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1 Introduction

Starting with the discovery of the hidden E7 symmetry of N = 8 supergravity in D = 4 [2],

the study of hidden symmetries has been one of the cornerstones in investigations of the

landscape of supergravities. For maximal supergravity in D ≥ 2 space-time dimensions, the

hidden symmetry group is E11−D (in split real form) [3–5]. This fact has also been crucial in

string theory where the associated discrete U-duality [6] is instrumental for the construction

of orbits of BPS states (for a review see [7]) and for constraining non-perturbative effects [8–

12]. It has also been conjectured that the infinite-dimensional Kac-Moody groups E10 and

E11 play a central role for understanding dimensionally reduced supergravity [3, 4] or even

the uncompactified theory [13, 14]. All these proposals rest on a non-linearly realised
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symmetry E11−D; the bosonic fields, both propagating and auxiliary, are associated with

the coset E11−D/K(E11−D) where K(E11−D) denotes the maximal compact subgroup of

E11−D. In this paper, we will restrict to E10 whose Lie algebra will be defined below

together with that of K(E10).

As supergravity is a supersymmetric theory it is necessary to also include the fermionic

degrees of freedom in the context of the E10 proposal. Since the compact subgroup K(E10)

generalises the spatial Lorentz group Spin(10) under which the fermionic degrees of freedom

transform, one needs to understand its representation theory. Even for the affine subgroup

E9 and its compact subgroup K(E9) this is a non-trivial problem [15]. First results for

K(E10) have been obtained in [1, 16–21], where it was shown how to write the supersymme-

try parameter and the gravitino field as consistent albeit unfaithful representations of the

Lie algebra ofK(E10).
1 The qualifier ‘unfaithful’ here signals that — although the Lie alge-

bra K(E10) is infinite-dimensional — the representation spaces are finite-dimensional. The

corresponding transformation rules have been worked out for maximal supergravity (and

also for half-maximal supergravity [22]); they have reappeared in recent studies of fermions

in the context of generalised geometry, see e.g. [23–25]. In the context of E11, the essential

parts of the supersymmetry parameter representation were identified in [26] and the vector

spinor given in [20]. Dirac-type representations for other simply-laced Kac-Moody groups

were recently considered in [27].

All representations of K(E10) that have been constructed so far are restricted to the

consideration of the fermionic variables which appear in supergravity, namely the gravitino

vector spinor, and the Dirac spinor associated with the supersymmetry parameter. How-

ever, a systematic understanding of the K(E10) representation theory has eluded all efforts

so far. Even the less ambitious goal of identifying a faithful fermionic representation, or

even only the construction of new unfaithful representations that are genuinely different

from the ones having a direct origin in supergravity has remained out of reach so far (see

also [15] for related attempts for K(E9)). At least with regard to the latter problem the

present work overcomes the barrier by constructing fermionic ‘higher spin’ representations

of the K(E10) algebra, associated to ‘spin-52 ’ and to ‘spin-72 ’, respectively.
2 The new spino-

rial representations of K(E10) obtained in this way appear to lie ‘beyond supergravity’,

and thus are not expected to be derivable from any known model of supergravity. Their

very existence points to the existence of an infinite hierarchy of higher spin realizations

of K(E10), which become less and less unfaithful with increasing spin. At the very least,

they should provide new tools to study the algebra of K(E10). One useful tool in our

investigation will be the truncation to better-known subalgebras of K(E10), most notably

K(E9) and K(E8) = D8 ≡ so(16) that can be used to understand some of the features

of our novel representations. Indeed, the proof that the new representations are really

inequivalent rests on such a decomposition.

1We will (ab)use K(E10) to denote both the group and Lie algebra.
2This terminology should not be taken too literally. For instance, when talking about ‘spin- 5

2
’ we

really mean a fermion operator that is analogous to the corresponding fermion field in four space-time

dimensions. Note also that ‘spin’ inD = 11 dimensions is really an SO(9) or SO(10) (for massive excitations)

representation label consisting of a 4-tuple or 5-tuple of (half) integer numbers designating a representation

of the little group.
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Among other results, our work rests on recent results from investigations of fermionic

cosmological billiards [1] and quantum cosmology [28–31]. The main new insight (in partic-

ular inspired by the work of [1, 31]) is that by breaking spatial SO(10) Lorentz covariance,

simpler expressions for the K(E10) transformations emerge. The breaking appears natu-

rally in cosmological billiards where the effective bosonic degrees of freedom in mini-super-

space are written more naturally in terms of SO(1, 9) transformations [32]. The associated

indefiniteness stems from the conformal mode of gravity that appears with the ‘wrong’

sign in Hamiltonian treatments of gravity, and is directly connected to the indefiniteness

of the DeWitt metric on the Wheeler-DeWitt superspace of 3-geometries when the latter

is restricted to the space of logarithmic scale factors. At the same time, SO(1, 9) is also

very closely related to the indefinite (Cartan-Killing) metric on the Cartan subalgebra of

the hyperbolic Lie algebra E10 [33].

The emergence of the DeWitt metric and of its Lorentzian invariance group as the

principal symmetry in the present context is rather remarkable: it means that our new

representations are ‘higher spin’ not in physical space-time, but rather in some variant

(or generalization) of Wheeler-DeWitt superspace! As a consequence, the connection with

physical spin (in D = 11 dimensions) is slightly obscured: although our representations are

larger than the usual spin-12 and spin-32 representations, they are not necessarily higher spin

from the point of view of the usual spatial rotation group SO(10) in D = 11 dimensions.

Such an interpretation of our results is completely in line with the expected de-emergence

of space (and time) near the singularity: in the Planck regime, where classical space-time

ceases to exist, conventional notions of spin may also become meaningless. In such a ‘pre-

geometric phase’ only the duality symmetry should remain as a defining feature of the

theory, along the lines of the M Theory proposal of [14].

Even though we restrict to K(E10) in this paper for concreteness, we expect our meth-

ods and results to apply more generally. In fact, it is easy to see that the same formulas hold

for the whole E11−D series, including affine E9 and the Lorentzian Kac-Moody algebra E11.

This article is structured as follows. We first review the necessary algebraic framework

for describing E10 and K(E10), consistency conditions for K(E10) representations as well as

the known elementary finite-dimensional unfaithful representations of K(E10) in section 2.

Then we give the implementation of these representation as quantum operators in section 3.

A convenient parametrisation of the E10 root lattice in section 4 allows us to derive new

forms of the consistency conditions for K(E10) representations. In section 5, we construct

our new higher-spin representations and study their properties; their inequivalence with

the known representations is established in section 6 by considering their decompositions

under SO(16). In the final section 7, we investigate the realization of the Weyl group.

2 Algebraic preliminaries

In this section, we review some basic definitions and properties of the maximally extended

hyperbolic Kac-Moody algebra E10 and its maximal compact subalgebra K(E10), as well

as the known unfaithful spinorial representations (associated to ‘spin-12 ’ and ‘spin-32 ’, re-

spectively). Referring to [19] for further details, we first give all relevant expressions in

so(10) covariant form.
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Figure 1. Dynkin diagram of E10 with numbering of nodes.

2.1 E10 and K(E10)

The hyperbolic Kac-Moody algebra E10 is defined in terms of generators and relations

that are encoded in its Dynkin diagram displayed in figure 1. We consider E10 in its split

real form which is an infinite-dimensional simple Lie algebra. Associating to each node of

the Dynkin diagram a standard Chevalley triple (ei, hi, fi) (i = 1, . . . , 10) the algebra is

generated by all multiple commutators of the elements of the elementary triples, subject

to the relations (see e.g. [34])

[ei, fj ] = δijhi, [hi, ej ] = Aijej , [h,fj ] = −Aijfj , (2.1a)

(ad ei)
1−Aijej = 0, (ad fi)

1−Aijfj = 0. (2.1b)

Here, Aij is the Cartan matrix of E10 with values Aii = 2 on the diagonal and the off-

diagonal entries Aij = −1 (for nodes joined by a direct line) or Aij = 0 (for nodes between

which there is no line). The generators ei and fi are referred to as positive and negative step

operators, respectively. The relations (2.1) imply in particular that each triple (ei, hi, fi)

by itself forms a subalgebra isomorphic to sl(2,R); the relations (2.1b) are called the Serre

relations and determine the ideal that has to be quotiented out from the free Lie algebras

generated by the ei and fi. The Cartan subalgebra h is the linear span of the generators hi
and of real dimension 10. The adjoint action of an element h ∈ h on E10 can be diagonalised,

and as usual the eigenvalues are the roots α ∈ h∗ of the algebra with eigenspaces

(E10)α = {x ∈ E10 | [h, x] = α(h)x for all h ∈ h} . (2.2)

The eigenspaces are of finite (but exponentially growing) dimension mult(α) = dim(E10)α.

The lattice of roots Q(E10) ∼= ⊕10
i=1Zαi provides a grading of E10:

[

(E10)α, (E10)β
]

⊂ (E10)α+β . (2.3)

On the Lie algebra E10 one can define a standard involution ω, which is called the

Chevalley involution and acts by

ω(ei) = −fi, ω(hi) = −hi. (2.4)

It is real linear and satisfies for all x, y ∈ E10 the invariance property

ω(ω(x)) = x, ω ([x, y]) = [ω(x), ω(y)] . (2.5)
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The Lie algebra E10 can then be divided into eigenspaces of ω

E10 = K(E10)⊕K(E10)
⊥ (2.6)

with

K(E10) = {x ∈ E10 |ω(x) = x} , (2.7a)

K(E10)
⊥ = {x ∈ E10 |ω(x) = −x} . (2.7b)

The space K(E10) of ω-invariant elements is called the compact subalgebra of E10 and plays

the lead role in this paper. It is called ‘compact’ because its Killing metric, inherited from

the indefinite bilinear form of E10, is negative definite. In particular, the Cartan subalgebra

h is not part of K(E10).

There is also a presentation of K(E10) in terms of generators and relations that follows

directly from (2.1). Because

xi = ei − fi (2.8)

is the only invariant combination in each standard triple (corresponding to the compact

so(2) ⊂ sl(2,R)), one can show that K(E10) is the Lie algebra generated by the ten xi,

subject to the relations [35]

2
∑

k=0

C
(k)
ij (adxi)

kxj = 0, (2.9)

where

C
(0)
ij = 0, C

(1)
ij = 1, C

(2)
ij = 0, if Aij = 0, (2.10a)

C
(0)
ij = 1, C

(1)
ij = 0, C

(2)
ij = 1, if Aij = −1. (2.10b)

The first line reflects the fact that the so(2) algebras of nodes that are not connected in the

Dynkin diagram commute. The second line gives the non-trivial relations between nodes

connected by a single line, corresponding to so(3).3 Observe that, as for all algebras with

at most one line between any pair of nodes, at most double commutators appear in these

relations for K(E10). The above relations will play a key role in the remainder. More

specifically, we will construct concrete sets of fermionic bilinears made from ‘higher spin’

fermions which satisfy (2.9). Berman’s Theorem [35] then guarantees that each such set

provides a realization of the algebra K(E10).

The Lie algebra K(E10) is not a Kac-Moody algebra [36]. In particular, there is

no grading of K(E10) by finite-dimensional root spaces analogous to (2.3). Instead (2.3)

3When there are multiple lines in the Dynkin diagram, the relations (2.9) become higher order. For

example, for AE3, there is a relation between the nodes 2 and 3 connected by a quadruple line

[x2, [x2, [x2, x3]]] + 4 [x2, x3] = 0.
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induces a filtered structure on K(E10) [19]. Because the generators of K(E10) are always

combinations of positive and negative step operators of E10 we denote the corresponding

subspaces of E10 by

(K(E10))α ≡ (K(E10))−α ≡ (E10)α ⊕ (E10)−α (2.11)

Then it is immediately evident that

[

(K(E10))α, (K(E10))β
]

⊂ (K(E10))α+β ⊕ (K(E10))α−β . (2.12)

We will often speak loosely of a root α for K(E10) when we mean the space (2.11) and

associated K(E10) generators J(α), keeping in mind that commutators of such generators

can go ‘up and down’ according to (2.12).

2.2 Unfaithful spinors in so(10) covariant form

A useful way of presenting the algebras E10 and K(E10) is in terms of a so-called level

decomposition [14]. This means that one chooses a subalgebra of E10 obtained by deleting

nodes from the Dynkin diagram and then decomposes the adjoint representation of E10

into representations of that subalgebra. We restrict here to a decomposition of E10 under

its sl(10,R) subalgebra obtained by deleting node number 10 from figure 1. Then all E10

generators can be represented in an sl(10,R) covariant form. At the lowest non-negative

levels, this leads to the following generators [14]:

Ka
b, Ea1a2a3 = E[a1a2a3], Ea1...a6 = E[a1...a6], . . . (2.13)

where Ka
b denotes the adjoint of gl(10,R) = sl(10,R)⊕R and all tensor indices take values

a, b = 1, . . . , 10. The commutation relations (2.1) could then be restated in an sl(10,R)

covariant form involving only the first two generators Ka
b and E

a1a2a3 .

Our main interest here is the corresponding structure for K(E10). The image of

sl(10,R) in K(E10) is so(10) and the images of the generators above are

Jab = Ka
b −Kb

a, Ja1a2a3 = Ea1a2a3 + ω(Ea1a2a3), . . . (2.14)

where the Jab generate the compact subalgebra so(10) ⊂ sl(10,R) and Ja1a2a3 is the

first generator in the infinite-dimensional extension K(E10) of so(10). Importantly, all

defining relations (2.9) can be restated in an so(10) covariant form that involves only the

generators of (2.14). Consequently, we can decompose the whole K(E10) algebra in terms

of so(10) tensors.

Representations of K(E10) can then be constructed by combining so(10) representa-

tions with an action of Ja1a2a3 in such a way that the so(10) version of the relation (2.9)

is satisfied. In the papers [17–19] this was done for the two examples of primary physical

interest, namely the ‘spin-32 ’ vector spinor (gravitino) and the ‘spin-12 ’ Dirac spinor (su-

persymmetry parameter) of D = 11 supergravity (in our previous work, we alternatively

referred to the vector spinor representation as the ‘Rarita-Schwinger’ representation).
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The Dirac-representation of K(E10) is made up of a 32 component Majorana (real)

spinor χ of so(10). The action of the generators (2.14) on χ is given by

Jabχ =
1

2
Γabχ, Ja1a2a3χ =

1

2
Γa1a2a3χ. (2.15)

Here, we follow the conventions of [19] where the so(10) Clifford algebra is generated by

the 32× 32 Γ-matrices Γa which are symmetric and real, and we make use of the standard

notation Γa1...ap = Γ[a1 · · ·Γap].4 As one can easily see, the representation of K(E10) on the

Dirac spinor generated by multiple commutation of the above generators (2.15) is simply

spanned by the anti-symmetric combinations of Γ-matrices, which combine to a basis of

the compact Lie algebra so(32).

By contrast, the K(E10) vector spinor ψa has 320 real components and consists of two

irreducible so(10) representations: In so(10) the Γ-trace Γaψa is an irreducible component

by itself and ψa decomposes into a Γ-traceless part and a pure trace. This is no longer true

in K(E10) and there the full ψa including the Γ-trace is an irreducible representation. The

action of the generators (2.14) is given by [17, 18]

Jabψc =
1

2
Γabψc + 2δ[ac ψ

b], (2.16a)

Ja1a2a3ψc =
1

2
Γa1a2a3ψc + 4δ[a1c Γa2ψa3] − Γc

[a1a2ψa3]. (2.16b)

(Because indices here are raised and lowered with the so(10) invariant δab, their position

does not really matter.) By self-consistency of the representation one can deduce the action

of the higher level generators from these rules. The resulting formulas for levels three and

four can be found in [17, 18, 37].

Both the Dirac spinor and the vector spinor are finite-dimensional representations of

the infinite-dimensional algebra K(E10), and therefore unfaithful. Concretely, this means

that there exists an infinite number of combinations of K(E10) generators that are repre-

sented trivially in this the representation. As a consequence, the algebra K(E10) is not

simple: it has non-trivial ideals generated by those combinations that are represented triv-

ially on the representation. An important notion for unfaithful representations is that of

the quotient algebra that is obtained by quotienting K(E10) by the non-trivial ideal. We

will be interested in constructing ‘more faithful’ representations that are in particular not

obtained by taking tensor products of known ones.

For both representations one can define invariant bilinear forms on the respective

representation spaces [19]. For the Dirac spinor one has

(χ|χ)DS = χαχα ≡ χTχ (2.17)

and on the vector spinor

(ψ|ψ)VS = −ψT
a Γ

abψb. (2.18)

4The spinor indices α, β, · · · = 1, . . . , 32 will usually not be written out explicitly.
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Whereas the bilinear form (2.17) is manifestly positive, the one for the vector spinor is

indefinite on the representation space; this is possible because ψa is a combination of

two irreducible representations of so(10). In principle, one can treat the (classical) spinor

fields as either commuting (symmetric) or anti-commuting c-numbers (anti-symmetric (·|·)).
However, for the above bilinear forms not to vanish we must assume that the classical

fermion variables are treated as commuting c-numbers.5

The invariance of the bilinear forms means that they are compatible with the action of

K(E10). For the Dirac representation this follows trivially from the anti-symmetry of the

representation matrices; for the vector spinor one verifies by explicit computation [19] that

(x · ψ|ψ)VS + (ψ|x · ψ)VS = 0 for any x ∈ K(E10). (2.19)

As also shown there the existence of such a form is special to the hyperbolic extension (so,

for instance, there is no corresponding bilinear form on K(E11)).

3 K(E10) via quantum operators

3.1 Quantum brackets

The classical supergravity action induces a canonical Dirac bracket on the vector spinor [19].

We will pass to the quantum theory right away, by replacing the classical fields χ and ψa by

quantum operators χ̂ and ψ̂a (as well as setting ~ = 1 as usual), the classical bracket gives

rise to the canonical anti-commutation relations in the manifestly so(10) covariant form

{

ψ̂aα, ψ̂bβ

}

= δabδαβ − 1

9
(ΓaΓb)αβ , (3.1)

for the vector spinor, where we have written out the 32-component spinor indices as well

and adopted a convenient normalization of the fermion operators. Similarly, the bracket

between two Dirac spinors becomes6

{χ̂α, χ̂β} = δαβ , (3.2)

again with a convenient normalization. (The standard normalization for a Majorana spinor

would include a factor of 1
2 in the canonical Dirac bracket that we have absorbed here into

the definition of χ.)

It is straightforward to find the quantum realizations of the generators Jab and Jabc

in terms of the quantum operators χ̂ and ψ̂a; we have

Ĵab =
1

4
χ̂TΓabχ̂ , Ĵabc =

1

4
χ̂TΓabcχ̂ (3.3)

5By contrast, but for the very same reason, one must take the fermions as anti-commuting in the

fermionic Lagrangian ∝ ψT
a Γ

ab∂tψb [19].
6We note that there is no such (propagating) Dirac spinor in D = 11 supergravity, but this is the

standard result that one would obtain for a spin- 1
2
(Majorana) field in any dimension.
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for the Dirac spinor, and

Ĵab = − ψ̂aψ̂b − 1

4
ψ̂cΓabψ̂c +

1

4
ψ̂cΓcΓabΓdψ̂d

Ĵabc = − 3ψ̂[aΓbψ̂c] − 1

4
ψ̂eΓabcψ̂e − 1

4
ψ̂eΓeΓabcΓf ψ̂f (3.4)

Ĵa1···a6 = 15ψ̂[a1Γa2···a5ψ̂a6] − 1

4
ψ̂bΓa1···a6ψ̂b +

1

4
ψ̂bΓbΓa1···a6Γcψ̂c

for the vector spinor. The ‘unusual’ trace terms on the r.h.s. are due to the extra term on

the r.h.s. of the bracket (3.1) above (without this term, the first two terms on the r.h.s.,

respectively, would generate the orbital and the spin parts of the rotation). Readers are

invited to check that these generators do satisfy the defining relations (2.9).

3.2 Breaking so(10) covariance

An important insight of [1] was that the analysis of the fermionic billiards becomes simpler

if one writes all expressions in terms of a redefined vector spinor. This different form of

the K(E10) vector spinor ψa is obtained by breaking the manifest so(10) invariance. For

this purpose we suspend the summation convention for SO(10) vector indices7 from now

on and define

φaα ≡ Γa
αβψ

a
β (no sum on a!) (3.5)

Here, we have switched to a different font in order to indicate that the vector indices a, b, . . .

are no longer associated to so(10) but rather to so(1, 9), as will be explained below. This

form of arranging the 320 vector spinor components is better suited for analysing the effect

of cosmological billiard reflections in a first [1] or second-quantized [28–30] form.

The K(E10) invariant bilinear form (2.18) in the φa coordinate reads

(φ|φ)VS = −
∑

a,b

φa TΓaΓ
abΓbφ

b,

= −
∑

a6=b

φaTφb =
∑

a,b

φaTGabφ
b, (3.6)

Here, we have introduced the metric Gab with

∑

a,b

Gabv
awb ≡

∑

a

vawa −
(

∑

a

va

)(

∑

b

wb

)

(3.7)

and written out the sums explicitly. The inverse metric is

∑

a,b

Gabvawb ≡
∑

a

vawa − 1

9

(

∑

a

va

)(

∑

b

wb

)

(3.8)

Importantly, this metric is Lorentzian; in fact, it is just the DeWitt metric that appears in

the bosonic dynamics of the scale factors in a cosmological billiard approximation [32, 33]

7But not for so(10) spinor indices.
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(which itself is the restriction of the full DeWitt metric on the moduli space of 3-geometries

in canonical gravity). Thus, even though the redefinition (3.5) breaks the so(10) covariance

on the vector spinor ψa, it introduces a new so(9, 1) structure on the redefined vector spinor

φa. At the same time, we have replaced the positive definite metric δab by the indefinite

metric Gab. Below we will re-instate the summation convention with respect to these

indices, such that for instance

vaw
a ≡ Gabvawb ≡

∑

a,b

Gabvawb (3.9)

and so on.

In terms of the redefined fermions (3.5) the bracket (3.1) becomes
{

φ̂aα, φ̂
b

β

}

= Gabδαβ , (3.10)

Note that it is the inverse metric Gab (3.8) which appears on the r.h.s., and this is also

the reason why the vector index on φa is naturally placed upstairs. The Fock space real-

ization of (3.10) requires replacing the 320 real operator components φaα by 160 complex

linear combinations in the standard way, that is, 160 creation and 160 annihilation opera-

tors [28, 29]; the resulting fermionic Fock space has dimension 2160. Remarkably, although

constructed from a set of SO(10) covariant fermion operators, this Fock space is an indef-

inite metric state space. As explained in the introduction, this indefiniteness here is not

due to the indefiniteness of the metric of the original 11-dimensional physical space-time,

but linked to the indefiniteness of the DeWitt metric, which is a consequence of the lower

unboundedness of the Einstein-Hilbert action under variations of the conformal factor.

3.3 Action of K(E10) on φ̂a

We now want to describe how the action of K(E10) on φ̂a is implemented on the state

space through the quantum bracket (3.10). For any fixed x ∈ K(E10) we write the action

of it on the redefined φ̂a as

δxφ̂
a. (3.11)

Abstractly, one can define this action by the operator

x̂ =
1

2
Gabφ̂

aδxφ̂
b =

1

2

(

φ̂
∣

∣

∣
x · φ̂

)

VS
(3.12)

for any x ∈ K(E10), where δxφ̂
b is the linear action (3.11) of x on φb, but now realized

by the operator x̂. The last equality reveals the operator as the matrix obtained from the

bilinear form (3.6). The operator x̂ implements the action on φ̂a through

[

x̂, φ̂c
]

=

[

1

2
Gabφ̂

aδxφ̂
b, φ̂c

]

= −δxφ̂c. (3.13)

To check the validity of this assertion we need to ascertain that δx is self-adjoint with respect

to the bilinear form; this follows, however, from the invariance of the bilinear form. A

formula of the type (3.12) will always be true when one has a classicalK(E10) representation

vA (where A labels the components), this representation possesses an invariant bilinear

form with metric GAB and the canonical (anti-)bracket on vA is
[

vA, vB
]

= GAB.
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4 Explicit parametrisation in terms of generators

Even though the formula (3.12) realises K(E10) via quantum operators on the Fock space,

it is rather abstract compared to the explicit low level results (2.16). In this section, we in-

troduce an explicit formula for the action of an arbitrary generator of K(E10) acting on the

Dirac- or vector spinor. This makes recourse to the root space decomposition (2.3) of E10.

4.1 Roots in wall basis and Γ matrices

The roots α of E10 can be parametrised explicitly in terms of the so-called ‘wall basis’ that

also plays a role in cosmological billiards [33]. Concretely, we write a root α as8

α =
10
∑

a=1

pae
a = (p1, p2, . . . , p10) (4.1)

where ea are basis vectors of the Cartan subalgebra whose inner product matrix equals the

inverse of the DeWitt metric of (3.6)

ea · eb = Gab. (4.2)

The simple roots of E10 can then be written explicitly as

α1 = (1,−1, 0, . . . , 0), (4.3a)

α2 = (0, 1,−1, 0, . . . , 0), (4.3b)

... (4.3c)

α9 = (0, . . . , 0, 0, 1,−1), (4.3d)

α10 = (0, . . . , 0, 1, 1, 1). (4.3e)

Then it is easy to check that αi · αj = Aij gives back the E10 Cartan matrix via

α · β =
∑

a,b

Gabpaqb (4.4)

where α =
∑

pae
a and β =

∑

qae
a. To any (not necessarily real) root α in (4.1) we now

associate a Γ-matrix through

Γ(α) ≡ Γp1
1 · · ·Γp10

10 . (4.5)

For example, we have Γ(α1) = Γ12 and Γ(α10) = Γ8 9 10. This definition only depends on

the (integer) exponents pa mod 2.

The following elementary identities will be crucial

Γ(α)Γ(β) = (−1)α·βΓ(β)Γ(α),

Γ(α)T = (−1)
1
2
α·αΓ(α),

(

Γ(α)
)2

= (−1)
1
2
α·α (4.6)

8Below we will also denote the components of a root α by αa ≡ pa , βa ≡ qa, etc.
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Furthermore, for α =
∑

a
pae

a and β =
∑

b
qbe

b we define the quantity

ǫα,β = (−1)
∑

a<b
qapb (4.7)

such that

Γ(α)Γ(β) = ǫα,β Γ(α± β) (4.8)

We stress that these relations are only valid because in the exponents we can compute

mod 2: for any two roots α and β associated with 10-tuples (p1, . . . , p10) and (q1, . . . , q10),

respectively, we have
∑

a,b

Gabpaqb ≡
∑

a,b

Gabpaqb mod 2 (4.9)

because
∑

pa ,
∑

qa ∈ 3Z for all E10 roots.

The quantity ǫα,β is the two-cocyle that also appears in the string vertex operator

construction [38], as well as in the Lie algebra structure constants when expressed in a

Cartan-Weyl basis. For any E10 root it satisfies the important relations

ǫα,βǫβ,α = (−1)α·β , ǫα,α = (−1)
1
2
α·α ,

ǫα,β ǫβ+α,γ = ǫα,β+γ ǫβ,γ (4.10)

The dependence on the inner product between the two roots in (4.6) means that for

given α and β either the commutator or the anti-commutator of Γ-matrices vanishes:

α · β ∈ 2Z =⇒
{

[Γ(α),Γ(β)] = 0

{Γ(α),Γ(β)} = 2ǫα,βΓ(α± β)
(4.11a)

α · β ∈ 2Z+ 1 =⇒
{

[Γ(α),Γ(β)] = 2ǫα,βΓ(α± β)

{Γ(α),Γ(β)} = 0
(4.11b)

We have indicated that the resulting Γ matrix can be interpreted either as that of α+β or

as that of α − β; modulo 2 the difference does not matter; this fact is actually crucial for

recovering the filtered structure (2.12) below. We also note that Γ(α) can be proportional

to identity matrix for certain (imaginary) roots α (e.g., twice the null root of E9, or any

even multiple of an imaginary root).

Finally we define the Clifford group to be the finite group generated by Γ(α). This

is simply the set of all Γ matrices and their antisymmetrised products together with their

negatives. It is a finite group of order 211 = 2048.

4.2 Commutation relations

Labelling the Serre type generators (2.8) of K(E10) by their roots according to

xi ≡ J(αi) (4.12)

with the ten simple roots αi as in (4.3), one can summarise the defining relations (2.9) as

follows. For any pair of real roots α and β (hence α2 = β2 = 2) obeying α · β = ±1 or = 0

– 12 –
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we have

[J(α) , J(β)] = ǫα,βJ(α± β) if α · β = ∓1 (4.13a)

[J(α) , J(β)] = 0 if α · β = 0 (4.13b)

These relations are in particular valid for the simple roots αi of E10, and it is thus straight-

forward to check all required relations in (2.9) are satisfied. In particular, for any adjacent

roots α and β on the Dynkin diagram we have

[

J(α),
[

J(α), J(β)
]]

= ǫα,α+βǫα,βJ(β) = −J(β) (4.14)

Starting from any set of real roots, one can in this way cover a larger and larger set of

real roots step by step, and in this way arrive at a concrete realization of an infinite set of

K(E10) elements.

4.3 Bilinear quantum operators for K(E10)

We now set up a formalism to handle representations of K(E10) for higher-spin fermionic

operators φ̂A where A ≡ {a1 · · · ak} is a k-tuple of SO(1, 9) tensor indices in some (not

necessarily irreducible) representation. We will restrict to symmetric k-tuples (a1 . . . ak)

corresponding to what we refer to as ‘Spin-(k+2
2 )’ but the formalism applies more generally.

For the quantum operators φ̂A we assume canonical commutation relations of the form
{

φ̂Aα , φ̂
B
β

}

= GABδαβ , (4.15)

where GAB denotes some non-degenerate and SO(1, 9)-invariant metric. The class of op-

erators therefore includes the Dirac spinor χ̂ (with A absent, and X = 1) and the vector

spinor φ̂a with GAB = Gab (cf. (3.10)). It is important to note that for any SO(1, 9) invari-

ant metric GAB one obtains a K(E10) invariant metric on the space of φ̂Aα whenever φ̂Aα
can be turned into a representation of K(E10), the criterion for which we will now discuss.

From (3.12) we see that we require bilinear operators in φ̂A in order to write the

K(E10) generators. For this reason we consider the following expressions

Â =
∑

A,B

XABS
αβφ̂Aα φ̂

B
β , B̂ =

∑

C,D

YCDT
γδφ̂Cγ φ̂

D
δ . (4.16)

If we exclude the identity operator, the properties of (4.15) imply that the product matrices

X⊗S and Y ⊗T must be antisymmetric under simultaneous interchange of the index pairs

(A, α) and (B, β),9 hence we must have XABS
αβ = −XBAS

βα, and similarly for B̂. This

implies that either XAB = −XBA, S
αβ = +Sβα or XAB = +XBA, S

αβ = −Sβα. The

factorised form of the ansatz (4.16) is justified by the linearity of the Lie bracket.

Calculating the commutator of the two bilinears Â and B̂ one finds
[

Â, B̂
]

=
∑

A,B

φ̂Aα

(

[X,Y ]AB {S, T}αβ + {X,Y }AB [S, T ]αβ

)

φ̂Bβ , (4.17)

9Otherwise, the resulting expression would reduce to the unit operator or simply vanish.
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so that the bilinear form of the ansatz is preserved.10 This will be our ‘master identity’

for the calculations below. Note that this identity also applies for Dirac spinors with

X(α) = 1/4 and S(α) = Γ(α) for real roots α, and then only the second term in parentheses

contributes, explaining again why only anti -symmetric Γ-matrices appear in the Dirac

representation as we will now see in more detail.

4.4 Dirac spinor

For the Dirac spinor with the anti-commutation relation (3.2) the implementation of the

action of K(E10) then follows from the discussion, with the result

Ĵ(α) =
1

4
χ̂TΓ(α)χ̂. (4.18)

The generators of K(E10) here are thus parametrised by the positive roots of E10, but there

is only a finite number of such operators because we the components of any root α are only

considered modulo 2. In particular, we can verify once again the defining relations (2.9):

writing the above expression not in terms of quantum operators but in first quantized form

analogous to (2.15) one has

[J(α) , χ] = −1

4

(

Γ(α)− Γ(α)T
)

χ = −1

4

(

1− (−1)
1
2
α·α
)

Γ(α)χ = −δχ, (4.19)

where we made use of (4.6). Therefore, only anti-symmetric Γ-matrices contribute. The

commutation relations of the operators J(α) are then determined by (4.11).

Because all the defining relations hold, one can now generate the full algebra K(E10)

by successive commutation, but it is immediately obvious that there is an infinite-fold

degeneracy in the sense that the infinitely many elements of K(E10) are mapped to a finite

set of operators. In particular, by virtue of (4.19) all elements of K(E10) associated to

(imaginary) roots with α2 ∈ 4Z are represented trivially; moreover, all elements associated

to an imaginary root α act in the same way, even if the multiplicity of the root is > 1.

The lack of faithfulness is thus directly related to the fact that the Clifford relation Γ2
a =

1 implies there are only finitely many different Γ-matrices, and the Clifford group is a

finite group.

We note at this point that the actual real representation of the Clifford algebra chosen

for (4.18) does not really matter as long as it is faithful and represents (4.11). In this way

one can (artificially) increase the dimension of the representation but from the point of

view of analysing K(E10) this does not really yield interesting new information since the

active quotient algebra does not change. Similarly, we do not consider here the possibility

of tensoring known representation for very much the same reason. Certainly, taking tensor

powers of a single given representation clearly does not change the ideal associated with this

representation and hence leaves the quotient unchanged. Taking tensor products between

different representations can in principle yield more faithful representations and we leave

the investigation of this question to future work.

10Here, [X,Y ]
AB

=
∑

C,D

(

XACG
CDYDB − YACG

CDXDB

)

, etc.
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4.5 Vector spinor

To derive the operator representations Â for the vector spinor and to arrive at a simple

form of the generators for real roots α, we re-write the generators (3.4) in terms of the new

spinor operators (3.5) and find

Ĵab = −1

2

(

φ̂a − φ̂b
)

Γab
(

φ̂a − φ̂b
)

+
1

4

∑

c,d

Gcdφ̂
cΓabφ̂d, (4.20a)

Ĵabc = −1

2

(

φ̂a + φ̂b + φ̂c
)

Γabc
(

φ̂a + φ̂b + φ̂c
)

+
1

4

∑

d,e

Gdeφ̂
dΓabcφ̂e (4.20b)

(remember that the summation convention on SO(10) indices remains suspended). Next,

using the explicit expressions for the simple roots α of E10 in (4.3) it is easy to see that

both formulas can be neatly and compactly re-written in the form (4.16) with

X(α)ab = −1

2
αaαb +

1

4
Gab (4.21)

As special cases, we obtain the K(E10) generators associated to the simple roots αa = (αi)a
in the universal form

Ĵ(αi) = Xab(αi) φ̂
aΓ(αi)φ̂

b. (4.22)

where we have now re-instated the summation convention for the SO(1, 9) indices; observe

that in this expression, any reference to SO(10) has disappeared! The SO(1, 9) tensor

X(α)ab satisfies the two crucial identities

{

X(α), X(β)
}

ab
=

1

2
Xab(α± β) if α · β = ∓1

[

X(α), X(β)
]

ab
= 0 if α · β = 0 (4.23)

where of course, again α2 = β2 = 2. With the identities (4.11) and (4.17) it is straight-

forward to verify the equivalent form of the defining K(E10) generating relations (4.13).

Remarkably the simple formula (4.22) for the generators associated to the simple roots

holds for all real roots α. This can be seen by decomposing a given (positive) real root

α into two other (positive) real roots β and γ by α = β + γ. Whenever this is possible,

formula (4.17) implies that α is represented by (4.22) if β and γ are. Since E10 has only

single edges in its Dynkin diagram, such a decomposition appears always possible.11 In

other words, we have found an explicit representation of the K(E10) generators for an

11We have verified this for all real roots up to height 100. It is crucial here that E10 is ‘simply-laced’ in

the sense that it has only single lines in its Dynkin diagram. For finite-dimensional simple Lie algebras this

requirement is equivalent to having a symmetric Cartan matrix. However, in the Kac-Moody case these

notions are no longer equivalent and the relevant property here is having only single edges (corresponding

to having only values −1 or 0 off the diagonal of the Cartan matrix). This entails that there is a single

orbit of real roots. For other symmetric Cartan matrices with value −2 or smaller appearing (like AE3 [39])

one has multiple orbits and one can easily construct counterexamples to the decompostion α = β + γ of

positive real roots into sums of positive real roots.
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infinite number of real roots. For any such root α we can explicitly exponentiate the action

of the associated K(E10) element. To this end, we define the projection operators

Π1(α)ab =
1

2
αaαb , Π2(α)ab = Gab −

1

2
αaαb (4.24)

such that (for i, j = 1, 2)

ΠiΠj = δijΠj , Π1 +Π2 = 11 (4.25)

and

X(α)ab =
1

4
Π1(α)ab −

3

4
Π2(α)ab (4.26)

It is then straightforward to show that12

eωĴ(α)φ̂ae−ωĴ(α) =

[

cos
ω

2
− sin

ω

2
Γ(α)

]

Π1(α)abφ̂
b

+

[

cos
3ω

2
+ sin

3ω

2
Γ(α)

]

Π2(α)abφ̂
b (4.27)

In particular, we see that for a rotation about ω = 2π, the operator φ̂a is mapped to −φ̂a,
as it should be for a fermion.

While the simple form (4.22) is valid for real roots it no longer holds for imaginary

roots. Nevertheless, given that the generating relations (2.9) are obeyed, the general for-

mula (4.17) fixes the action of K(E10) for arbitrary generators. One new feature for imagi-

nary roots is that the root spaces can be degenerate, that is, there are several independent

K(E10) generators for a (positive) root α. Formula (4.17) implies that the spinor part is

given by Γ-matrices parametrised by the root vector α as in (4.5) but we have to introduce

an additional label for the number of independent generators in a given root space. We

generally write

Ĵr(α) =







Zr(α)(AB) φ̂
AΓ(α)φ̂B, if α · α ∈ 4Z+ 2

Zr(α)[AB] φ̂
AΓ(α)φ̂B, if α · α ∈ 4Z

(4.28)

where we have distinguished the symmetries of the coefficient matrix induced by the sym-

metries of the Γ matrix, and where the indices r, s, . . . label the multiplicity of the α root

space gα , viz.

r, s, · · · = 1, . . . , dim gα (4.29)

Of course, there will still be degeneracies here as well, because the representation is un-

faithful, but they will be less severe than for the Dirac spinor, crudely speaking because

the vector spinor representation is more faithful than the Dirac representation in that the

quotient algebra is larger.

So far, we have not found a general formula for Ĵr(α) for arbitrary α, but these

operators are nevertheless implicitly determined by (4.17), and this gives a very interesting

12This factorised form of the action of K(E10) was crucial in the investigation of the fermionic billiard

in [1].
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new view on the nature of root multiplicities in hyperbolic algebras. Let us first consider the

affine null root δ2 = 0 of E10. This root (like all null roots) is known to have multiplicity

8 and can all be obtained as a sum of real roots [34]. Therefore suppose δ = βr + γr

with βr and γr positive real roots where we have included the label r to indicate that the

decomposition of δ is not unique. Using (4.22) and applying (4.17) one finds

[

Ĵ(βr), Ĵ(γr)
]

= Zr(δ)ab φ̂
aΓ(δ)φ̂b (4.30)

with

Zr(δ)ab = −1

2
βr[aγ

r
b] (4.31)

Note that now the matrix Γ(δ) is symmetric, whereas the associated matrix Zr is anti-

symmetric. For any null root α there are many such decompositions α = βr + γr but

there can be at most mult(α) = 8 different generators obtained in this process. A basic

consistency check of this calculation is then that out of the 120 decompositions of the

first null root δ into pairs (βr, γr) of real roots only eight combinations βr[aγ
r
b] are linearly

independent, reproducing exactly the degeneracy of the null root.

Delving deeper into the light-cone it is clear that more general combinations of the

tensors Zab are generated, although no ‘nice’ structure seems to emerge. However, by

counting the number of independent bilinears (4.16) we know that the vector spinor real-

ization of K(E10) contains at most 1
2 × 320× 319 = 50 040 independent elements. This is

the maximum number because K(E10) is represented by 320× 320 matrices that preserve

the bilinear form (2.18). The bilinear form is of signature
(

(−)288, (+)32
)

and therefore

the quotient algebra in the case of the vector spinor is a subalgebra of the Lie algebra

so(288, 32). A computer search indicates that all elements can be generated by successive

commutation.13 We stress the remarkable fact that the non-simple ‘compact’ subalgebra

K(E10) with negative definite invariant bilinear form has unfaithful representations that

give rise to non-compact quotients!

5 Higher spin realizations

We now use our formalism to explore new territory. Supergravity is known to stop at spin-
3
2 , and this fact is correlated with the maximum number of D = 11 dimensions for maximal

supersymmetry and supergravity. However, the expressions that we have derived for the

vector spinor strongly suggest that there should exist a generalization of these formulas to

higher spin fermions. We therefore proceed by trial and error, and thus simply postulate

the existence of suitable ‘higher spin’ fermionic operators.

13We note that in [31] the vector spinor representation of the hyperbolic algebra AE3 (hyperbolic over-

extension of sl(2,R)) was studied and it was found there that a (chirality) operator Gabφ̂
aγ5φ̂b exists that

commutes with the action of K(AE3). In that case this reduces so(8, 4) to u(4, 2). A similar operator does

not exist for K(E10).
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The general strategy here will be to verify the generating relations (4.13) by searching

for novel realizations of the ‘master identity’

{

X(α), X(β)
}

AB
=

1

2
XAB(α± β) if α · β = ∓1

[

X(α), X(β)
]

AB
= 0 if α · β = 0 (5.1)

for different choices of A taken among irreducible tensor representations of S0(1, 9). We

emphasize again the unusual feature that the notion of ‘higher spin’ here does not refer to

ordinary space-time!

5.1 Spin-5/2

We start with A = (ab) and an associated operator φ̂abα symmetric in its two upper two

indices φ̂abα = φ̂baα . The operator is taken to obey the canonical anticommutation relations

{φ̂abα , φ̂cdβ } = Ga(cGd)bδαβ (5.2)

In our figurative way of speaking, we will refer to this as a ‘spin-52 ’ fermion. Because the

fermionic spinor φ̂ab has 32×55 real components, the dimension of the associated fermionic

Fock space is now 2880, already quite large!

We are thus looking for an operator realization

Ĵ(α) = X(α)ab cd φ̂
abΓ(α)φ̂cd (5.3)

satisfying the basic relations (4.13). As we explained, this is ensured if we can find a

solution of (5.1). Happily, such a solution exists: For any real root α the associated X(α)

is given by14

X(α)ab cd =
1

2
αaαbαcαd − α(aGb)(cαd) +

1

4
Ga(cGd)b (5.4)

It is a gratifying little calculation to check that the master identity (4.23) in the generalized

form (5.1) is indeed satisfied. Therefore, the generating relation (2.9) are also satisfied

and we have thus found a new (still unfaithful) representation of the K(E10) algebra.

This representation is less unfaithful than the vector spinor representation obtained from

supergravity. We also give the transformation rules in ‘first-quantized’ form acting on a

single classical field φab. They are, for real roots α,

J(α) · φ̂ab ≡
[

Ĵ(α) , φ̂ab
]

= −2Xab cdΓ(α)φ̂
cd. (5.5)

The representation space is of dimension 55× 32 = 1760.

We can now repeat the calculations of the previous section. In particular, there exists

a decomposition of unity in terms of three projection operators; these are given by

Π1(α)ab cd =
1

4
αaαbαcαd

Π2(α)ab cd = −1

2
αaαbαcαd + α(aGb)(cαd)

Π3(α)ab cd = +
1

4
αaαbαcαd − α(aGb)(cαd) +Ga(cGd)b (5.6)

14This solution is the unique non-trivial solution with these three terms. By considering trace terms in

the ansatz one can find more solutions, see (5.12) below.
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obeying (now with i, j = 1, 2, 3)

ΠiΠj = δijΠj , Π1 +Π2 +Π3 = 11 (5.7)

Furthermore

X(α) =
1

4
Π1(α)−

3

4
Π2(α) +

1

4
Π3(α) (5.8)

Again we can compute the rotation about an angle ω

exp
(

ωĴ(α)
)

φ̂ab exp
(

− ωĴ(α)
)

=

(

cos
ω

2
− sin

ω

2
Γ(α)

)

Π1(α)
ab cdφ̂cd

+

(

cos
3ω

2
+ sin

3ω

2
Γ(α)

)

Π2(α)
ab cdφ̂cd

+

(

cos
ω

2
− sin

ω

2
Γ(α)

)

Π3(α)
ab cdφ̂cd (5.9)

In particular this implies, as before,

e2πĴ(α)φ̂abe−2πĴ(α) = −φ̂ab (5.10)

Properties and reducibility of the representation. The representation φ̂ab is not

irreducible. It is possible to remove a trace over the SO(1, 9) tensor indices: one can

verify that

φ̂ = Gabφ̂
ab (5.11)

transforms into itself under the action of K(E10). Similarly, the traceless part φ̂ab −
1
10G

abφ̂ transforms into itself, and therefore the 1760 components of φ̂ab decompose into

two irreducible representations, of dimension 1728 and 32, respectively. The tensor (5.3)

is thus replaced by

X̃(α)ab cd =
1

2
αaαbαcαd − α(aGb)(cαd) +

[

1

4
Ga(cGd)b −

1

40
GabGcd

]

(5.12)

such that GabX̃ab cd(α) = 0. We have not determined the quotient algebras. However, a

computer investigation indicates that this representation is more faithful than the spin-
3
2 vector spinor in that there are more independent elements in the quotient than in

so(288, 32).

The consistency of the representation (5.3) with (5.4) implies that there is an invariant

bilinear form on the (first quantized) representation space φab furnished by the canonical

bracket (5.2):

(φ|φ)spin-5/2 = φabGacGbdφ
cd. (5.13)

The eigenvalues of this invariant bilinear form are (−18)1, (−8)9 and (2)45, where the expo-

nents designate the degeneracy of a given eigenvalue. The single most negative eigenvalue

−18 is associated with the Dirac spinor trace Gabφ
ab, so that on the irreducible traceless

part one has an invariant form of signature (−)9, (+)45, suggesting that the quotient in

this case so(1440, 288).
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SO(10)-interpretation of the representation. Because K(E10) has a natural subal-

gebra so(10) generated by the xi for i = 1, . . . , 9 (cf. figure 1), any representation space of

K(E10) must be a representation of so(10) as well. Hence, the finite-dimensional ‘spin-52 ’

representation φ̂ab must be completely reducible under the action of so(10). However, it is

also clear that the transcription between the SO(1, 9) form and the SO(10) form of the gen-

erators can no longer be achieved by means of the simple formula (3.5) (for instance, acting

with two Γ matrices does not give anything useful because the Γ-matrices are contracted

with a symmetric tensor).

One can nevertheless analyse the SO(10) representation content by determining the

weight diagram under the so(10) Cartan generators. In this way one finds the weight

diagram of a reducible so(10) representation of type

1760 → 1120⊕ 2× 288⊕ 2× 32. (5.14)

Writing these representations as (reducible) tensor-spinors of so(10) yields two fields

ψab = ψ[ab] and ψa, (5.15)

where both have all possible Γ-traces. Whereas the original construction in mini-superspace

was based on an operator φ̂ab that was symmetric in its SO(1, 9) indices, the same K(E10)

representation is anti-symmetric when viewed from the spatial rotation group SO(10).15

However, this seemingly strange feature is fully explained by considering the decomposition

under the SO(16) subgroup of K(E10), cf. section 6 below.

5.2 Spin-7/2

Next we consider ‘spin-72 ’ and the associated fermion operator φ̂abcα = φ̂
(abc)
α , further gen-

eralising (5.3) to

Ĵ(α) = X(α)abc def φ̂
abcΓ(α)φ̂def. (5.16)

The canonical commutation relations for the operator φ̂abc are taken as

{

φ̂abcα , φ̂defβ

}

= GadGbeGcfδαβ , (5.17)

where the right-hand-side is assumed symmetrised over (abc) and (def) according to the

symmetries of φ̂abc.

It is now more tedious to find a solution of the master identity (5.1). By employing a

computer program, we have checked that it is now solved by the tensor

Xabc
def(α) = −1

3
αaαbαcα

dαeαf +
3

2
α(aαbδ

(d
c)α

eαf) − 3

2
α(aδ

(d
b
δ
e

c)α
f)

+
1

4
δ
(d
(aδ

e

b
δ
f)
c) +

1

12
(2−

√
3)α(aGbc)G

(deαf) (5.18)

+
1

12
(−1 +

√
3)
(

α(aαbαc)G
(deαf) + α(aGbc)α

(dαeαf)
)

.

15This means that it could be interpreted as the curl ∂[aψb] of the standard gravitino in a fermionic

extension of the gradient hypothesis [14].
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Here, we have raised the second set of indices (def) with the Lorentz metric Gab in order

to make the formula easier to read. The dimension of this representation (in first quantized

form) is 32× 220 = 7040.

There is an invariant bilinear form on this representation furnished by

(φ|φ)spin-7/2 = φabcGadGbeGcfφ
def. (5.19)

The result (5.18) was found to be the essentially unique non-trivial solution with the

most general ansatz for Xabc
def that is made out of components αa and δb

a
. Note also

that, unlike for spin-52 , we cannot remove a trace. We should nevertheless point out that

there may be other solutions if the above ansatz can be suitably relaxed. Indeed, the

assumed forms of the anticommutation relations (5.17) and the bilinear invariant (5.19)

could conceivably be modified by other terms preserving SO(1, 9) invariance. Furthermore,

the calculation could be altered by assuming admixtures of lower spin. We will, however,

leave to future work the further exploration of these possibilities and the search for a sys-

tematic pattern underlying the present construction that might pave the way to fermionic

representations of yet higher spin.

Finally one can try a similar ansatz for spin-92 . A computer search using the

Gamma [40] and xAct [41] packages then shows that with the most general ansatz (in-

cluding trace terms) there do not appear to exist any non-trivial solutions to the master

identity (5.1). Below we explain why this negative outcome is, in fact, perfectly consistent

within our general framework.

6 Truncations

Because our results are valid for E10 and its compact subgroup K(E10) they must a fortiori

also hold for the truncation to their affine and finite subgroups via the chain of embeddings

E8 ⊂ E9 ⊂ E10 ⇐⇒ K(E8) ⊂ K(E9) ⊂ K(E10) (6.1)

As we will see, this leads to important restrictions on the possible fermionic higher spin

representations that will, in particular, confirm the above findings concerning spin-52 , spin-
7
2

and spin-92 .

6.1 E8 and K(E8) ≡ Spin(16)/Z2

Truncating to the finite dimensional subgroups E8 andK(E8) it is obvious that our fermion

operators must belong to representations of the group K(E8) ≡ Spin(16)/Z2. To study this

truncation we discard the simple roots α1 and α2 from the list (4.3). The matrix Γ(α1) ≡
Γ12 associated to the root α1 can then be used to decompose the 32-component Dirac

spinor of SO(10) into a pair of spinors, each one of which has only 16 (real) components.

Likewise the indices a, b, . . . now only run from 3 to 10 (or, more conveniently, from 1 to

8). For the Dirac and vector spinor representations we thus arrive at the following (rather

obvious) association

χα ↔ 16v ↔ ϕI (6.2a)

φaα ↔ 128s ↔ χA (6.2b)
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where the Spin(16)/Z2 representations appear in the middle column (with the Spin(16)/Z2

vector and spinor indices I, J, . . . and A,B, . . . , respectively, in the last column). Counting

components for spin-52 and spin-72 we see that

φ̃abα ↔ 560v ↔ ϕIJK (6.3a)

φabcα ↔ 1920s ↔ χIA (6.3b)

where ϕIJK ≡ ϕ[IJK] is fully antisymmetric, and χIA denotes the traceless vector spinor of

Spin(16)/Z2, with ΓȦAχ
IA = 0. The tilde on φ̃ab also indicates tracelessness: Gabφ̃

ab = 0,

whereas no trace can be taken out of φabc. We have also verified that the identifica-

tion (6.3a) is correct by computing its full so(16) weight diagram. As required by con-

sistency, the decomposition of the 560v under the SO(8) subgroup of SO(10) in (5.14)

matches with its decomposition under the diagonal SO(8) = [SO(8)× SO(8)]diag subgroup

of SO(16). Equally important, the fact that the SO(16) representations in (6.2a) and (6.3a)

are different, demonstrates that the spin-52 and spin-72 representations of K(E10) are gen-

uinely different from the Dirac and the vector spinor representations.

By contrast, if we repeat the counting for the hypothetical spin-92 realization with

fermionic operator φabcd we get 330×16 components. There is no irreducible representation

of Spin(16)/Z2 of that dimension (this conclusion remains unaltered if we take out the

trace w.r.t. Gab). For this reason such a realization cannot exist, explaining the failure

of our computer search. Conversely, one can use the condition that there must exist an

associated representation of Spin(16)/Z2 as a guiding principle towards a systematic search

for fermionic realizations of yet higher spin and towards their explicit construction (where

also non-trivial Young tableaux for the SO(1, 9) indices a, b, . . . will have to be considered).

Preliminary searches indicate that the condition of compatibility with Spin(16)/Z2 is rather

restrictive.

6.2 E9 and K(E9)

As a further special case we can apply the above formulas to the affine subgroup and

compare to the results of [42]. This is done by specializing the hyperbolic roots to affine

real roots, which are generally of the form

α = mδ + α′ (6.4)

where δ is the affine null root of E9, and α′ any root of E8. Because δ = (0, 1, 1, 1, 1,

1, 1, 1, 1, 1) in the basis (4.3), the associated Γ matrix is

Γ(δ) = Γ2 3 4 5 6 7 8 9 10 = Γ0Γ1 ≡ −Γ∗ (6.5)

where the last matrix is just the γ5 matrix in two space-time dimensions as identified

in [42]. We also require

Γ(α) = ǫα′,mδΓ(α
′)Γ(mδ) (6.6)

with Γ(mδ) = (−Γ∗)m and ǫα′,mδ = (ǫα′,δ)
m, where ǫα′,δ = (−1)ht(α

′) in terms of the height

of an E8 root α′.
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We can then recover the expressions given in equation (3.10) of [42] for both the Dirac

representation and the vector spinor representation; for the former we get

Ĵ(α) =
1

4
ǫα′,mδ χ̂Γ(α

′)(−Γ∗)mχ̂. (6.7)

while for the vector spinor, plugging (6.4) into (4.21), one finds

Ĵ(mδ + α′) = ǫα′,mδ

(

−1

2
(mδ + α′)a(mδ + α′)b +

1

4
Gab

)

φ̂aΓ(α′)(−Γ∗)mφ̂b (6.8)

thus recovering the chiral nature of the transformations and the quadratic dependence on

the affine level m already exhibited in equations (3.23) and (3.27) of [42], see also [15]. The

expressions above are valid for real roots.

Continuing to the new representations of ‘spin-52 ’ and ‘spin-72 ’, one needs to plug (6.4)

into (5.4) and (5.18). The salient feature of the new expressions is that they now become

quartic and sextic in m, respectively. In terms of a current algebra realization of K(E9) as

studied in [15, 42] this implies that the representations now depend on derivatives w.r.t.

the spectral parameter up to order 4 or 6!

7 Weyl group

The Weyl group of E10 can be represented in any integrable module as being generated by

the ten fundamental reflections [34]

wE10
i = efie−eiefi (7.1)

for i = 1, . . . , 10. This is a well-defined operator in an integrable module for E10 since there

, by definition, the simple Chevalley generators are nilpotent, rendering the exponentials

well-defined. In fact, any such integrable module branches into an (infinite) sum of finite-

dimensional sl(2,R) modules for each of which one can verify that

wi := wE10
i = e

π
2
xi (7.2)

with xi = ei − fi as before. The formulas give an extension of the E10 Weyl group by an

abelian group D̃ (generated by the squares w2
i ) that is a normal subgroup of the (discrete)

group of transformations generated by the wE10
i . The quotient of the group W̃ generated

by the wi in an E10 representation by the normal subgroup D̃ is isomorphic to the Weyl

group W (E10) [34].

Since (7.2) is written solely in terms of the K(E10) generator xi it is possible to also

define the action of the fundamental on a space that is only a representation of K(E10) but

not of E10, as is the case for the unfaithful spinors considered in the present paper. As was

shown in [1, 27] this leads to a presentation of the Weyl group of E10 in a more generalized

form: The group W̃spin generated by the wi of (7.2) has a normal non-abelian subgroup

D̃spin (generated by the w2
i ). The quotient can be isomorphic to W (E10), as is the case

for example for the vector spinor, but for the Dirac spinor it is actually a finite group. A
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notable feature of the group W̃spin is that the order of the fundamental reflection increases:

One has w8
i = 11 whereas in the known (bosonic) representation of E10 one has w4

i = 11.

This increase in the order is in agreement with the interpretation of the representation as

fermions that have to be rotated twice to come back to themselves.

We now analyse the group W̃spin in our formulation and for the new representations,

defining more generally the reflection in a real root α by conjugation with the operator

wα ≡ exp
(π

2
J(α)

)

. (7.3)

The normal subgroup is generated by the squares w2
α = exp (πJ(α)). To compute the ex-

plicit representatives it is simplest to decompose the tensors XAB(α) in terms of projection

operators. In this way we get

wα =
1√
2

(

11− Γ(α)
)

for Dirac (7.4a)

wα =
1√
2

(

11− Γ(α)
)[

Π1(α)−Π2(α)
]

for the vector spinor (7.4b)

wα =
1√
2

(

11− Γ(α)
)[

Π1(α)−Π2(α) + Π3(α)
]

for spin-52 (7.4c)

These expressions are consistent with the general form

wα =
1√
2

(

11− Γ(α)
)

∑

j

εjΠj(α) (7.5)

with εj = ±1 and suitable projectors Πj . In this form it is obvious that

w2
α = −Γ(α) (7.6)

because of the orthogonality and completeness of the projectors. Therefore the subgroup

D̃spin generated by the squares is the Clifford group of all gamma matrices (with sign). This

is a non-abelian group of order 2048 (see also [1]), which is obviously a normal subgroup.

The Coxeter relations can be verified in the quotient W̃spin/D̃spin as follows. The only

relations one needs to check are

(wαwβ)
2 = 11 ⇔ wαwβ = wβwα for α · β = 0, (7.7a)

(wαwβ)
3 = 11 ⇔ wαwβwα = wβwαwβ for α · β = ±1. (7.7b)

To check them we do not even need to make recourse to the explicit representations but

can verify them directly from the commutation relations (4.13) of K(E10). One has for

α · β = 0

e
π
2
J(α)J(β)e−

π
2
J(α) = J(β) (7.8)

since J(α) and J(β) commute. Exponentiating this relation and bringing the right-most

factor to the other side yields the wanted

e
π
2
J(α)e

π
2
J(β) = e

π
2
J(β)e

π
2
J(α) ⇔ wαwβ = wβwβ . (7.9)
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Similarly, one has for α · β = ∓1 that

e
π
2
J(α)J(β)e−

π
2
J(α) = ǫα,βJ(α± β). (7.10)

Since we are working in the quotient the right-most factor on the left-hand side can also

be written with the inverse sign (as w2
α = 11 in the quotient). Exponentiating this relation

one finds

e
π
2
J(α)e

π
2
J(β)e

π
2
J(α) = e

π
2
J(α±β), (7.11)

where the sign ǫα,β was suppressed since it is irrelevant in the quotient. Clearly, this relation

is symmetric under the exchange of α and β thus yielding the cubic Coxeter relation.
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