − 1

16
∂iG

AB∂kGAB∂jG
CD∂lGCD

−∂iG
AB∂jGBC∂kG

CD∂lGDA − 1

8
∂iG

AB∂kGBC∂jG
CD∂lGDA

)

. (4.24)

Furthermore, to evaluate these terms we first prove that these terms have no bare B terms.

It is straightforward to verify that

GAB = LA
CLB

DDCD, (4.25)

GAB = EC
AED

BDCD, (4.26)

where

LA
B =

(

δa
b Bad

0 δcd

)

, EA
B =

(

δa
b −Bad

0 δcd

)

, (4.27)

DAB =

(

gab 0

0 gcd

)

, DAB =

(

gab 0

0 gcd

)

. (4.28)
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Or, if we denote the indices A = (a, ã) and B = (b, b̃),

La
b = Ea

b = δba, (4.29)

Lã
b̃ = Eã

b̃ = δã
b̃
, (4.30)

La
b̃ = −Ea

b̃ = Bab̃, (4.31)

Lã
b = Eã

b = 0. (4.32)

Note that

LA
CEC

B = δBA , LC
AEB

C = δAB. (4.33)

Consider the terms in expression (4.24). Note that for these terms the group element G

indices only contract with the indices of the inverse group element. From equations (4.25)

and (4.26) this implies that when the group element and its inverse are written in terms of

L and E, the lower index of the L always contracts with an upper index on E. Let us now

assume for contradiction that there is a bare B, i.e. the two-form B is not differentiated.

From equations (4.27) and (4.28), it is clear that in such a case there must be either a bare

L or E. First consider the former case. Recall that the lower index of the L contracts with

the upper index of an E

LA
B∂EC

A or LA
B∂∂EC

A. (4.34)

The E must be differentiated otherwise from equation (4.33) the L and E would contract

to a Kronecker delta symbol, contradicting the assumption that there is a bare B. From

equation (4.31), there must, in particular, be a term of the form

La
b̃∂EC

a or La
b̃∂∂EC

a. (4.35)

From equations (4.29) and (4.32), E is either a Kronecker delta symbol or zero. In either

case the expression above vanishes. Similarly, if a bare B term arises from a bare E, the

term must contain the expression

Ea
b̃∂LC

a or Ea
b̃∂∂LC

a. (4.36)

By the argument above, this expression also vanishes contradicting the initial assumption

that there is a term with a bare B. Hence we have shown that all the two-form fields

are differentiated in expression (4.24). So we can simplify the calculation of the terms

by writing

∂i∂jGAB =

(

∂i∂jgab + 2gef∂(i|Bae∂|j)Bbf ged∂i∂jBae + 2∂(i|g
ed∂|j)Bae

−gce∂i∂jBeb − 2∂(i|g
ce∂|j)Beb ∂i∂jg

cd

)

, (4.37)

∂i∂jG
AB =

(

∂i∂jg
ab −gae∂i∂jBed − 2∂(i|g

ae∂|j)Bed

geb∂i∂jBce + 2∂(i|g
eb∂|j)Bce ∂i∂jgcd + 2gef∂(i|Bce∂|j)Bdf

)

, (4.38)

∂iGAB =

(

∂igab ged∂iBae

−gce∂iBeb ∂ig
cd

)

, ∂iG
AB =

(

∂ig
ab −gae∂iBed

geb∂iBce ∂igcd

)

(4.39)
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in expression (4.24). It is now straightforward to show that

g̃ij g̃kl∂i∂kG
AB∂j∂lGAB =2g̃ij g̃kl

(

∂i∂kg
ab∂j∂lgab + 2gab∂i∂kg

cd∂jBac∂lBbd

− 4∂ig
ab∂(jg

cd∂k)Bac∂lBbd − 4gab∂ig
cd∂kBac∂j∂lBbd

−gabgcd∂i∂kBac∂j∂lBbd

)

, (4.40)

g̃ij g̃kl∂iG
AB∂kGAB∂jG

CD∂lGCD =4g̃ij g̃kl
(

∂ig
ab∂kgab∂jg

cd∂lgcd

− 2gcdgef∂ig
ab∂kgab∂jBce∂lBdf

+ gabgcdgefggh∂iBac∂jBeg∂kBbd∂lBfh

)

, (4.41)

g̃ij g̃kl∂iG
AB∂jGBC∂kG

CD∂lGDA =2g̃ij g̃kl
(

∂ig
ab∂jgbc∂kg

cd∂lgda+2∂ig
ab∂jBbc∂kg

cd∂lBda

− 4gabgcd∂ig
ef∂(j|gfa∂|k)Bec∂lBbd

+gabgcdgefggh∂iBac∂jBde∂kBfg∂lBhb

)

, (4.42)

g̃ij g̃kl∂iG
AB∂kGBC∂jG

CD∂lGDA =2g̃ij g̃kl
(

∂ig
ab∂kgbc∂jg

cd∂lgda + 2∂ig
ab∂kBbc∂jg

cd∂lBda

− 4gabgcd∂ig
ef∂kgfa∂jBbc∂lBed

+gabgcdgefggh∂iBac∂kBde∂jBfg∂lBhb

)

. (4.43)

Let us now consider the order α′ terms in equation (4.22), which are given by equa-

tions (4.23) and (4.40)–(4.43). These terms were found by requiring that at zeroth order

in the field B they produce the scalar sector of the reduced Riemann squared term. The

only contributions at odd order in the field B come from terms in

g̃ij∂iH
AB∂jGAB

with coefficient a2, see equation (4.23). These terms cannot be made covariant, hence

we set

a2 = 0.

Note that for any value of a2 the scalars parametrise the duality coset element and so any

value is a valid choice. However, only for some value will the duality coset element give

rise to a covariant description. Other choices will be related to this by non-gauge invariant

field redefinitions.

Now, consider terms quartic in the field B,

LredS

∣

∣

∣

O(α′,B4)
= g̃ij g̃klgabgcdgefggh

{

(

λ0 − a3
2

)

∂iBae∂jBbg∂kBcf∂lBdh

+ 1
8λ0∂iBac∂jBeg∂kBbd∂lBfh

+ 1
8λ0∂iBac∂jBeg∂kBbf∂lBdh

}

. (4.44)

Clearly, a gauge invariant term that gives rise to such terms under reduction must be,

schematically, of the form

HHHH
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with various contractions. Of course, the precise nature of the contractions can be inferred

from the nature of the contractions in the terms above. In particular, it is clear to see that

the terms in the first line should come from a term of the form

HµντHµνηH
ρσηHρστ −→g̃ij g̃klgabgcdgefggh

(

4∂iBae∂jBbg∂kBcf∂lBdh

+ ∂iBac∂jBeg∂kBbd∂lBfh

)

, (4.45)

where indices on the left hand side have been raised using the inverse metric gµν and the

arrow indicates the scalars that are obtained under a reduction of the term. Hence, we

conclude that
λ0

8
HµντHµνηH

ρσηHρστ (4.46)

and only this term can account for the first two terms on the right hand side of equa-

tion (4.44), provided that we choose

a3 = λ0. (4.47)

As emphasised earlier, we are free to make such a choice and any other choice will be

related to this via a non-gauge invariant transformation.

Similarly, the final term in equation (4.44) can only come from a term of the form

Hµ
στHρ

µνHρ
τηH

η
νσ −→ 3g̃ij g̃klgabgcdgefggh∂iBac∂jBeg∂kBbf∂lBdh. (4.48)

Hence, the final term in equation (4.44) comes from a reduction of the following and only

the following term
λ0

24
Hµ

στHρ
µνHρ

τηH
η
νσ. (4.49)

In summary,

LredS

∣

∣

∣

O(α′,B4)
= λ0

(

1

8
HµντHµνηH

ρσηHρστ +
1

24
Hµ

στHρ
µνHρ

τηH
η
νσ

)

∣

∣

∣

scalars
. (4.50)

The attentive reader may point out that the form of terms quartic in the field B is

constrained to the extent that there are only four such possible terms: the three terms

appearing in the equations above in addition to a term of the form

(g̃ijgabgcd∂iBac∂jBbd)(g̃
klgefggh∂kBeg∂lBfh).

The term above is very simple to take care of since it will come from a reduction of a term

of the form

(HµνρHµνρ)(H
τσηHτση).

This as well as the fact that in deriving the result above we essentially had three equations

for three unknowns may tempt the reader to conclude that the fact that we were able to

assemble terms of order four in B into gauge invariant terms in the full theory is unsur-

prising. However, the result is not as trivial as it may seem. First, the result proved above

that there are no bare B’s is crucial in deriving this result. Otherwise the task of finding

gauge invariant terms in the full theory that reduce to such terms would not be such a nice
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one. In addition, the form of the eventual equations need not have been so. The fact that

the α′ correction to the duality group element contributes in the way that it does is crucial

from a practical point of view. Of course, there is also the fact that the particular form of

the gauge invariant terms in the full theory ought to be consistent with previous results in

the literature.

Finally, we are left with second order terms in the field B. Substituting the value of

a3, equation (4.47), these are of the form

LredS

∣

∣

∣

O(α′,B2)
= g̃ij g̃kl

{

λ0g
abgcd∂i∂kBac∂j∂lBbd + (3λ0 − a4)g

ab∂i∂kBac∂jg
cd∂lBbd

+ (a4 + 2λ0)g
abgcdgef∂i∂kgac∂jBbe∂lBdf (4.51)

− λ0g
abgcd∂ig

ef∂jgae∂kBfc∂lBbd −
λ0

4
gcdgef∂ig

ab∂kgab∂jBce∂lBdf

+
5λ0

4
∂ig

ab∂jg
cd∂kBac∂lBbd +

(

a4 +
3λ0

2

)

gabgcd∂ig
ef∂kgae∂jBbc∂lBfd

}

.

The terms above in the first line of the expression on the right hand side can only come

from the reduction of a term of the form9

1

3
∇µHνρσ∇µHνρσ −→ g̃ij g̃kl

{

gabgcd∂i∂kBac∂j∂lBbd + 2gab∂i∂kBac∂jg
cd∂lBbd (4.52)

− gabgcd∂ig
ef∂jgae∂kBfc∂lBbd +

1

2
∂ig

ab∂jg
cd∂kBac∂lBbd

+ gabgcd∂ig
ef∂kgae∂jBbc∂lBfd −

1

4
gcdgef∂ig

ab∂kgab∂jBce∂lBdf

}

,

where ∇ denotes the covariant derivative induced by metric gµν . Comparing the coefficient

of the second term, we deduce that this is only possible for

a4 = λ0. (4.53)

Hence,

LredS

∣

∣

∣

O(α′,B2)
=λ0

(

1

3
∇µHνρσ∇µHνρσ

)

∣

∣

∣

scalars

+
3λ0

2
g̃ij g̃kl

{

2gabgcdgef∂i∂kgac∂jBbe∂lBdf

+
1

2
∂ig

ab∂jg
cd∂kBac∂lBbd + gabgcd∂ig

ef∂kgae∂jBbc∂lBfd

}

. (4.54)

The remaining terms can only come from a term of the form

RµνρσH
µνηHρσ

η, (4.55)

9This is strictly not true. However, any other term giving rise to such a term under reduction will be

related to this term by use of the Bianchi identity ∇[µHνρσ] = 0. Thus, in this sense the term is unique.
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which rather miraculously reduces to the precise combination of terms required, i.e.

RµνρσH
µνηHρσ

η −→ −g̃ij g̃kl
{

2gabgcdgef∂i∂kgac∂jBbe∂lBdf +
1

2
∂ig

ab∂jg
cd∂kBac∂lBbd

+ gabgcd∂ig
ef∂kgae∂jBbc∂lBfd

}

. (4.56)

Hence,

LredS

∣

∣

∣

O(α′,B2)
= λ0

(

−3

2
RµνρσH

µνηHρσ
η +

1

3
∇µHνρσ∇µHνρσ

)

∣

∣

∣

scalars
. (4.57)

In summary, we find

LredS =

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2

+ α′λ0

{

RµνρσRµνρσ − 3

2
RµνρσH

µνηHρσ
η +

1

3
∇µHνρσ∇µHνρσ

+
1

8
HµντHµνηH

ρσηHρστ +
1

24
Hµ

στHρ
µνHρ

τηH
η
νσ

})

∣

∣

∣

scalars
, (4.58)

which leads us to conclude that the duality complete action up to first order in α′ is

S =

∫

dxµ
√
ge−2φ

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2

+ α′λ0

{

RµνρσRµνρσ − 3

2
RµνρσH

µνηHρσ
η +

1

3
∇µHνρσ∇µHνρσ

+
1

8
HµντHµνηH

ρσηHρστ +
1

24
Hµ

στHρ
µνHρ

τηH
η
νσ

})

. (4.59)

In order to compare the action above with the form in which it is usually presented in

the literature (see for example [32]), consider the following term that appears in the action

above:
1

3
∇µHνρσ∇µHνρσ. (4.60)

Making use of the Bianchi identity

∇[µHνρσ] = 0, (4.61)

integrating by parts and ignoring boundary contributions throughout gives

1

3
∇µHνρσ∇µHνρσ = 2∇µHνρσ∇νφHµρσ −Hνρσ∇µ∇νH

µ
ρσ. (4.62)

Integrating by parts on the µ derivative in the first term on the right hand side of the

equation above gives

2∇µHνρσ∇νφHµρσ = 2HµρσHν
ρσ(2∂µφ∂νφ−∇µ∇νφ)− 2∇µH

µρσHρσ
ν∂νφ, (4.63)
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while anticommuting covariant derivatives in the second term on the right hand side of

equation (4.62) gives

Hνρσ∇µ∇νH
µ
ρσ = RµνH

µρσHν
ρσ − 2RµνρσH

µρηHνσ
τ +∇µ∇νH

νρσHµ
ρσ. (4.64)

Substituting equations (4.63) and (4.64) into equation (4.62) gives

1

3
∇µHνρσ∇µHνρσ =RµνρσH

µνηHρσ
η −RµνH

µρσHν
ρσ + 2HµρσHν

ρσ(2∂µφ∂νφ−∇µ∇νφ)

−∇µ∇νH
νρσHµ

ρσ − 2∇µH
µρσHρσ

ν∂νφ, (4.65)

where we have used the Bianchi identity satisfied by the Riemann tensor to relate

RµνρσH
µρηHνσ

τ to RµνρσH
µνηHρσ

η. Finally, using integration by parts on the first term

on the second line of the equation above gives

1

3
∇µHνρσ∇µHνρσ =RµνρσH

µνηHρσ
η −RµνH

µρσHν
ρσ + 2HµρσHν

ρσ(2∂µφ∂νφ−∇µ∇νφ)

∇νH
νρσ∇µH

µ
ρσ − 4∇µH

µρσHρσ
ν∂νφ. (4.66)

Inserting the equation above into action (4.59) gives

S =

∫

dxµ
√
ge−2φ

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2

+ α′λ0

{

RµνρσRµνρσ−
1

2
RµνρσH

µνηHρσ
η+

1

24
Hµ

στHρ
µνHρ

τηH
η
νσ−

1

8
(H2)µν(H2)µν

−
[

Rµν + 2∇µ∇νφ− 1
4(H

2)µν − 1
2gµν

(

R+ 4∇2φ− 4(∂φ)2 − 1
12H

2
)]

(H2)µν

+ [∇ρH
ρµν − 2∂ρφH

ρµν ] [∇σH
σ
µν − 2∂σφH

σ
µν ]

−1

2

[

R+ 4∇2φ− 4(∂φ)2 − 1
12H

2
]

H2

})

, (4.67)

where (H2)µν = HµρσHν
ρσ and ∇2φ = gµν∇µ∇νφ. Note that the terms in the square

brackets in the action above are the equations of motion for the metric, B-field and dilaton,

respectively. Thus, they can be removed using a field redefinition of these respective fields.

In particular, carrying out the following field redefinitions

δgµν = α′λ0(H
2)µν , (4.68)

δBµν = 2α′λ0 (∇ρH
ρµν − 2∂ρφH

ρµν) , (4.69)

δφ =
1

4
α′λ0H

2, (4.70)

the action reduces to

S=

∫

dxµ
√
ge−2φ

(

R+ 4gµν(∂µφ)(∂νφ)−
1

12
H2 (4.71)

+
α′

4

{

RµνρσRµνρσ−
1

2
RµνρσH

µνηHρσ
η+

1

24
Hµ

στHρ
µνHρ

τηH
η
νσ−

1

8
(H2)µν(H2)µν

})

,

where we have substituted the value of λ0 for the bosonic string, i.e. λ0 = 1/4. This is in

precise agreement with the form of the corrections presented in [32].

– 22 –



J
H
E
P
0
9
(
2
0
1
3
)
1
4
0

5 Conclusions

In this paper, we have argued that duality symmetry places strong constraints on the form

of the unreduced theory. In particular, we have shown that consistency of a theory with

duality under reduction can be used to complete known terms in the theory. An important

application of this idea is in finding higher derivative matter couplings from known higher

derivative corrections. We have illustrated this idea for a simple theory, namely closed

bosonic string theory. We explained in full detail how the Riemann squared term in the

tree-level α′ correction to the low energy effective action can be completed in a very simple

and systematic manner, reproducing, up to field redefinitions, precisely the form that is

familiar from the literature.

Given the generic nature of our arguments, this method can be applied to a wide

range of theories. Dualities are a pervading feature of many theories, whether string the-

ories or field theories, and if the duality symmetry survives quantum corrections, as is

expected in many cases, then the arguments in this paper can be used to efficiently com-

plete known terms.

The example we have considered here is meant to provide a test of our arguments and

illustrate the simplicity of our method in full detail. It is our intention to apply this work

to more physically interesting theories where higher derivative corrections are important.

Of particular interest is higher derivative corrections in heterotic string theory where,

for example, it has been argued that there are constraints from cosmology on the higher

derivative corrections [61–63]. Another application which we will report on elsewhere is the

completion of the R4 term in M-theory [64, 65] that gives rise to the 1-loop α′3 correction

in type IIA string theory [66], which would determine the RR higher derivative couplings.

We stress, however, that even higher derivative corrections that are not directly obtained

from M-theory upon reduction can be found in this manner. For example, the tree-level

α′3 corrections [67–69] in type IIA can be found by expressing the duality coset in terms

of the massless fields of IIA string theory rather than M-theory fields. Equally, this work

can be applied to type IIB string theory where the relation to M-theory is not as direct,

but the theory nevertheless exhibits duality symmetry under reduction.

In the pioneering work of Green and Gutperle [5], it is shown that perturbative and

non-perturbative quantum corrections to the R4 correction in type IIB string theory can

be encoded in an automorphic function associated with the S-duality group SL(2,Z) .

Furthermore, there has been recent progress in understanding the automorphic functions for

the U-duality groups [11, 14–17, 19, 22, 70], which similarly encode the quantum corrections

to string theories in lower dimensions. In light of this work, an interesting question is

whether the automorphic functions can be similarly uplifted. In other words, to what

extent and in what way does the fact that the string coupling dependent coefficient of

higher derivative corrections reduce to an automorphic function constrain the coefficient of

higher derivative terms in ten-dimensional string theory.

Thus far, we have not discussed supersymmetry, which also plays an important role in

constraining higher derivative corrections (see for example [71, 72]). Given that these two

methods must be compatible with each other, it may be fruitful in studying the link be-
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tween supersymmetry completion and duality completion. A step in this direction may be

possible in the framework of references [73, 74], where the connection between supersym-

metry and duality is shown to be intimate. Indeed they reformulate eleven-dimensional

supergravity in a way that is manifestly locally invariant under the denominator of the

duality coset. Within this framework, it may be possible to incorporate fermions without

even considering reduction.

Finally, it would be interesting to understand these results within the context of gen-

eralised geometry and double field theory. A generalised geometric formulation of higher

derivative corrections has proved challenging thus far;10 in particular, within the context

of closed bosonic string theory and the aim of defining a generalised curvature tensor that

incorporates all the relevant fields. From the perspective of this work, it may be possible

to provide a generalised geometric formulation of higher derivative terms using an α′ cor-

rected duality group element (see also [55]). The example of tree-level α′ corrections in

closed bosonic string theory considered in this paper is apt for such an investigation and

we hope to consider this in future work.
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A Dimensional reduction

Duality in dimensionally reduced string theory and eleven-dimensional supergravity plays

a crucial role in this paper. In this appendix we give some formulae that are useful for

reducing gravitational terms. In particular we list the spin connection components for the

following vielbein ansatz

eµ
µ̄ =

(

αẽi
ī bi

bêb
ā

0 êa
ā

)

, (A.1)

where α is a scalar that takes into account conformal transformations of ei
ī. For example,

α may depend on the determinant of êa
ā, or on the dilaton so that we can switch between

Einstein and string frames. The unbarred and barred Greek indices in the above expression

are D-dimensional spacetime and tangent space indices, respectively. Lowercase Latin

indices from the start of the alphabet (a, b, . . . ) are d-dimensional indices, while indices

from the middle of the alphabet are (D − d)-dimensional indices. The barred versions

of these indices indicate tangent space indices in d-dimensions and (D − d)-dimensions,

respectively. The vielbeine ẽ and ê define metrics

g̃ij = ẽi
īẽj

j̄ η̃īj̄ , (A.2)

ĝab = êa
āêb

b̄δāb̄, (A.3)

10See [75] for recent work on understanding α′ corrections to generalised geometry.
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respectively. The Minkowski metric in (D−d)-dimensions, diag(−1,+1, . . . ,+1), is denoted

η̃, while δ is the Kronecker delta symbol. In our notation

ẽī
i, êā

a

are the inverse vielbeine. Therefore, the i, j, . . . indices are raised and lowered with g̃−1

and g̃, and ī, j̄, . . . are raised and lowered with the Minkowski metric. Similarly for the

a, b, . . . and ā, b̄, . . . indices.

The spin connection

ωµν̄ρ̄ = ωµ[ν̄ρ̄]

is given by Cartan’s first equation of structure in the absence of torsion:

deµ̄ + ωµ̄
ν̄ ∧ eν̄ = 0, (A.4)

or in components

2
(

∂[µeν]
µ̄ + ω[µ|

µ̄
ν̄e|ν]

ν̄
)

= 0. (A.5)

For the vielbein ansatz in equation (A.1), Cartan’s first structure equation is solved for

components of the spin connection

ωiīj̄ = ω̃iīj̄+α−2ẽ[̄i
kẽj̄]

j
(

2αg̃ik∂jα+bia∂[jbk]
a−α2bj

a∂ag̃ik−2αg̃ikbj
a∂aα−biabj

b∂bbk
a
)

,

(A.6)

ωiāī = −1

2
α−1ẽī

j êā
a
(

2ĝab∂[ibj]
b−bi

b∂j ĝab+α2∂ag̃ij+2αg̃ij∂aα+bj
b∂bbia+bib∂abj

b
)

, (A.7)

ωiīā = −ωiā̄i, (A.8)

ωiāb̄ = ê[ā|
a∂iêa|b̄] − ê[ā

aêb̄]
b∂abib, (A.9)

ωaīj̄ = −α−2ẽī
iẽj̄

j ĝab∂[ibj]
b + ẽ[̄i|

i∂aẽi|j̄] + α−2ẽ[̄i
iẽj̄]

j ĝabbi
c∂cbj

b, (A.10)

ωaāī =
1

2
α−1ẽī

iêā
b (∂iĝab − ĝbc∂abi

c − ĝac∂bbi
c − bi

c∂cĝab) , (A.11)

ωaīā = −ωaāī, (A.12)

ωaāb̄ = ω̂aāb̄. (A.13)

In particular, in this paper, we are interested in toroidal reductions, where there exist

d Killing vectors. Letting the Killing vector fields be ∂a, the components of the spin

connection simplify to

ωiīj̄ = ω̃iīj̄ + α−2ẽ[̄i
kẽj̄]

j
(

2αg̃ik∂jα+ bia∂[jbk]
a
)

, (A.14)

ωiāī = −1

2
α−1ẽī

j êā
a
(

2ĝab∂[ibj]
b − bi

b∂j ĝab

)

, (A.15)

ωiīā = −ωiā̄i, (A.16)

ωiāb̄ = ê[ā|
a∂iêa|b̄], (A.17)

ωaīj̄ = −α−2ẽī
iẽj̄

j ĝab∂[ibj]
b, (A.18)

ωaāī =
1

2
α−1ẽī

iêā
b∂iĝab, (A.19)

ωaīā = −ωaāī, (A.20)

ωaāb̄ = 0. (A.21)
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The curvature of the spin connection is given by Cartan’s second structure equation,

Rµ̄
ν̄ = dωµ̄

ν̄ + ωµ̄
ρ̄ ∧ ωρ̄

ν̄ . (A.22)

From above, we can write components of the Riemann tensor as follows

Rµ
νρσ = 2eµ̄

µeν
ν̄
(

∂[ρωσ]
µ̄
ν̄ + ω[ρ|

µ̄
ρ̄ω|σ]

ρ̄
ν̄

)

. (A.23)

In section 4, we are interested in the scalar sector of the reduced theory. Moreover, the

reductions are such that they do not alter the coefficient of the Einstein-Hilbert term, i.e.

α = 1. Since ω̃iīj̄ contributes to the Ricci scalar of the reduced theory and bi
a is a one-form

from the perspective of the reduced theory we can ignore these terms. Hence, in such a

reduction, the only relevant spin connection components for the scalar sector are

ωiāb̄ = ê[ā|
a∂iêa|b̄], (A.24)

ωaā̄i =
1

2
ẽī

iêā
b∂iĝab, (A.25)

ωaīā = −ωaā̄i, (A.26)

or

ωi
ā
b̄ =

1

2

(

êāa∂iĝab − 2∂iêb
ā
)

êb̄
b, (A.27)

ωa
ā
ī =

1

2
ẽī

iêāb∂iĝab, (A.28)

ωa
ī
ā = −1

2
ẽīiêā

b∂iĝab. (A.29)

From equation (A.23), we see that the only components of the Riemann tensor that con-

tribute to the scalar sector of the reduced theory are

R′
abcd = −1

2
g̃ij∂iĝa[c|∂j ĝb|d], (A.30)

R′
abij = −1

2
ĝcd∂[i|ĝac∂|j]ĝbd, (A.31)

R′
ijab = R′

abij , (A.32)

R′
aibj = −1

2
∂i∂j ĝab +

1

4
ĝcd∂iĝbd∂j ĝac, (A.33)

R′
aijb = −R′

aibj , (A.34)

R′
iabj = −R′

aibj , (A.35)

R′
iajb = R′

aibj . (A.36)

The prime denotes the fact that we are only considering the terms in the component that

belong to the scalar sector of the reduced theory.
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