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Abstract

We study the initial value problem for the conformal field equations
with data given on a cone N, with vertex p so that in a suitable
conformal extension the point p will represent past time-like infinity
i, the set N, \ {p} will represent past null infinity 7, and the freely
prescribed (suitably smooth) data will acquire the meaning of the
incoming radiation field for the prospective vacuum space-time. It is
shown that: (i) On some coordinate neighbourhood of p there exist
smooth fields which satisfy the conformal vacuum field equations and
induce the given data at all orders at p. The Taylor coefficients of
these fields at p are uniquely determined by the free data. (ii) On
N, there exists a unique set of fields which induce the given free data
and satisfy the transport equations and the inner constraints induced
on N, by the conformal field equations. These fields and the fields
which are obtained by restricting the functions considered in (i) to A,
coincide at all orders at p.
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1 Introduction

A purely radiative, asymptotically flat space-time should be generated solely by gravi-
tational radiation coming in from past null infinity, extraneous information entering the
space-time at past time-like infinity should be excluded. A natural problem to study is
then the asymptotic characteristic initial value problem for the conformal vacuum field
equations where data are prescribed on a cone N, with vertex p, similar to the cone
{z, " =0, 2° > 0} in Minkowski space with vertex at z# = 0. It is to be arranged such
that the prospective vacuum solution admits a smooth conformal extension in which the
point p acquires the meaning of past time-like infinity ¢~ and the set NV, \ {p}, swept out
by the future directed null geodesics through p, represents past null infinity 7.

As in any other initial value problem for Einstein’s field equations two different sub-
problems must be analysed here: (i) one needs to analyse which part of the initial data
can be prescribed freely and how the remaining data are determined on the initial set by
the field equations, (ii) for suitably given data one has to show the existence of a smooth
solution inducing these data on the initial set. In the situation indicated above both tasks
are complicated by the fact that the initial set N, is a smooth hypersurface only away from
the vertex p. The notion of smoothness and the way data are given thus require particular
considerations. The present article will be concerned with problem (i), the second problem
will be dealt with in a forthcoming article by Chrusciel and Paetz (]2]).

From the point of view of the physical/geometrical interpretation one would like to
construct the space-times from a minimal set of data on N, which admit a physical inter-
pretation. There are various ways to prescribe data for Einstein’s field equations in char-
acteristic initial value problems (cf. [1]), the specific choice usually depending on technical
considerations and the particular situation at hand. A natural datum to prescribe at null
infinity is the radiation field, a complex-valued function that encodes information on the
two components of the conformal Weyl tensor with the slowest fall-off behaviour at past
null infinity, thought to represent the two polarization states of the incoming gravitational
radiation.

That the radiation field is convenient from the technical point of view has been shown
in the proof of J. Kannér’s existence results on the characteristic asymptotic initial value
problem where data are prescribed on an incoming null hypersurface C which intersects
past null infinity in a space-like slice ¥ = CNJ ™~ and on the future J’~ of that slice in past
null infinity [7]. A basic step in that proof consists in showing that given the radiation
field on J'~, the solution and its derivatives of any order can be determined on J'~ by
solving ODE’s along the null generators of J'~, where the initial data for the integration
are derived from the data prescribed on C and X.

In the problem to be considered here the analysis is complicated by the fact that the
initial hypersurface tends to loop back onto itself near past time-like infinity, forcing any
analogue of ¥ to shrink to a point and leaving no space for a hypersurface like C. The
information for the integration of the solution along the null generators of N, has thus
to be extracted completely from the radiation field on N,. Together with the need for
a careful discussion of smoothness requirements near the vertex p this leads to various
algebraic subtleties.



A first study of this problem was made in [5], where it was shown that for a suitably
smooth prescribed radiation field on N, and a gauge involving a null coordinate adapted
to N, the prospective solution to the conformal field equations is determined uniquely at
all orders along the cone N,,. However, even under the most convenient assumptions such a
null coordinate is singular at and near p. To show that any smooth solution is determined
uniquely in the future of the cone N, by its radiation field, there has been performed in [5]
a transformation into a gauge which is regular up to an order sufficient for the argument.
An ezistence result for smooth solutions would require, however, a smooth gauge and thus,
due to the quasi-linearity of the equations, a transformation which enters the solutions at
all orders.

To simplify this tedious problem (in section [l it will be seen that the analysis of
the transport equations on N, requires a discussion of singular equations in any case) the
analysis in the present article will be based on a smooth gauge right from the outset. After
introducing and discussing the field equations and suitable gauge conditions in sections
- [ the normal expansion at the point p representing space-like infinity and the properties
of the radiation field on N, are discussed in section

In section [6] an argument by Penrose ([8], [9]) is adapted to the present situation and
it is shown in Lemma that the covariant derivatives at p of the curvature fields, the
conformal factor, and a further scalar field are determined on a formal level uniquely at
all orders by the radiation field and that the latter is not subject to any restriction. To
relate these data to a space-time metric we consider in section [7] the structural equations,
written as equations for the metric coefficients and connection coefficients. It turns out
that already a subset of the equations suffices to determine the formal Taylor expansions
of these fields and that the expansion coefficients so obtained encode the information on
the chosen gauge (Lemma [TT]).

By Borel’s theorem there exist then smooth fields near p whose Taylor expansion
coefficients at p are given precisely by the (symmetric parts of the) coefficients determined
in the formal calculations above. Because only the symmetric parts of the covariant
derivatives enter the definition of these functions and only a subset of the structural
equation has been considered in the formal calculations, it remains to be shown that the
functions so defined do indeed satisfy the conformal fields equations at all orders at p. A
somewhat involved induction argument shows that this is the case (Proposition [BTI).

The conformal field equations induce a set of inner equations on N, which splits
naturally into two subsets. The equations in the first set, referred to as transport equations,
determine all unknown fields entering the conformal field equations once the radiation field
is given (Proposition [@1]). The equations in the second set are inner constraints on the
fields so determined. It turns out that they are satisfied by a solution to the transport
equations without imposing restrictions on the prescribed radiation field.

To identify and analyse the inner equations on N, one needs to express the equations
in terms of a frame adapted to the cone, which is necessarily singular at p. If the resulting
equations are solved and the fields are then transformed back into the regular gauge
underlying Proposition Bl they coincide with the field discussed in that Proposition at all
orders at p and thus satisfy a necessary smoothness requirement.

The fields so obtained, which constitute a complete set of initial data on N, for the
conformal field equations, can be considered as a starting point for an existence proof in



the category of smooth functions.

As pointed out at various places, the analysis presented in this paper also applies to
the characteristic initial value problem where data are given on a finite cone N, which
is thought of as being generated by the (future directed) null geodesics through a point
p which is considered as an inner point of a smooth vacuum space-time. In fact, the
analogues of the arguments used in sections 2] - B considerably simplify in that case. In
section @ however, we take advantage of the fact that the conformal Weyl tensor vanishes
at null infinity. This allows us to obtain explicit expression for various fields. The analogue
of Proposition [@.1] has to be established in the finite problem by an abstract discussion of
the transport equations, which will not be given here.

2 The metric conformal field equations

Let g denote a Lorentzian metric on a four dimensional manifold and V a connection
which is metric compatible so that Vg = 0. In the following we shall make use of a
frame {ey, }r=0,... 3 which is orthonormal so that g;; = g(e;, e;) = 1;;. With the directional
covariant derivative operators V,; = V., the connection coefficients I'; k ; are define by the
equation V;e; = I'; k jer. The relation Vg = 0 is then equivalent to the anti-symmetry
Iyij = -1y, where Iy ; =Ty k 5 gri- All tensors (except the frame fields) will be given
in the following in terms of the frame ey.
For a vector field Z the commutator of the covariant derivatives satisfies

(VNj —Vjvi)Zl =7l kij zk —tikjkal, (2.1)

where t; ?; denotes the torsion tensor, given in terms of coordinates z* and the frame
coefficients e* j, = < ey, dz* > by the relation

tplreti=etp e’ —et e’ s — T e =Tk ey, (2.2)
and r ji; is the curvature tensor, given by
szklEFlleue'uk—Fklj1#6“l+rk1prlpj—Fllprkpj (23)
TP =T =tx P ) Tp" 5

The last term on the right hand side of the equation above can also be expressed in terms
of the commutator of the frame fields because [eg, e;] = (TP — TP —tx?y) ep by (22)).
The metric is torsion free if and only if the torsion tensor vanishes, which is the case if
and only if

(ViVie =V V) f=0, (2.4)

for any C?-function f.
The torsion and the curvature tensor satisfy in general the Bianchi identities

Z Vit ¥ = Z (o=t tm ), (2.5)

cycl(igl) cycl(igl)
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Z Virl i = Z ™" ks (2.6)
cycl(igl) cycl(ijl)
where the sums are performed after a cyclic permutation of the indices i, 7, (.

Assume now that the metric g is torsion free and related by a conformal rescaling
g = O?§ with a conformal factor € to a ‘physical’ metric § which satisfies Einstein’s
vacuum field equations. These equations can then be expressed in terms of g and 2 and
derived fields as follows. We write
Riji = Cijrr + 2{gitx Lys + Ligk 905}

where Cjjx; is the conformal Weyl tensor and
1 1 . 1
Lij = 5 (Sij + 75 Rgi) with  Sij = Rij — 7 Rguj,

denotes the Schouten tensor of g with Ricci tensor Ry; and Ricci scalar R. In terms of the
tensor fields

. , 1 - 1
Q, gij=mij, Lijy Wim=Q71C 5, = 7 ViV Qi+ o RO,
the (metric) conformal field equations read ([3], [4])
6QII—3V,QViQ=0
Vi Vi Q= —Q Ly + g,
VI =-VFQ Ly,
ViLji = Vj Liw = ViQW' 15,
ViWi Gkl = 0.
These equations must be complemented by the structural equations, namely the torsion-
free condition .
te'1=0, (2.7)
and the equation _ _
TZ jkl = RZ ks (2.8)
which will be referred to as the Ricci identity.

We note that with the choice €2 = 1 the conformal field equations reduce to the vacuum
field equations. The only non-trivial fields are then e, T';7 &, and W' ji; = C? ji; and
the only non-trivial equations are the vacuum Bianchi identity V;W?,; = 0 and the
structural equations.

In the case of a more general conformal factor the equation 6 QII — 3V,QVQ = 0
will be satisfied on the connected component C, of a point ¢ if it holds at ¢ and the other

equations are satisfied on C;. This is a consequence of the fact that the other equations

imply the relation ‘
Vi(6QII-3V;QV/Q) =0.

In the situations considered here, in which either 2 = 0, V;Q2 = 0 or {2 = 1 at the point
p, the equation 6 QI — 3 V;Q ViQ) = 0 need not be considered any longer.



3 The 2-index spinor representation

The 2-index spin frame formalism is well adapted to the null geometry and will simplify our
algebraic task considerably. It amounts essentially to taking complex linear combinations
of various expressions in terms of maps of the form

; j k
Tijk... = Taasprccr... = Tiji... " aar&? ppra” cor ..., (3.1)

where the a’s denote the constant van der Waerden symbols

;L [ i+ si—idh
O‘AA/—E<5§+1'5§ R

which are hermitian matrices so that a¥ 45 = a¥ gas. Frame indices k,I,... are thus
replaced by pairs of indices AA’, BB',..., where A, B, ..., A’,B’, ... take values 0 and 1.
None of the operations applied in the following to spinor fields mix primed and unprimed
indices. Therefore we shall write Tapc. arp'cr... instead of Taa gprccr... if convenient.
There is an operation of complex conjugation under which unprimed indices are converted
into primed indices and vice versa. Because of the hermiticity of the a’s the reality of a
tensor T}jp... is then expressed by the relation

Taappccr...=Taappcor....

These tensor fields are considered as members of a tensor algebra which is generated by
a 2-dimensional complex vector space and its primed version, both being related to each
other by an operation of complex conjugation. The members of these spaces are called
spinors. For more details (not in all cases employing the same curvature conventions as
used here) we refer to [9].

The ey, are also replaced by eqar = o 44/ e;, so that the indices A, A’ specify in this
case the frame vector fields. Then egq, €11/ are real and eg1/, €19/ are complex (conjugate)
null vector fields with scalar products

glean,epp) =nr o anaf pp = eapeap, (3.2)

! !/ . . . .
where €AC; €arcr, €1, €4'C" denote the anti-symmetric spinor fields with eg; = €gry =

’
Ol = 01 = 1 SO that assuming the summation rule for primed and unprimed indices
separately, e4 B = e eBC and es B = eqcr ¢B'C" denote Kronecker spinors. The €’s are

use to raise and lower indices according to the rules

IQAZEABFLB, IQBZHAEAB,

and similar rules apply to primed indices. Upper frame indices can be converted into
spinor indices by the van der Waerden symbols «; AAT — ij eAB A B o pp
Though it will occasionally be convenient to go back to the standard frame notation

(or to employ a hybrid notation as discussed below), we shall assume most of the time the



fields (except the frame and the spin frame) to be given by their components with respect
a suitably chosen spin frame field {¢t4}a=01 which is normalized such that

€(ta, ) = €aB, (3.3)

where e denotes the antisymmetric form on spinor space. As discussed in detail in [9], the
fields egyr = 1o tor and ej1r = ¢1 11 correspond to real null vector fields while eg1r = g 71/
and e1or = 1 Lpr correspond to complex (conjugate) null vector fields which have the scalar
products [32) as a consequence of (B3)).

’ . . ’ .
Weset Taa BB cor =137 b ab aar afB aF ccr. As a consequence of the anti-symmetry

I'ijr = —T'ix; these connection coefficients can be decomposed in the form

Taa PP cor =TanPcecr® +Tan” crec®,
E CE'’ that satisfy FAA/BC = FAA/(BC) .
Covariant derivatives of spinor fields k* resp. 74" are then defined by

with spin connection coefficients 'y 4» & ¢ = % Taa B

’ — 7 ’
Vaak? = e 00, 6% +Tan B ok, Vaar? =e4, 0, 7% +Tan? o n%,

and the definition of the covariant derivative is extended to arbitrary spinor fields by
requiring the Leibniz rule for spinor products. For the commutators of covariant derivatives
we get

(Vee'Vop — Voo Veer) 6% = R* pecrppr K2, (3.4)

and its complex conjugate, where Rapcc'pp = Rapycc pp denotes the curvature
spinor. The usual curvature tensor describing the commutator of covariant derivatives
acting of vector field is then given by

’

AA ; AA" k l
R™* ppicoppr = R jriog ™" o) ppra” cor o ppr (3.5)
A A | pA A
= R” pccppr €' ” + R” procpp €B
The curvature spinor admits a decomposition of the form
Rapcce'ppr = VYapep ecpr + Paperp €cp +2 A eac €pyp €cipr- (3.6)

The different components are the Weyl spinor

/

. . ’
Yapep = Yapep) = —Cijud ap o/ g% o cpa'p ¥,

which contains the information on the conformal Weyl tensor, given by
Caapprco'pp’ = —Vapcp€ap €c'pr — VY arB/c'D! €AB €CD;

and the spinor

_ 1 ,
Qaparp = Papyapy = Papap = 5 (Rjk — 1 Rujr) o aar o ppr,
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which represents the trace free part of the Ricci tensor, and
. 1
A=A=—R
24

It holds then
Lapap = Paparp + Aeapearn,

and the rescaled conformal Weyl tensor W* ;5 = Q=1 C? j;; is represented by the rescaled
Weyl spinor
VYapep = Q' Uapep.

With this notation the conformal field equations read
Vaar = -VPPQ(®apap + Neapean),
VaaVpp Q= —Q(Papap + Aeapeap) +1leapenn,
Val ®pepip +2 eas Veoys A =vapep VP 59,

VP g papep = 0.

and the structural equations take the form

cc’ cc’
O0=e"ga,v¢" g —€e" B e’ 44 — T aar —Taa BB ) el cor,

A A A A
" peccrppr = Q¢ pepecp + @7 porpecp +2M € (cepypecip-
where
A
" Bcc'DD! = (3.7)

A A A F A F
Ipp “Bueco —Teo " Bue ppr+Tce " rFlpp " B—=Tpp “ rlce ™ B

FF' FF’ A
—(Teer pp —I'ppr cc)Trr# B.

In the case of the vacuum field equations, in which 2 = 1, the non-trivial unknowns are
given by e* g4/, Taa B o, Yapep and the field equations reduce to VP g ¢apep = 0
and the structural equations.

The following observations will become important later. Forget the meaning of the
fields considered above and let the spinor field Rapccrpps in ([B.6]) be given by spinor
fields Y apcp, Papep €cp, and A which satisfy the symmetries and reality conditions
stated above. The tensor RAA’ pp'co'pp defined by (BA) then satisfies the analogue
of the first Bianchi identity R! jky = 0 as a consequence of the symmetries and reality
conditions. In fact, the anti-symmetric tensor €;x; = €[;;r With €p123 = 1 has the spinor
representation

€AA'BB'CC'DD! = 1 (GAC €BD €A’D’' €B'C’ — €AD €BC €A'C’ 6B’/D/)a



which implies

BB'CC'DD’ . H 5 H
RaaBpcc'DD’ €EE =2i(Ragea " B —Ram app" ) =0, (3.8)
because
H 5 o
Ragpa " g =Papap —3ANeapear = Rag Ap'E
An analogue of the second Bianchi identity Vi, R ;) = 0 follows under suitable assump-

tions. It holds
Ve Raappccpp €7 pp PP (3.9)

, cp’ CD' B
=2i(epar V"7 Rapcrrp + €AV~ Rapcrrp),

and, with Y apcp = Q¥ aBcp,

VO Raporrp = —Q VC pbapor (3.10)

+ {VF P'®aprp +2epa Viyph - VC pQ 1/JABCF} ;

which will vanish if the conformal field equations are satisfied. These relations are not
surprising, because the Bianchi identities have in fact been used to derive the symmetry
properties of the curvature spinors and also the conformal field equations. Later on we
shall need to consider the last two relations, however, under circumstances in which it is
not clear, whether the conformal field equations hold.

To shorten the following expressions it will be convenient to introduce some additional
notation. In the case of spinor fields which carry pairs of spinor indices like AA’ which
correspond to a standard frame indices j we shall occasionally employ a hybrid notation
by using the index j, so that equation ([B.71) takes for instance the form

TABij =
Litppeti—Titp et + DA el Fp =T A p D P g = (07 =T, 5 ) T A .
The symmetric part of a spinor field Sap.. gr is denoted by S ap.gr). The totally

symmetric part of a spinor field Ty, . 4, B|..B} is then given by T{4, < Ap) (B]...B})- If

T is a spinor field and n = (i1,...,i,) a multi-index of order |n| = n we write V,T =
Vi, ...V, T and V)T =V, ... V; yT. If X" is a vector field we set X™ = X .. X'
and write X4 ... X"V, ...V, T=X"V,T = X" V)T

4 Gauge conditions
Unless stated otherwise the connection V will be assumed in the following to be g-
compatible and torsion free. We need to restrict the gauge freedom for the conformal

factor, the frame, the coordinates.

The conformal gauge near i~.



The data for the conformal field equations are to be prescribed on the cone N, =
J~U{i"}. The vertex p =i~ is to represent past time-like infinity and N, is thought to
be generated by the future directed null geodesics starting at p. Thus one must assume
that

Q=0, VaaQ2=0, II#0 at p.
The equations V; Vi, Q = —Q L +11 gj and V1T = —V*Q Ly, suitably transvected with
the geodesic null vectors tangent to the null generators of N, imply then that

Q=0 and II#0 on N, Vie#0 on N\ {p}.

(Note that the assumption II|, = 0 would imply that V;Q = 0 on N},).

The sign of II depends on the signature of g. The equation V,V, Q = —QL,, +11g,,
implies for a future directed time-like geodesics  starting at p the relation IT g(y', )|, =
V4V Qlp. If we want this to be positive we must assume that sign(Il) = sign(g(y’,v")) =
sign(noo) at ¢~. This discussion shows that with the assumptions above on  and IT at p
the field equations themselves will take care for the conformal factor €2 to evolve so that
it will show near p the desired behaviour on N, and on the physical space-time region

IT(Np).

Under a rescaling g, — Guv = 602 g, Q@ — Q) = Q with some function 6 > 0 it
follows R
H|p - Hlp = (H9_1)|p'

The transformation laws
Ruw[9) = R[] = Rulg] =207V, V,0+46072V,0V,0
—{07IVAVNO+ 072V 0V 0} g,

and
R[g] = R[g] = 07> {R[g] — 66" VA V*6}, (4.1)

of the Ricci tensor and the Ricci scalar imply the transformation behaviour

Suwlg) = Suld] = Suwlgl =207V, V,0+4072V,0V,0

1
+3 {071 VAV —2072V,0V 0} g,

Let [* # 0 denote the tangent vector of a future directed null geodesics v(7) on J, with
~4(0) = p, so that V;l = 0. Then [ = §~21 satisfies §(I,1) = 0, @ilAz 0. This gives

O 1M1V S,[g) = 1M1 Sy lg) — 2071 (IMV,)2 0 + 4672 (1" Y, 0)%,

or equivalently o
"1"8,,[9] 0° = 1M1 S lg) 07 +2(1"V,)% (071). (4.2)

For prescribed value of * [¥ S, [g] this represents an ODE for 6 along the null generator
tangent to [. While the value of 8 can be fixed at p by specifying there the value of |II|,

10



there remains the freedom to specify the value of V0 at p. The equations above suggest
that a convenient conformal gauge can be defined in a neighbourhood of p in J*(N,) by
requiring

=0, V=0, II=2n9 at p, (4.3)

and
"1 S,ulgl =0 on N, near p, R[g] =0 on J*(N,) near p. (4.4)

This conformal gauge will be assumed in the following without any problem. When this
type of conformal gauge is used in a wider context, however, it is important to know that
for a given smooth background g equation ([E32) with [* (¥ Suwlg] = 0 yields a rescaling
factor 6 on N, which has the appropriate smoothness behaviour on N, near the vertex
p so that the wave equation obtained on the right hand side of [l by setting R[§] = 0
can be solved with these data on N, for a smooth function # near p. This question will
be discussed in the article [2].

The choice of the coordinates near i~ .

We shall consider p-centered g-normal coordinates z* near p. These are determined
by the requirements that z*(p) = 0, that ¢,,,(0) = 1, and that for given z* # 0 and a
real parameter 7 with |7| small enough the curve v : 7 — 72* is a geodesic through the
point p. If g,,, and I';, # , denote the metric coefficients and the Christoffel symbols in the
coordinates x* the latter condition is equivalent to

0=29,,(Vy7y) =2g,,2" T, ° \(T ) =21 Guu (T ) > — ¥ Guru(T, T),

which gives in particular that
' T,° \(rz)2a* =0, (4.5)
for small enough |7|. The first equation above implies further 0 = z¥ a# g, \ (T z) 2* =

L (2" 2" gy (7 x)) and thus ¥ 2# g, (7 x) = ¥ 2" g,,(0), whence

22" guu(t ) + 12" a? Gapu(T2) =22" g,,(0).

With the first equations it follows then

d
0=r7122"gyur(T2) 2 — 1t Guap (T, ) =2 p {T (& gyp(T2) — 2" 9,u(0))},

and thus
¥ guu(T ) = ¥ g0,(0). (4.6)

This equation implies in turn z* &/ ¢,, (7 ) = ¥ 2* g,,,(0) which gives by differentiation
72" 2 gur (1) = =22 g (T 2) + 22" 9,,,(0) = 0. Because differentiation of (6] with
respect to T gives 0 = 2 g, (7 ) 2* we see that (Z6]) implies that the curves v consid-
ered above are in fact geodesics. The relation (L8) thus completely characterizes normal
coordinates in terms of algebraic conditions on the metric coefficients. It follows from the
equations above that g, ,(p) =0,T,7,(p) =0.

11



In this gauge N, is now given by the set {z* € R*| n,, = 2", 2° > 0}.
The choice of the frame near i~ .

Assume now that p-centered g-normal coordinates z* are given on a convex normal
neighbourhood U’ of p and take their values in a neighbourhood U of the origin of R*. A
frame {eg }r=01,2,3 is called a normal frame centered at p if it satisfies on U’

g(ej, ex) =njx, and Ve, =0,

for any geodesic «y passing through p. The frame coeflicients satisfying e, = e 1 0, are
assumed to satisfy
et k(O) = 55

The 1-forms dual to e, will be denoted by ¢/. Then ¢/ = ¢/, da¥ with o7 petp = 6{;.
That the frame field depends in fact smoothly on the coordinates z* follows by arguments
known from the discussion of the exponential function.

The equation 2 g,,, (7 z) e* (T x) = z¥ 1, 0}, expresses that the scalar product g(v', ex)
is constant along the geodesic . The representation g,,, = 1;; 0 , 07 ,, allows us to rewrite
it in the form

at ol (Ta) =2t 5fL resp. zt 6& e’ j(rx) =a". (4.7

With this relation equation (4] implies
Ny 5;-) ol (ra) =zt N resp. ¥ nu e’ p(ra) = 2" Ny, 0¥ . (4.8)

If the fields 7 ,, and the coordinates x* satisfy the last two relations it follows without
further assumptions that the metric g, = 7;; 0* , 07 ,, satisfies ({6)). In terms of the frame
field the information that the z# are normal coordinates is thus encoded in (Z7), [@38).

Writing V; = V.,, the connection coefficients I'; 7, with respect to the frame e; are
defined by the relations V; e, = I';7 i e;. They satisfy I';j5 = —L'ix;, where I';j, =Ty Ly ;-

The tensor field X (z) = 2 0,, tangential to the geodesics through p is characterized
uniquely by the conditions

X(p)=0, V., X"(p)=9."(p), VxX=X. (4.9)

By ([&7) it can be written X = X%ey, with X*(z) = 6¥2”. The relation Vyxe; = 0 is
equivalent to ‘ .
Xk@) Ty j(x) = 0% 2" Ty, % j(2) =0, a* €U, (4.10)

or

XA (2)Tan Beo(z) =0, z*eU. (4.11)
This is the characterizing property of the normal frame.

In the following we shall refer to coordinates z* and a frame ey (resp. ega) which
satisfy the conditions above as to a normal gauge. We shall always assume this to be
supplemented by a normalized spin-frame {v4}a—01 which satisfies eqar = 1474 and
Vxta = 0. All spinor fields will be assumed to be given in this frame.
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5 Normal expansions

Let 2* and e4 4/ be given in a normal gauge and let X be the vector field defined by (£.9) so

that X = Xte; = XA4 ¢ 4 4 with XA4' (z) =2 ay, AA/, where we set aﬁA/ = e AAT
Let T denote a smooth spinor field and TAl...AjB;...B,; its components in the normal

frame. If z # 0, then we get with [@7) and (£I1)) along the geodesic v : 7 — T xk

d
g Lava; BBy (T2) = Tayay By, (T 2) 2

cc’
=z, {TAI...AJ-B;...B,;,;L(T%)6“ ccr (1)
~Tee P, T, (ra)...—Too Bhop T (1)
ccr 7t ay Iy Ay B (Tx) .. —Loor ™% pr Ta,..a;8;.. B (T Ts

cc
=a." VocTa,. .a;B;..5,(TT)

. ’ y ’ . .
with 20" =zl §* uw O CC" Applying the argument repeatedly gives
d" fortet C, !
1 n
G A1 A, B B, (Te) =z ..a" "Veop - Ve,o,Ta, ;B By (T T4).

Setting x* = 7 2% in the Taylor expansion

N
1, dn
Tay.agpy py (T2) = 3 07 G Taraymgpy (0) +O(7™),

n=0

the Taylor expansion of T'a,..A;B;.., at p is obtained in the form

N
1 n
Tay.nm..5, () = ) WX VaTa,...a,8...5,(0) + O(|z|¥ ) (5.1)
[nj]=0 """

N
1 n
= Z W X V(H)TAI,,,,4].31,“3;C (0) + O(|$L‘|N+1).
|n|=0
This will be referred to as the normal expansion of T at p. It will be known once the
symmetrized covariant derivatives V(n) T, . a;5;.. B, (p), In|> 0, are given.

5.1 The null data.

The set C, ~ S? of future directed null vectors at p satisfying g(,1) = 0 and g(l, ) =
Moo/ V2 defines a parametrization of the null generators of N, which are given in the
normal gauge by the curves 7 — 71#, I* € C},, 0 < 7 < a for some suitable a > 0. Denote
by W, the subset of N, which is generated by the null generators parametrized by a proper
open subset W of C.
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Let x4 (z) be a smooth spinor field on W, \ {p} which is parallely propagated along the
null generators and such that £ 7 s tangent to the null generators of W,. Because the
components x“ are given in the normal frame they are constant along the null generators.
Thus, k4 assumes a limit as 7 — 0 along the curve 7 — 71* and it can be assumed that
kARA = A4 along that curve. The field x* is then determined uniquely up to phase
transformations k4 — €’? k4 with smooth phase factors which are constant along the null
generators.

For a given tensor field T" with spin frame components T'a, ... a; B, ..B], We define its

null datum on W, as the spin weighted function
To(z) = k™ (z) ... k% ()R (2) . RP(2) Tu, . am; . py (1), o € W, )\ {p}.

With the normal expansion for T given above this gives at p the asymptotic representation
T Y _n’
TQ(T .’L‘) = Z — Kcl . mcn ,%Al .. .HBk vClC{ R Vcnc; TA1~~~AjB{~-~B;'€ (0) + O(|T|N+1).

for 7 > 0. The sum is determined uniquely by the coefficients
Tn(li) =k RO kM L RBR Vclci e VCnC{l TA1---A]'B{»~B,/C (0).

Because the directions k4 74" = (44" are allowed to vary in the open subset W of Cp,

knowing these coefficients is equivalent to knowing the symmetrized derivatives
Tia,..ay) PrB(0), Ve, GV, O Ta, 4y PB00), n=12,.... (5.2)

In fact, let Sa,..a, ApA = S(Al»»»Ap)(A'l---A;) be a symmetric spinor. It will be known
once its ‘essential components’, denoted by Si; = S(4,...4,), (A]...Ap);, are known, which
are obtained by setting for given integers ¢,7, with 0 < i < p, 0 < j < ¢, precisely @
unprimed resp. j primed indices to equal to one. Choose (k°, k') = B (1,2) with z € C
and the factor 8 = (1 + |2z|?)~/? which ensures the normalization condition on I*. If the
function S(k) = k41 ... o SAy..A, AL.A is known then also the function

s $ 500

and the essential components are given by S;; = % % 9L 9L(BP71S(K))|2m0.

While the null datum on W, is a spin weighted function which depends on the choice of
x4, the spinors (5.2)) at p are given with respect to the spin-frame 14 and are independent
of any phase factors. They will be referred to as to the null data of T' at p.

Of particular importance will be for us the null datum
Yo = k2 kB kP Yapep, (5.3)

associated with the rescaled conformal Weyl spinor ¥ apcp. It is referred to as the radia-
tion field.

14



To illustrate some of its properties it will be convenient to proceed as follows. Let
SU(2,C) denote the subgroup of transformations (s g)a p=01 € sl(2,C) which satisfy
eac st psCp =epp and st 4 5 04633, = 0464‘4,. Then the null vectors I# = [#(s) at
p with spinor components A = A 54, sweep out the null directions at p and the
mAA = mAd (s) =549 54 1 are complex null vectors orthogonal to A4 By requiring
them to be constant along the null generators tangent to A4 they will be parallely
transported and tangent to N, along the generators.

The information on the radiation field is equivalent to the information contained
in the pull back of the tensor Wi 1'% to N,. In fact, the latter can be specified
by the contractions of the symmetric tensor Wjji "% with the field m and m. Be-
cause Wi I'mJ ¥ m! and Wik I'md Ik ml are complex conjugates of each other and the
trace-freeness of Wjji; implies that Wijn I'm? 1*m! = 0, the information is stored in
Wijra Em? 1Fm! = s458 05 0sP gapecp = to. Note that this description includes
the complete freedom to perform phase transformations. If this is to be removed, one has
to restrict the choice of s to a local section of the Hopf map SU(2) 3 s — 44 (s) € S2,
where S? is identified with the set of future directed null directions at p.

The null data of ¢ at p can be extracted from the null datum ) on N, as follows. By

taking derivatives with respect to 7 at 7 = 0 one gets from the null datum the quantities
ﬁn(s) = SC1 0 EC{ o .- - SC" 0 EC;‘ Q/SA 0 SB 0 SC 0 SD 0 Vclcq R anC;'@[JABCD(O)-
As discussed in detail in [5], these functions on SU(2,C) translate naturally into ex-
pansions in terms of the coefficients T}, ? ;(s) of certain finite unitary representations of
the group SU(2,C). With this understanding the essential components of the null data
Ve @ . Ve, CQ)UJABCD)(O) can be obtained by performing integrals of ¢, (s) T}y, ! i(s)
with respect to the Haar measure on SU(2,C). Any ambiguities related to choices of phase
factors as indicated above are cancelled out by the integration.

To prescribe the null datum in a way which ensures the necessary smoothness proper-
ties we start with some symmetric spinor field Y% zop = ¥ pop (¢*) which is defined and
smooth in a suitable neighbourhood of the origin p of R* (so that z#(p) = 0). This field
will be thought as being given in a conformal and normal gauge as described in section [l
Assuming s p as above, one can then consider on the cone N, = {1, z* 2 = 0, 2° > 0}
(or more precisely on the bundle N, ~ RJ x SU(2) over N, see section [d) the complex-
valued function

/

A B D E _E
Yo(r,s) = s 058 05% 052 0 Uhpop(Tlp s¥ 055 o), (5.4)
as a ‘smooth’ radiation field.

The gauge conditions give control on the null data at p for some of the unknowns in
the conformal field equations. It follows immediately from the discussion above and the
first of conditions (@) that the conformal gauge implies

(I)AB A'B' (O) _ O, V(Cl (Ci L vcn ;L (I)AB) A/B’)(O) = O, n = 1, 27 e (55)
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6 Formal expansions at 7.

In a conformal gauge satisfying ([£4) the conformal field equations read

VaaVpp Q= —-Q®spap +Ueapean, (6
Var T =-VEPQ®4pap, (6.2
VaP ®pcpp = vapep VP 59, (6.3
VP g vapep =0, (6.4
and the curvature spinor (B8] takes the form

Rapcc'ppr = Qv¢apep ecrp + Papcrpr €cp. (6.5)

The following algebraic considerations will be simplified by rewriting equations (6.3 and
(©4). The symmetry of 1 4pcp and the fact that vanishing spinor contractions indicate
index symmetries imply that equation (6.4) is equivalent to

Ve Yapep = Ve E YaBcD)- (6.6)

If (6.4) holds, equation (6.3]) and its complex conjugate are equivalent to the equations
VAt opc B —VpA 0ucPC = —eap Ve T QAP ), (6.7)
Vit @pc?

With the identity

o — VA B (I)BC AT = — EAIB/ VHle wABCH- (68)

Vad @pc P = Vi A’ Ppe) 5’0
2 ’ ’ ’ ’ 2 ’ 1~ 4_ ’ ’ ’ ’
+§ V' @poym P e — 3 €A(B VHA @y B9 — g €AB VI & oy gy BN
these two equations are seen to be equivalent to the equation

Vit ®peP'C = Via A’ P B (6.9)

2 ’ ’ ’ 2 — ’ ’ ’ !
+§ I/JABCHVH(B QNN 4 gEA(B Veoya Q/JA BCH

We note that

Y aBcp(0), Ve E Yapep(0) = Ve = Yascp)(0), (6.10)

represent null data of ¥ 4pcp and that the conformal gauge [@3), (£4) implies by (&3]
and (9) that

Dpc ' (0)=0, Va A Ppe ' (0) =V & Ppey B/C/)(O) =0. (6.11)
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With this it follows from equations ([@2]), (6.I) and the gauge conditions that
VAA/VBB/Q(O)ZH(O)EABEA/B/, VkQ(O)ZO for |k| 20,1,3,4,5, (6.12)

VidI(0) =0 for |k|=1,2,3. (6.13)

The relations above imply furthermore that

Ragccpp(0) =0, Ve Rapccpp (0) = 0. (6.14)

The following result, which relates the formal expansion of the curvature fields at a
given point p to the null data of ¥ 4pcp at p, applies and extends arguments of the theory
of exact sets of fields discussed in [§], [9].

Lemma 6.1 In a neighbourhood of the point p let the fields U, 11, ®apap, YaBcD,
e* aar, Tanr B ¢ be smooth and be given in a p-centered normal gauge for the coordinates
and the frame and in a conformal gauge satisfying (4.3), (4-4). Then, if they satisfy
the structural equations and the conformal field equations the covariant derivatives of the
fields Q, 11, ®aparp, Yapep at all orders are determined uniquely at p by the null data
Ve, ..V, 2D Yapep)(p), n € No, at p.

The resulting map which relates to the null data of v at p the covariant derivatives of
the fields Q, II, ®apa'p/, Yapcp ot p extends in a unique way so that it associates with
any freely specified sequence of totally symmetric spinors

gABCDu §E1...EnABCD7 n=1,23,...

at p formally ‘covariant derivatives’ the of fields U, II, ®apa/p/, Yapcp of any order at
p such that

Yapen(P) =€apep, Vg B Ve, P apon) (p) = 5511:::52ABCD' (6.15)

Remark: The coefficients e* 44 and I'44/ B ¢ have been listened in the first statement
because the field equations involve covariant derivatives of tensor fields and thus require
the frame and connection coefficients for their formulation. The following argument will,
however, never make use of explicit expressions of covariant derivatives in terms of these
coeflicients and partial derivatives of the fields. It only uses formal expressions of covariant
derivatives and the standard rules for covariant derivatives such as commutation relations
and the Leibniz rule. Therefore the coefficients are not mentioned in the second part of
the Lemma. How they are determined will be discussed in the following section.

Proof: At lowest order the first assertion of the Lemma follows from (6.10), (611, (612
and ([@I3). That it is true at higher orders will be shown by an induction argument. In
this we shall repeatedly make use of (B:4) and [B.6]) with A = 0. With the identity

’

VeaoVop — Voo Veer =ecp Ve VY by +ecro Ve Vo)
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it is seen that ([B.4) and its complex conjugate are with our assumptions equivalent to the
relations

c’ D’ B c’ D' B’
ecp Ve~ Vpy" ka=Qv%apcpk”, €ecp Vi Vpy~ Ea =®Pcpap k",
Do (C'o. D), _ c'D' B ¢cPo (C'w_D)e _ 7.  CD _B
€ Vc VD KA—(I)AB K, € Vc VD KA/—Q1/)A/B/ K.

While the induction argument is fairly obvious for the fields €2, II, it is more involved
in the case of ® 4pa'p and Yapcp. The following observations are important. Consider
the quantities Vg, By .V E, E;, Yapop with n > 2. If the covariant derivatives would
commute it would follow that

Ve, Ve, P apep = Vg, B L Ve, B Yapep). (6.16)

In fact, any order of the upper indices can be achieved by commuting the covariant deriva-
tives. If can be shown that the lower indices can be brought into any order without chang-
ing the position of the upper indices, the assertion will follow. Consider, for instance,
the index positions given on the left hand side of the equation above. To interchange the
indices Ej, and A (say) we commute Vg, Pk to the right until we can use ([6.6) to swap Ej
and A, then we commute again to bring V4 E} back to the k-th position. To show that
indices EFj, F; can be interchanged we operate with Vg, By as before to get Va El/c, then
commute Vg, B} to the right and use (G.0) again to get Vg, Eé, then commute V4 F

’

to the right to get Vg, Ei by using again ([6.6). Finally, commute VE, By and Vg, %
into the k-th and j-th position respectively so that the order of the upper indices remains
unchanged.

If the covariant derivatives do not commute one can still operate as above but use (84)
and ([B.0) with A = 0 each time we commute derivatives. By this procedure the curvature
spinor R pccrppr and its derivatives enter the expressions and (6.16) is replaced by an
equation of the form

Ve B Ve, Pragep = Vg 1 . Vg, B Yapcp) + .-, (6.17)

where the dots indicate terms which depend on the curvature tensor and its derivatives
and thus via the field equations on the fields 2, s, ®apap/, Yapcp and their covariant
derivatives of order < n — 2. Restriction to p then implies with the induction hypothesis
that the Va ¥ apep(0)with |n| > 2 can be expressed in terms of s(0) and the null data of
1/)ABCD of order S n.

Using (6.17) and (6.8]) to interchange unprimed as well as primed indices we conclude
by similar arguments that for n > 2

VEl B A VEn n (I)BC B = V(El = o vEn n (I)BC) B’ + (618)

where the dots indicate the terms of order < n — 2, which are generated by commutating
covariant derivatives and the terms which arise from the right hand sides of equations (6.1
and ([G.8)). These terms and the commutators contain expressions Vi apcp, Vj z/?A/B/c/D/
with |k|, |j| <n — 1 and derivatives Vi Q with |I] < n. Equation (6] allows us to express
the latter in terms of Vi, ©, Vi s and Vq ®apep with |m|, [p|, |g| < n—2. Restricting to
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a# = 0 and observing that the right hand side of ([€.1), (€8] vanish at p, we conclude with
our induction hypothesis that Vy,, ®gcpc/(0) is obtained as an expression of s(0) and the
null data of Yapcp of order < n — 2.

For the quantities V,£(0) the induction step follows immediately from (6.1 and for
the quantities Vi, 5(0) it follows with ([€2]) by using (61]) again.

This proves the first part of the Lemma. The second statement follows because equa-
tion (6I7) shows that no restrictions are imposed by the field equations on the quantities
Ve (B .V E, E,) Yapcpy(0). By the argument given above all formal covariant deriva-
tives are given by algebraic expressions of the null data of ¥ at p and these expression
impose no restrictions on the null data. [J

By (EI) the symmetric parts of the covariant derivatives determined in Lemma [6.]
can be regarded as Taylor coefficients of corresponding tensor fields. By Borel’s theo-
rem ([6]) we can then find smooth fields O, 11, z/AJABCD, dApap near p whose Taylor
coefficients at p coincide with the Taylor coefficients determined by the procedure above
(but fairly arbitrary away from p). We can assume that these fields satisfy near p the
symmetry and the reality properties discussed in section With these fields we set
RABCC/DD/ = Qz/AJABCD €c'pr + (i)ABC’D’ €cp, which corresponds to the curvature spinor
whose Taylor coefficients entered the discussion above, and define the ‘curvature tensor’
R 1, by following (B3).

To decide whether these smooth fields do in fact satisfy the field equations at all
orders at p we first need to determine frame and connection coefficients consistent with
the curvature tensor.

7 The structural equations.

The frame and the connection coeflicients which we want to satisfy the structural equa-
tAions with the ‘curvature spinor’ R4apcc/pps will be denoted in the following by é*; and
I'4ar ¢ . It turns out that these functions are determined already by the subsystem

et Xt =0, (# g — RY ) X¥ =0, (7.1)

of the structural equations, where the fields et angi 74 g are given by the right hand
sides of ([Z2), (Z3) with e and I replaced by é and I and where X* = §° , 2. Assuming

(@) and (EI0) to be satisfied by é*; and f‘AA/ C g, these equations can be written
Bt et (8L e — L)+ T X et =0, (7.2)
DA p et + T A pofet  + 107  XFD; 4 g = R g X5, (7.3)
where the I'; ?; are given in spinor notation by
Dan € g =Tan “pep @ + f‘AA’  pep “,
so that they are real and satisfy f‘k“ = —f‘kli as a consequence of fl AB = fl (AB)-

Equations (7.2), (Z.3) imply that a smooth solution & ;(z*), T s € p(2*) near z* = 0
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with det(é ;) # 0 must satisfy
et p(0) =01y, Iy p(0)=0. (7.4)

Equations (T.2)), [Z3)) can be discussed by analysing the ODE’s which are implied by
them along the curves 7 — 7z%, 2% # 0. These ODE’s will be considered in section [d], for
our present purpose a more direct approach will be sufficient. To simplify the algebra we
rewrite the equations in terms of the unknowns

Hp=eéty -0ty Taa 9B,
to obtain them in the form
é'ukﬁyxy—l—é‘uk—ké#lisll,éyk+fkileé“i+f‘kile5#i:0, (75)

szB,y$V+szB+kaB5ﬁé“l+fzijkfjAB—RABksz:0- (7.6)

By taking formally partial derivatives, observing (Z4), and evaluating at 2* = 0 one
obtains unique sequences of derivatives

éuk,ul...uk(o)a FlAB,ul...uk(O)a k€N7

which are symmetric in the indices v; ... v, and are determined by the partial derivatives
of the field R g at the origin. By Borel’s theorem ([6]) we can then find smooth fields
c* . and f‘l A 5 near z# = 0 whose Taylor coefficients coincide with the coefficients given
above. Because of Rapm = R(AB) w1 and the structure of the equations, these fields can

be chosen such that ¢ j, is real and f‘l AB = f‘l (AB)- While the choice of the fields is rather
arbitrary away from z* = 0 they satisfy the structural equations at all orders at z* = 0
so that

ot L+ T X e T X6 = 02|, (7.7)
D4 pa + T g+ e pok e + 17  XFT; 4 g — R pra X5 = O(12),  (7.8)

where the symbols O(]z|*°) on the right hand sides indicate that the quantities on the left
hand side are for all n € N of the order O(|z|") as z* — 0.
With ([T4)) it follows that

¢ (0) =0, &5, (0)=0, T;45(0)=0. (7.9)

We restrict the following discussion to some neighbourhood of the origin on which the
smooth field é* ) = 6 + ¢ satisfies det(é" ) # 0. It is there orthonormal for the
metric §,, = 1ij 6,67, where the 6°, denote the 1-forms dual to the é* ;. Because
f‘i AB = f‘iBA, whence f‘ijk = —f‘ikj, the connection V defined by é*; and f‘ij k Tesp.
fi A B, which satisfies for instance @Z ey = f‘ij g € with @Z = @éi, is g-metric compatible
in the sense that @Q = 0.

The symmetries of the fields 'y ap and RA B jk imply the following results.
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Lemma 7.1 (i) The coordinates x* and the frame coefficients é* . satisfy the require-
ments [({7), (£-8), (4-19) of a normal gauge at all orders at z* =0, so that

(€ j(z) = 8" ;) &, at = O(|2]>), (7.10)

2t M (€7 1 (x) — 6" k) = O(|2|™), (7.11)

ok v Tyt j(x) = O(|z|>). (7.12)

(i1) Consider the curve T — x#(1) = T a2k, ok # 0, through the origin. The components of

its tangent vectors &* = x¥ in the frame é" i, given by z5(1) = o 6% (1 x. , satisfies
g ;g Y w

2(r) = %t = O(17 2. ]), (7.13)
the curve satisfies the geodesic equation at all orders at T =0,
Vi = O(|7 2.]), (7.14)

and the frame é, = é" O satisfies the equation of parallel transport along these curves
g

at all orders at T =0, .
Vi ér = O(|7‘ ZE*|OO) (7.15)

Proof: To obtain the relations (TI0), (Z11)), (Z12)) we contract (Z7) and (Z.8)) with 5ﬁ xt

and 5L x# respectively to obtain the relations
a0 e + T X (et 4 61 ) = O(|x]™), (7.16)
Mg, 0" + DA poret +19, X045 = O(|2]™). (7.17)
for the quantities
NN J ool AV — oL N NA _ _ sk vy A M — sk v i
& =é J(z)(su:zr , Er=atn ék(x), TP p =060, 2"Ty "  g(z), TV, =6, 2" T* ().

If ¢# = O(|z|P) and [4p = O(|z]?) with some p,q € N, these relations imply with (Z.9)
relations of the form

& oxt = 0(|z[PT?) 4+ O(|z]7Y), T4,z = O(|z|P™) + O(|z|72).

Because ¢ = O(|z|*) and f‘ABA = O(|z|?) by (T3), the second relation implies that
I'4 5, 2” = O(|z|*) whence also I'4 g = O(|z|*) and the first relation gives then ¢# , z¥ =
O(|z[?) whence é* = O(|z|%). Repeating the argument we conclude that ¢* = O(|z|>)

and T'A g = O(|z|>), which are the relations (ZI0) and (Z12).
Observing that

fkile5#i$AnA# = f‘klelnjid“ix’\m# :fklele = O,
the contraction of (7)) with z* 1y, gives

ék7UIV + ¢ 5Iljéyk +fkile G —|—f‘kile5'ui = O(|:E|Oo), (718)
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which implies with the previous result that ¢, = O(|x|>®), which is in fact ([TITJ).

Contraction of the relation (&" ;(7 x.)—6" ;) 6}, X = O(|7 x..|>*), which holds by (Z10),
with —6% (7 ) gives (TI3)). In terms of the frame one has

d .
(Vi :b)k = d—Tzk + 2T k [(T,T*)Zl = O(|7 x«|*),

and

Vier =20 T p(ra.) é = O(|T 2.]%),

by (ZI3) and (712). O

8 Formal and factual derivatives

The subsystem (T.I]) of the structural equations determines the functions é* ; and I
uniquely and implies that

ti/k=0(2l"), = R = O(|a|") (8.1)
with n = 1. Moreover, direct calculations involving (74), €I0), @I1), EI12), ©I3)

show that

Vi Q(0) = Vi Q(0), Vi I1(0) = Vy I1(0), (8.2)
for |k| < 3 and
@k(i)ABA/B/(O) = vk(I)ABA'B/ (O)7 @kJ)ABCD(O) = Vk1/}ABCD(O), (83)
whence o .
ViR i (0) = ViR i (0), (8.4)

for |k| < 1 where on the right hand sides are given the formal expressions derived in the
previous section and on the left hand sides the factual covariant derivatives of the smooth
fields Q, 3, ®apa'p’, Yapcp, R i at the point 2# = 0 with respect to the connection
V. These relations imply that

Van Vep Q+QOupap —Meapean = O(|2]"), (8.5)
Vaa T+ VEE QS aparp = Oz, (8.6)

Ve ®appp —VC 0 Q Papor = O(|z]"), (8.7)
Ve F'¢ABCF = O(|z["), (8.8)

hold with n = 1. Because the quantities Vi R® j5;(0) have been determined by invoking
the Bianchi identities (see the discussion of (8], BI0)) it follows from ([B4]) that

> ViR g = O(al™), (8.9)

cycl(igl)

with n = 1. The purpose of this section is to derive the following result.
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Proposition 8.1 Relations (81) to (89) hold true for all integers n € N resp. multi-
indices k.

Remark 8.2 The following argument covers in particular the vacuum case in which € is
set equal to 1 and the only non-trivial fields are given by e* 1, T';7 . and Yapcp.

Before we begin with the proof we need to make a few observations. Because only
a subsystem of the structural equations has been used so far, it is not clear whether the
order relations ([8I) hold for all n € N. The following result shows in particular how this
question is related to the Bianchi identity (8.9)).

Lemma 8.3 Denote by 4, *; the connection coefficients of the Levi-Civita connection of
the metric g, = njk 67, &%, with respect to the frame éj. If the torsion tensor t;7 ) of
the connection V behaves as ;7 = O(|z|V) for some N € N, N > 1, then I, — ARt =
O(lz|™).
IfNeN, N>1, and
> ViRt =0(z|Y), (8.10)

cycl(igl)

then £;%, = O(|z|N*t2), # 4y — R" gy = O(jz|NT1).

Proof: Denote by &7 the commutator coefficients satisfying [é; €] = &7 é;. With
Glik = &7 gy and ;1 = £,7 , nj; the torsion free relation can be written I';; 5 — T'x iy —
é1ik = trig. It is well known that this implies

2T — {Crin + rri— it} =i +thri —tins
The same relations hold with #;;, = 0 if f‘“  is replaced by 4;;%. This gives
2 (Chti — Ahti) = tin + o — ik,

which implies the desired result.

The connection V defined by ér and f‘ij k is metric compatible but at this stage not
known to be torsion free. As pointed out in section 2] the Bianchi identities for the torsion
tensor #;7 , and the curvature tensor 7 j;; then take the form

Z Viti* = Z (=™t "), (8.11)

cycl(igl) cycl(ijl)
Do Virttw= Y G (8.12)
cycl(igl) cycl(ijl)

By the symmetries and reality conditions of the fields defining R¥ 451 the arguments which
led to B.8) imply 3_., 1050 R ;i = 0 near p. Equation (811 can thus be written

Z Vitik = Z (i — RE i — 6™ 5t %),

cycl(igl) cycl(igl)
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Transvecting this equation with X?, observing (Z.I)) and the anti-symmetry of the torsion
tensor gives

Xi@il?jkl +£jki@lXi—|—@intAikl ::Ei (fkijl —Rkijl).

Similarly, transvecting the rewrite

& Bk
gl — - )
Z Vi (#" 11 ) Z 6™ " e Z Vi R i

cycl(igl) cycl(igl) cycl(igl)
of BI2) with X* gives
XV (7F" gji — R ij) + (P kji — R? 1) ViX? 4+ VX7 (A" g — R at)

:Almj’f'\hkleZ Xl Z @iéhkjl
The result follows now with (£9) by taking derivatives and evaluating at z* = 0. O

Assume that there exist a smooth solution to the field equations in the given gauge
which induces the prescribed null data at p. By the arguments given above the oco-jet
of the solution at p must then coincide with the expressions on the right hand sides of
R®2), B, BA). Tt is not obvious, however, that it must also coincide with the oo-jets
of the functions é* j, I, ks Q H ‘I’ABA'B', z/JABCD at p. The reason is, that, following
(B0, these functions have been defined so that their Taylor coefficients at z* = 0 coincide
with the symmetrized derivatives Vi) Q(0), Vo) 1(0), Vay®apap/(0), Vyapcp(0)
and it is not clear how much of the information encoded in the unsymmetrized derivatives
is transported by the symmetrized derivatives. In particular, while the Bianchi identities
are by (39), (310) part of the conformal field equations and the coefficients on the right
hand sides of ([82), (83]), (84) have been determined so as to satisfy these identities, it is
not obvious at this stage that relation (8I0) should be satisfied for integers N > 1.

Proof of Proposition [8.1} The induction argument to be given below will make use of
the following general considerations. Let T, . a; B..B, denote a smooth spinor field and

V a metric compatible connection with curvature tensor 7 ji; and torsion tensor #;7
To begin with assume that ;7 , = 0. If the derivatives on the right hand side of the
symmetrization formula

V(il .. 'vin)TAl...A]‘ B,..B| = ' E zﬂ.(l) z,,(n)TAl...Aj Bi...Bj,
" weS,

are then commuted to bring them into their natural order, one obtains an equation of the
form

. *
VnTa,..a; 8.8, = V) Ta,..a; 8.8, + Ca a,..a;B,..8,>

where the spinor field C* is a sum of terms which depend on the covariant derivatives
of T and r* i1 of order < |n| — 2. Using these formulas to substitute successively in the
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formulas for n = 3,4, ... the covariant derivatives of T" of lower order by their symmetric
parts one obtains formulas

VaTa,..a;8;.8, =V Tay.a,8,.8,+CnaaB..B, D=0, (8.13)
with spinor valued functions
Cn = Ca(V(p)T,Vqr) where [pl,|q| < n| -2,

which satisfy C(y,) = 0. These formulas show how the covariant derivatives of T" at the
point « = 0 are determined from the Taylor coefficients in (G.I) and the derivatives of the
curvature tensor at x = 0.

Formulas ([8I3)) represent universal relations. The functions Cy, depend on the con-
nection V only via the derivatives Vqr of its curvature tensor. (We ignore the fact that
the explicit dependence of C, on the Vg r may be written in different forms by using the
symmetries and the differential identities satisfied by the curvature tensor). The full index
notation of (8I3]) emphasizes that the explicit structure of the functions Cy, does depend
on the index type of the spinor field 7" and in following equations we shall write out the
appropriate indices.

With the notation of Section [6] the unknowns in the field equations must have repre-
sentations of the form

Va Q= Vi) Q2+ Cn(Vip) 2, Vg R), (8.14)
VoIl = Vo T+ Ca(Vip) IT, Vg R), (8.15)
Vn®apap = V) Paparp + Cn ABA’B’(V(p) ®,VqR), (8.16)
Vatvapcp = VmyYapop + Cn aBop(V(p) ¥, Vq R), (8.17)

with |p|,|q| < |n| — 2 and quantities V4 R which are understood as derivatives of the
curvature defined by V. Using these as a starting point we can impose equations (G.])
to ([GX) and proceed as in Section [6] to derive for all multi-indices k expressions for the
quantities Vi Q(0), Vi I1(0), Vk®apa 5/(0), Vitbapcp(0), and thus also for ViR j5,(0)
in terms of the null data, which are given by the totally symmetric part of Vi ¥ a5cp (0).
These expressions could be inserted into the equations above but for the sake of comparison
it will be better not to do this here.

Formulas (813 do not immediately apply to the functions Q H ) ABA’B’, z/JABCD
with the connection V and the curvature tensor # jki- They can be generalized, however,
to the case where the connection V is not torsion free by observing (2.I). The functions Cy,
will then depend on the symmetrized derivatives V(i)Ta, . 4; B;...5; of order k| < |n| -1
and on the derivatives of the torsion as well as on those of the curvature tensor.

Consider now the point p with z#(p) = 0 and assume that t; 7 ,(z+) = O(|z|N") with
some integer N’ > 1 as a* — 0. It follows then with (ZI]) that the restriction of (813
to the point a# = 0 is valid as it stands if |n| < N’ + 1. At that point we thus get for
In| < N’ + 1 the relations

Va Q= Vi) Q@+ Cn(Vip) 2 Vg 7), (8.18)
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Vall = Vi I+ Cu(Vip) IL Vg 7), (8.19)
Va®apan =V @apap + Ca apap (Vip) , Vg i), (8.20)

Vatapep = Viny Yapep + Ca apep(Vip) ¥, Vq ), (8.21)

with |pl,|q| < |n| — 2 and functions C,, which are identical with those appearing in the
corresponding equation in (814) to (8IT).

To compare these two sets of equations we observe that only the properties ([£71) and
(@I0) of the frame and the connection coefficients have been used to derive the normal
expansion (E1). Because these are satisfied by Lemma [ T also by the coefficients é* j and
F 71, the normal expansions of the fields Q S, @ABA/B/ 1/)ABCD can thus be expressed in
terms of the derivatives with respect to the connection V. This unphes V(k)Q Vo,
V( I = V011, V (I)ABA’B’ =Va®Papap, V ¢ABCD = V)¥apcp for all multi-
indices k (here and in the following all spinors are thought to be taken at the point z# = 0).
It follows that the right hand sides of the two sets of equations are distinguished now only
by the occurrence of the spinors V4 R in the first set and the spinors @q 7 in the second
set.

Consider now as a induction hypothesis the relations [82), 83) B4) with multi-
indices k such that |k| < N’. Because the formal derivatives of the tensor R’ j5; have been
determined such that the Bianchi identities are satisfied at all orders, relations ([84]) imply
that (8I0) holds with N = N’. It follows then from Lemma that the assumption
above on the torsion tensor is satisfied and (84) implies with the Lemma that Vg7 . =
@th kil = Vth k1 with |q] < N’. Comparing the two sets of equations above we can
obtain relations (82), (83]) (84]) with multi-indices k such that |k| = N’ + 1.

With the properties noted in the beginning of this section this implies that (82), (83)
[®4) hold true for multi-indices k of all orders. It follows that the order relations (81
and ([85) to (B3] are true for all integers n € N. [J

9 Transport equations and inner constraints.

We have prescribed the radiation field, read off the null data at the vertex p, and con-
structed sequences of expansion coefficients at p which can be realized as oco-jets at p of
smooth fields which satisfy the (conformal) field equations at all orders at p. We want to
discuss now which information can be derived from the radiation field in some neighbour-
hood of p on N,,.

By definition, the characteristics of any hyperbolic system of first order are those
hypersurfaces on which the system induces inner equations on (combinations of) the de-
pendent variables. On the other hand, the (conformal) Einstein equations induce as a
consequence of their gauge freedom constraints on their Cauchy data on any hypersurface.
On null hypersurfaces, which represent the characteristics of the (conformal) Einstein
equations, these facts combine and result in a particular set of inner equations. This set
splits into two subsets. There are equations which involve in particular derivatives in
the direction of the null generators of the null hypersurface. These will be referred to as
transport equations. The remaining equations only involve derivatives in directions which
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are still tangent to the null hypersurface but transverse to the null generators. These will
be referred to as inner constraints.

At most points of Np none of the frame vectors ey in the normal gauge is tangent to Np.
To derive from the complete set of equations subsystems which only contain derivatives
in directions tangent to N, one thus needs to take (point dependent) linear combinations
of the equations and the dependent variables. Whatever one does to obtain the maximal
number of transport equations will amount in the end to expressing the equations in terms
of a new frame field on NV, \ {p} which is such that three of the new frame vectors will be
tangent to N, \ {p}.

We shall describe the procedure and the resulting equations and derive the information
which will be needed to construct the desired fields on NV, near p. The following discussion,
which works out some of the considerations at the end of section [Blin a systematic way,
makes use of the analysis in [5], to which we refer for more details. Let {4 }q=0,1 denote
the new spin frame field. If it is chosen such that the null vector kg&ky is tangent to the
null generators on N, \ {p}, the vectors koR1, and k1R will be tangent to N, \ {p} as
well. Because such a frame field cannot have a direction independent limit at p, particular
care has to be taken to construct this frame so near p that the resulting equations will
still admit a convenient analysis near p. It will be required that the frame assumes regular
limits at the point p if p is approached along the null generators of N, \ {p}. Let kq
denote such a limit frame at p. It can be expanded in terms of the normal spin frame
ta underlying our earlier analysis in the form x, = k% 4ta. It will be convenient and
implies no restriction to assume the spinors k% ,, a = 0,1 or, in other words, the frame
transformation matrix (k4 ) A,a=0,1 to be normalized such that

A B A —B’
K2 g eap K b = €ab, K aTAB K® b = Tap - (9.1)

Here 7ap = v2a% 4n = €4%ea O 4+eateq V', the quantities eqp, Tap and o 4o referring
to the new frame take the same numerical values as e4p, Tap: and a* 44/, and the small
letter indices are treated in the same way as the large letter indices.

Because we did not specify the null generator along which the limit was taken, the
conditions above characterize in fact a family of frames at p. To describe them in detail,
denote by SU(2) the Lie group given by the set of complex 2 x 2-matrices ($%p)q,b=0.1
satisfying the conditions

a b a b’
s c€ab 8" d = €bd; S e Tabr 8 @ = Tear- (9.2)

Any s € SU(2) can be written in the form

B @

and a basis of its Lie-algebra is given by the matrices

1/i 0 1[0 i 1/0-1
h_§(0—¢>’ ul_i(i o)’ ”2_5(1 o)' (9-4)

The subgroup of SU(2) consisting of the matrices

s—<“‘ﬁ), a,BEC, lof2+|8P =1, (9.3)

¢
ez

0 et

vle &

ewwM—§<

) ., ¢€eR, (9.5)

27



will be denoted by U(1). Comparing ([@.1]) with (@.2) shows that a complete parametriza-
tion of the transformation matrices k“, is obtained by setting x4 4(s) = 644 s, with
s € SU(2). The corresponding frame spinors will be denote by xq(s).

We shall make use of the left invariant vector fields Z,,,, Z.,, Zn generated by u;, us,
h and define the operators

Zy=—(Zyy +12y,), Z-=—(Zuy, —1Zu,),

which satisfy the commutation relation [Z;,Z_] = 27 Z;,. It should be noted that SU(2)
is a real but not a complex analytic Lie group and Z,,, Z,, must be considered as real
vector fields while Z; and Z_ take values in the complexifications of the tangent spaces
of SU(2) and are complex conjugate to each other. If f is a complex-valued function on
SU(2) with complex conjugate f it holds thus Zy f = Zz f. In particular, if the k* , are
considered as complex-valued functions on SU(2) as indicated above we get

Z+I€A0=O, Z+I€A1=I€AQ, Z_FLAQZ—FLal, Z_FLA1:0, (96)

and if R4 o is its spinor complex conjugate we find with the rule above

ZokV o ="y, ZirY =0, Z.rVo=0, Z_rY1=8rYy. (9.7
Let ¢ qar(5) = e* aa k4 4(s) g4 «(8) be the frame field associated with k, at p and
denote by S? the sphere {z# € T,M/z, " = 0,v/22° = 1} in the tangent space of p. It
holds

’

:vfj(s) =gy (S) = aZa, s%035% o (98)

1 _ ~

=7 (% o + 2 Re(a B) 8" 1 + 2 Im(a B) 6" 5 + (Jaf* — |B[%) 6" 3),
and zf (s - t) = 2% (s) for all t € U(1). The Hopf ma
(s-1) pf map

S3 ~ SU(2) 35 — at(s) € S,

thus associates with the left cosets s - U(1), s € SU(2) the null directions x4 (s). It will
be assumed that the frame r4(s) (resp. cqa/(s)) is parallelly propagated along the null
geodesic 7 — Tk (s), 7 > 0, of N},. Because 14 (resp. eaar) is a p-centered normal
frame, it is related to the frame k, (resp. cqq/($)) along this curve by the 7-independent
transformation k4 4 (s) (resp. k% 4 &4 4 (s), which corresponds to a rotation in SO(3,R) ~
SU(2))/{1,—1} that leaves the direction eg invariant). While the null directions z (s) are
invariant under the action of U(1) the frames ¢, resp. ¢, are not and our prescription
defines in fact a smooth bundle of frames t4(7,s) (resp. cqq/(7,s)) over N, \ {p} with
projection 7 : t4(7,8) — Tak(s) (resp. caa(T,8) — Tak(s)) and structure group U(1)
(resp. U(1)/{1,—1}). For simplicity we will concentrate in the following on the bundle of
spin frames, the discussion of the bundle of vector frames being very similar. The parallel
transport of the frames defines lifts of the null geodesics 7 — 7% (s) to this bundle
(‘horizontal curves’). The tangent vector field defined by the lifts will be denoted by 0,
and 7 will be considered as a coordinate on Np. In the limit as 7 — 0 everything extends

smoothly with the limits of the fibers corresponding to the left cosets of SU(2) (in this

28



sense the limit is even preserving the bundle structure). However, while the projection =
has rank three over points of N, \ {p}, its rank drops to one in the limit to 7~ (p). In
the new setting this fact will be reflected by the singular behaviour at 7=1(p) of the frame
and the connection coefficients defined below. We denote the bundle in the following by
Np and consider it as a four dimensional smooth manifold with boundary 7~!(p), the set
of frames cqq/ () at p, diffeomorphic to R x SU(2).

To discuss the field equations one could choose a local section of the Hopf fibration
at p and push it forward with the flow of 9, to generate a section of Np. Because the
restriction of the projection 7 will then be a 1 : 1 map away from 7~ !(p), it will then be
obvious how to lift the frame field. However, apart from a subtlety which will be discussed
in the proof of the second part of Proposition it will in fact be more convenient to
formulate the transport equations as equations on va as has been done in [5].

A suitable lift of the frame field can conveniently be discussed by introducing on ./\7P
besides 0, vector fields X+ and S. Because the set 7~!(p) is parametrized by SU(2), the
field Z4 transfer naturally to this set. We set

Xy =2Zy, S=-2iZ, on 7w '(p),
and extend these fields to Np by Lie transport so that
[0-,X4] =0, [0-,5]=0.
It follows then that S is tangent to the fibers of Np and
Xi7=0, [X4{, X ]=-S

In fact, the first result follows from 0 = [0,, X1]7 = 0,(X47) — X431 = 0,(X4 7) and
the observation that lim,_.o X4+ 7 = 0 because the fields X1 become in this limit tangent
to the set m~1(p) on which 7 vanishes. The second result follows because it is satisfied
in the limit as 7 — 0 and because the definitions imply that [0;,[X4+, X ]+ S] = 0 on
J\7p. Because the images of the fields Z1 under the Hopf map are linearly independent,
the images of the fields X1 under the projection 7 will be linearly independent for 7 > 0
(and sufficiently small that no caustic points will be met).

The scalar fields 2 and s lift from N, to Np by simple pull-back under the projection
map. The fields Y apcp and Pap 4/ are in addition subject to a frame transformation so
that they are related to the lifted fields by aped(T, 8) = Yapcop(T 2 () k4 o(s) ... kP a(s)
and P ,pqrp (7’, S) =vaBA'B (7’ CC':(S)) KA a(S) e I_QB, b (S)

Only the fields cqqr = €44’ % kA" . with aa’ # 11’ are tangent to N, at the points
7 (s) with 7 > 0. Lifts of these tangent vector fields on A, to points of A, are not
immediately well defined because the kernel of the projection 7 is one-dimensional. For
7 > 0 there exist, however, unique lifts ¢, for aa’ # 117, i.e. fields satisfying T7(Caar) =
Caa’, that can be expanded in terms of the vector fields 0;, X, X_. Because coo is
tangent to the null geodesics of ./\/p, it follows then immediately that é,., = 0,. To
analyse the precise behaviour of ¢, as 7 — 0, we observe that by our earlier discussions
et aar = a” ax+0O(|z]) as z* — 0, which gives c# 4o = o 4ar K4 4 KA +O(|7]) in this
limit. For any smooth function f = f(z*) we find thus with z* = 724 (s) and ([@.3)

fucaa = fpat an K wA o +O0(7]) for ad’ #11".
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To see how this is related to the action of the vector field Xy on the lift of this function to
N, we observe that the vector fields X inherit properties of the fields Z1 such as (9.6,

(@7) and find with ([@.8)
Xif=1fu Xl an kP 0fY o) = =7 fab aa 6?0 RY 11,

and similarly
A A
X—f:—Tf,HOé“AA'H 1K 0o,

so that we can write
1 1
fo CM 01 = —; X+f+0(|T|), fo CH 100 = —; X_f+0(|T|)

It follows that the lifted fields with aa’ # 11’ must have expansions of the form

’ 1 ’ ’
Caa :eaoea/o Or — _(eaoea’l X++€a1€a’0 X*)"'C;:a/a (99)
T
with -
C;;a, = baa/ X+ —|— baa/ X_ + Taa’ 8-,—7 (910)

and complex fields byer and rq, satisfying
Taa’ = Taa’s boor =0, 1900 =0, baar = O(lTl), Taa! = O(|T|) (911)

Because there has not been specified a rule how to extend the new coordinates and the
fields ¢qq off /\7,,, there cannot be given an explicit coordinate expression for the field ¢;1.
It should be noted, however, that the field ¢11- is determined on /\7,, once the fields 44/,
aa’ # 11, are known there.

If it is assumed that the relation c,or = eaa HAaIiA, o holds in a full neighbour-
hood of the point p with an z#-dependent transformation matrix s, and it is used that
K 4 = € kB epa satisfies k4 4 k% B = —ep A, the well known transformation law which
relates the connection coefficients f‘aa/bc with respect to the frame ¢y, to the connection
coeflicients I' 4 - pc with respect to the frame e4 4. is obtained in the form

f‘aa’bc = _KB b€BC KC c,p ct aar +TaaBo KA a KA/ a’ﬁB b KC c:
Under our assumptions the derivatives k¢ e, C" aqr are defined on Np only for aa’ # 11’
so that the formula above can only be used under this restriction. With (@.6) and (@9) it
follows then that

~ 1 ’ ’
I‘aa’bc = _;(eao €a’ ! €p ! €c ! + €q ! €a’ 0 6bO 600) + 1—‘u,u/bc for aal 7é 11/7 (912)

with a complex-valued field ', that satisfies
TCooroe = 0, Caarve = O(|T|), (913)

so that ~
Loorpe = 0.
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In this form the coeflicients lift to Np. As discussed in [5], the coefficients T oarbe are in
fact obtained by contracting the connection form on the bundle of frames with the frame
field Eaa’-

On /\7,, the covariant derivative in the direction of ¢,4/, aa’ # 11/, which will be denoted
by Vaar, is now given with (@3), (@12) by the same rule as known on the base space so
that e.g. R R

vd 0’ djabcd = ede (660/ (wabcd) - I‘eO/ ! (a wbcd)f)-

It will be convenient to introduce Y4 = V440 as an additional unknown tensor
field. Because no rule has been specified to extend the new coordinates and the fields ¢qq/
away from /\7,,, there cannot be given an explicit coordinate expression for the derivative
of  in the direction of ¢11/. Because the field ¢/ is determined on ./\pr once the fields ¢4q,
aa’ # 11', are known there, the field Yuu/ (7, 8) = Saa 64 o &B' ,/ can still be discussed as
a tensor field on N,

We are in a position now to obtain the expressions for the transport equations induced
on /\7,, in the new gauge and to prove the following result.

Proposition 9.1 In the conformal gauge ({{-3), (Z-4) the transport equations induced on
N, by the conformal field equations and the structural equations uniquely determine the
fields Q, 11, @oparry and Yapea on Ny, once the radiation field

do(r,8) =" 0 k% 0k 0 k" o YABCD|pu—r kKB G RE g (9.14)

is prescribed there.

The fields so obtained also satisfy the inner constraint equations on Np.

Remark 9.2 A similar result can be obtained in the vacuum case 2 = 1. The discussion
of that case is more complicated than the one below because then the conformal Weyl tensor
does not necessarily vanish on Np,. We do not work out the details here.

Proof: The gauge conditions (3], (@4) read in the present setting
Q=0 Yoo =0, II=1IL, =270 on 7 '(p), (9.15)

Doy =0, A=0 on N, (9.16)

The transport equations induced by (G, i.e. the equations which involve the directional
derivative ¢gor imply in particular

07 Q= Yoo, 07 Yoo =0,
and thus Q =0, Xgpr =0 on /\7,,. With this it follows further
0- Yo =0, 0rX1 =0,
whence Yo, = 0, X1¢9- = 0 on Np. The transport equations induced by (G.1)), (G2) then

finally imply
0- %=1, 0.1I=0,
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and thus X1y, = 71I1,, I = II, on Np. Collecting results we find

Q=0, Sew=7lle'exw’, M=I, on N, (9.17)

The transport equations induced by the torsion free conditions are given by

Ing ~ ~ T ee’ ee’ ~
0= tbb/ aa’ — [Cbb’ ’ Caa’] - (be/ aa’ — Faa/ bb/) Cee’

with b = 00" and aa’ # 11’. Inserting here expressions (@9), (@12) and setting the
factors of J;, X1, X_ in the resulting equation separately equal to zero shows that the
content of this equation is equivalent to the conditions

1 1= _
arbaa’ + ; baa’ + ; 1—‘u,u/O’O’ = 1—‘u,u/OO blO’ + I‘aa’O’O’ b01’7 (918)

1 _
6Traa’ + ; Taa! = 1—‘u,u/OO 10 + I‘aa’O’O’ To1 — 1—‘u,u/Ol - 1—‘u,u,’O’l’u (919)

(which are satisfied identically for aa’ = 00"). )
The Ricci identity is given for ¢c/,dd’ # 11’ on N, by

Cee! (fddfab) - Edd’(f‘cc’ab) + fcc’af Caa 'y — fdd’af | R
_(fCC/ ul dd’ — fdd' " CC') f‘lff'ab =0 1/}abcd€c/d’ + (I)abc/d’ €cd-
With (@I7), Doorap = 0 and éyor = 9, it follows

OrTorab — L1000 Tiorab — Tior0ro Torvas = Pavorors

O0-T'o17ab —To1700 I'iorab — Lovroror Torvas = 0,

and thus with (@.9), (@.12)
1 _
OrT10rab + - {Ti0ab —T1000€a " € ® + D100 €a "€ ' } (9.20)

=T'10:00 M'orab + T1o0r0r0r To17ab + Pasoror

1 _
O-Torrap + = {Torap + Torooea " ® + Tovoo ea ' €'} (9.21)
=To100 T10'ab + To1roror Totrvab-

The transport equations induced by ([6.3)) are Vo < Py = Ypedo 2%y or, more explicitly,
1 ,
Or Poeyr1r + - {X-i-(I)bcb’O’ — 260" Poyopor + v ¥ Pocrror + q’bcb’l’} — cor (Prevror) (9.22)

= —2Tg ! Py pror — Dov Py @pepror — Torr I o0 ooy o — 7T Yoo €1
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while the transport equations induced by (6.4]) are V% o hapea = 0, or, more explicitly,
1 «
Or Yabe1 + ~ { X _Yabeo + 3 €(a * Poejo1 + Yaber } — Cior (Yabeo) (9.23)

=—=3T10 7 (a Yoo — T10' T 0 Yaber-

While the initial data at 7 = 0 are given for bua/, Taa’, Laarpe by (@11) and (@I3),
they still have to be specified for ®,pa/p/, Wabeq- In principle they can be read off from the
formal expansions determined earlier but we give a different argument because it sheds
some light on the content of the equations. It is convenient here to use the ‘essential
components’ ¥, = k4 (a kB kC kP ), YaBcop(0)) which are obtained by setting & of the
lower indices in brackets equal to 1 and the remaining ones equal to 0. Because the vector
fields Xt approach in the limit 7 — 0 the vector fields Z4, it follows with ([@.6]) and (@.I4)

lim X vy = Z_ (k™ 0 6P 0% 0 67 0) Yapcp(0) = —4 lim ¢y,
T—0 T—0
and, more generally,
lim X_ o, = —(4 — k) lim Ypy1, k=0,...,4.
T—0 T—0
In the notation of ([@.23)) this is precisely the relation
lim (Xfr(/)abCO +3 6(a 0 ¢bc)01 + 1/)abcl) = 0.
T—0
It allows one to determine the initial data 1¥4p.q4(0) from the radiation field and at the same
time ensures that the formally singular term in ([Q.23)) admits a limit as 7 — 0 along any
given given null generator of N,. Similarly one can determine by X} and X_ operations
the values of lim,_,o Puperpy from Pgggrgr with the result that

Thg%(XJr‘I’bcb'o’ —2¢0t Poyopror + e Bperror + Bpeprnr) = 0,

so that the formally singular term in ([@.22) admits a limit along a fixed null generator.
However, because ®oooror = 0 on N, by (0.16), it follows that

lim (I)aba/b’ =0.
T—0

The gauge condition ([@.I6) and the vanishing of the Weyl tensor on /\7,, lead to sim-
plifications. With this ([@22]) implies

2 _
0-®ooor17 + ~ Pooor1r = 291700 Pororor + 2T 017070 Pooor1/-

Because ®¢10/¢- is by assumption the complex conjugate of ®ggg/1/ it follows that

Dooor1r =0, Porger =0 on N, (9.24)
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Equation ([@.2I)) implies the coupled system
2 _
0-To100 + - To1r00 = (T10700 + Torroror) Torroo,

1 _
0-Lo1r01 + - o101 = I'toro1 Lorvoo + T'orvoror T'orvo1,
for FOI’OO and FOl’Ol whence
Pol/oo = 0, 1—‘01/01 =0 on Np. (925)
With ([@.I6), (@24), [@23) equation ([@.20) implies
0-I'1000 = I'toroo '10v00,
1
0-I'o01 + = I'io/01 = T'10r00 10701,
from which we conclude that
FIO’OO = 0, 1—‘10/01 =0 on Np. (926)

With this the remaining equations of ([@.21]) and ([@20) read
1
0-To1r11 + - o111 =0,

1
0-T'1o11 + - T = Prioror, (9.27)

which give

1 T
F01/11 = 0, F10/11 = —/ T/(I)llolol dT/ on Np. (928)
T Jo
With these results it follows from (@.I8]), ([@.19) that
boar =0, Tewr =0, ¢y =0 on N, for ad #11". (9.29)

With the resulting simplifications equations ([@22]) read
2
07 Po10r1 + p Q1017 = 0,
1
0-Poo1/17 + ~ ®go1/17 = —7 I Yooo0,
1
0-®o11/17 + - {X+ o101/ + Po11/1/} = —7 1L Yooor,
1
0-®1101 + - {X;®@1o00 +2P1101} =0,
1 _
0rP11110 + = {X;P101 + P} = —2T0111 Pororr — Doy Prioer — 7L Yi100.-
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The first three of these equations imply

II. [7 11 T ~
12 ! * 12 !
Do10r17 =0, Pgo1117 = - 7% %oooo A7,  Po11710 = - 7% pooor d7’ on N,
0 0

(9.30)
Explicit expressions can also be obtained for the solutions of the remaining equations.
In particular, imposing the reality conditions, using in the forth equation the expression
for ®gp1/1/ given by ([@.30), and observing that X7 = 0 gives for ®g11/1/ the alternative

expression
H* T !
@011/1/ = z/ (/ T/I2X_’lb0000 dT”) dT/. (931)
0 0

Comparing this with the expression in (@30), it is seen that consistency requires

1
Ortbooo1 + - {X_ %0000 + 410001} = 0,

which is in fact the first of the equations which follow.

With the results obtained so far the transport equations ([@23]) read

Or Yooo1 + % {X %0000 + 410001} = 0, (9.32)
O Yoo11 + % {X %0010 + 30011} = —T10/11 Yoooo, (9.33)
Or Yo1n1 + % {X %0011 +2%0111} = —2T'10'11 o001, (9.34)

Or Y1111 + % {X_vYo111 + Y111} = —3T10/11 Yoo11- (9.35)

Equation ([@32)) has the regular solution
1 T
o001 = —— / 7% X o000 dr’.
0

With ([@.28)), (@30) one obtains

H* T Tl _
Mo = - / (/ 7 Yoo dT”) dr’, (9.36)
0 0

which allows one to obtain successively integral expressions for the remaining components
of Yapea on Nyp. This completes the proof of the first part of the Proposition.

Equations (@) and (62) imply the inner constraints

0 = o1 (o) — Lovr ¥ 52 — Torr I 5 Supr 4+ Q®@opiryy — e €17y,
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0 = Zor (I0) + S By,

and their complex conjugates. A direct calculation using ([Q.17), ([©.25)), (9.26) shows that
they are indeed satisfied on N,.

There do not arise inner constraints from (G3]), [G4). Those which have not been
discussed yet contain the operator ¢11- and thus differentiations in directions transverse

to Np.

Inner constraints are implied by the torsion-free condition and the Ricci identity.
Formula (2.2]) suggests that the torsion free condition should read on N,

0= {[501/,510'] — (To1r * 100 — T100 * o17) 5ee/} (9.37)

There arises, however, a subtlety because the commutator of the fields ¢g1- and ¢1or con-
tributes a component which is tangential to the fibers of /\7,,. One way to deal this problem
is to follow the torsion-free condition in the form (Z4) and test whether the operator above
applied to a function f vanishes if this function is the lift of a scalar function on NV, whence
constant on the fibres. For reasons which become clear when we discuss the Ricci identity
we prefer a different procedure. If the operator (2.2) is lifted according to our rules, it
should not contain a vertical part and therefore the formula above should be corrected by
subtracting the vertical part supplied by the commutator. By (@29) the commutator is,
however, totally vertical,

1 1
[XJrvX*] - T 5 Sa

(017, Cror] = ==

2
and thus drops out after the correction altogether (as it does if applied to the lift of a
scalar function). A second subtlety arises because the relation above appears to involve the
operator &1/ which suggests that it is not an inner condition on NV,,. With (2.25), (2.26) and
with (O28]), which states that 'g1-11 as well as its complex conjugate T19/1/1 vanishes, it
follows, however that not only the factor of ¢;1- vanishes but that (f‘oy e’ o —T10r ¢ 01/) =
0 for arbitrary indices ee’. The inner constraint induced by the torsion free conditions is
thus indeed satisfied on Np.

The problem arising from the commutator of ¢y1/ and ¢1¢/ also affects the discussion of
the inner constraints induced by the Ricci identity. If one calculates the spinor analogue
of [21]), which reads for the components of interest here

(Vor' Vior — Vio Vo )A* = 1% 1100 A’ — to1r 107 Veer A,
one finds that the second term on the right hand side contains a term of the form
[Go1, 10 ](A*) — (To1 * 100 — T1or © 017) Geer (AY).

Performing here the replacement (o1, é10/] = [Co1/, ¢10/](A*) + 2= S(A) and then ignoring
the torsion term as suggested above, has to be compensated by the replacement

1
r por10r A’ = % por1or A — = S A,
T
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of the curvature term. To show that the inner constraint induced by the Ricci identity
vanishes, we have to take into account the corrected curvature term.

Under the action of the group U(1) the frame r, transforms as x, — sy (exp(¢p h))’ 4
and the components of a spinor field A = A% k,, transform thus as A\* — (exp(—¢h))® , Ab.
This implies that

d
SX" = ~2i g ((eap(~¢ h)* 5 A)|g—o = 20 B\,

with (h*p)a,b=0,1 denoting the matrix h in ([@4). The equation which should be checked
thus reads

0= 501'(f10/ab) — C1o/ (f‘Ol’ab) + f‘Ol’af T/ — f‘lO/af Tor '

- y - et - 21
—Tor " 100 = Taor 7 010 Tp prap — =) hay — Qavor€1700 — Papr/o €01,

where we set hqp, = h€p€qq. In the cases ab = 00 and ab = 01 a direct calcglation using
the results obtained above shows that this condition is indeed satisfied on A,. The case
ab = 11 is slightly more difficult. With the given results it readily reduces to the condition

1 -
0= - X+T1011 — Pr1o1-

Observing [@.30), taking the complex conjugate, and using (@3T)) shows that the condition
is indeed satisfied. This proves the second assertion of the Proposition. O

9.1 The fields on N, in the normal gauge.

In the first part of this section has been shown that there is associated with the radiation
field (B4), which reads in the present notation

B

A D E _FE'
'(/JQ(T,S):K/ or Olicoﬁ szBCD(TOé%E/Ii or 0/)7

a unique set of fields

Q7 2aa/; H7 (I)aba’b/v 1Z)abcd; and 6(10,/7 1—‘laa’bcv aa/ # 11/7 (938)

on ./\pr which satisfy the transport equations and the inner constraints induced by the
conformal field equations so that the 0000 components of tp.q coincides with 1o (7, s).
Apart from the explicitly described singular terms of ¢,, and faa/bc these fields are smooth
functions of 7 and s € SU(2). On the other hand, it has been shown in sections [@ to [
that with the null data derived from 1o at p can be associated fields

Q; 2A:AAH ﬁ; (i)ABA’B’a 1Z)ABCDa et AA, IA‘lAA’BC; (939>

which are defined and smooth on a neighbourhood of p, satisfy at p the conformal field
equations at all orders, and which have co-jets at p which are uniquely determined by this
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property and the requirement that null data derived from vy at p coincide with null data
at p derived from

7 A B D E _E
Yo(1,8) = ko kB 0k 0 kP 0 Vapep (T Ay KE 0 RE o).

While the Taylor expansions of these functions at p are fixed uniquely, they are fairly
arbitrary away from p.

To understand the relations between these two sets of fields, we consider the fields
([@39) at the points z# = 7 kg kP o 7" of N, and use the 7-independent frame trans-
formation x4, employed in section [ to express the fields ([@.39) in terms of the adapted
frame to obtain on R{ x SU(2) ~ N, the fields

Qr,8) = Qralp 67 057 o), T(r,8) = T(r o 67 0 57 o), (9.40)
Saa (1,8) = Saar (7 okt K g g o) KA. [ (9.41)

Daparty (1,8) = Paparp (T lhp KE R o) kA o kB Y o By, (9.42)
Dapea(T,8) = Vapep (T g KE oK o) 64 4 kE 4 k€ kP 4. (9.43)

Further, we use the considerations of section [ to derive fields ¢ 44/, I'garve, aa’ # 117, on
Rg x SU(2) from é* 44/, I' 44/ e which have the meaning and the singularity /regularity
structure described in (@9), (@12).

Because the fields ([@.39) satisfy the field equations at all orders at p and have only been
subject to a coordinate and frame transformation, the new fields ([@.40) - (@43) must satisfy
together with the transformed frame and connection coeflicients the transport equations
and inner constraints induced on /\7,, at all orders at p. The uniqueness property stated
in Proposition thus implies that the Taylor expansion of the fields (@40) - ([@43) in
terms of 7 at 7 = 0 must coincide with the corresponding Taylor expansion of the fields
@38) at 7 =0.

This fact can be expressed in the following way. If the curvature fields given by (0.3])
are transformed into the normal gauge of section @ by setting

b

_a b b d
Paparp = Papary K AR’ BREY AR’ By, YaBeD = Yabed K AK B K p, (9.44)

on N, then
Y1
_ ’ _ ’
Papap = Z l TR R o kP 0 R 0 Vi - Vi, e, Papars (0)+0(7[N ),
n=0
Y
_ ’ _ ’
Yapep =Y ] TR R o kP 0 R 0 Vi g - Vi, e dasep(0) + O(7[Y ),
n=0

for given N € N, where the coefficients on the right hand sides are the expansion coefficients
associated with the null data derived from ¢y at p as described in sections [5] and

One can also transform the frame vector fields and the connection coefficients given
by ([@38) into the normal gauge but more complete information is obtained by using the
curvature spinor

Rapcc'pp = QvYapep €c'p + Papcrp €cp,
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supplied on N, by (9.44) to integrate the analogues of equations (7.5) and (7.6) on N,

along the curves 7 — z#(7) = 72k, where zf = o* 44 k% %4 o is constant along these
curves. Let e, and I'; 4 5 denote the frame and connection coefficients which constitute
in the normal gauge together with the fields Q, II ® apcrpr, Yapep supplied by ([@38)
initial data on N, for the conformal vacuum equations and set ¢/ = et — 6" . The
restriction of equations (73] and (@) to the curves *(7) can then be written in the form

d )
Td—c”k+c“k+c“l6ic’jk+1"kzl7—Xi(c“i+§”i):()7 (9.45)
T

d . .
Td—FkAB+FkAB+F1AB5LC“k+FkllTXiFiAB —RYpaT X =0,  (9.46)
-
with Xi =4t P z¥. We are interested here in the solutions which are C! in 7 and satisfy
A ilrmo =0, Ty?plroo=0.

If the left hand sides of the equations are contracted with X!, the curvature term drops
out and one gets for c* = cH, Xf and T4 5 = Xf T4 5 equations which can be written

Tdi(Tc”) + (T_l ) 5f, (tc”)+ (Tl—‘il)Xi (c*;+0*;) =0,
T

P LA ) 4 (7 T ) ol (re) 4 (P T XD 5 = 0,

Because of the smoothness assumption and the initial conditions we can assume that
77 let and 71T, 4 5 extend as continuous functions to 7 = 0. This allows us to conclude
that

(eh) — o) o% ot =0, 0%, 2" Ty =0 along (7).
By contracting ([@45) with z 77,,, and observing that T'y #; X! 6% ; 2% n,, = Ty X X! =

0, one gets for ¢ = ¥ 1, c/ i the equation

d — v [
E(Tck)—l—(Tq)é,lj(T Le k)+l“k lXi(TCi)ZO,

which implies
'y (eH i — 0% ) =0 along zH(7).

This shows that the gauge conditions 7)), [£8), [@II) will be satisfied on A, by any C*
solution to (@.4H]), (O.46).
ZA =D
0

We know from the explicit calculations above that ® 4pa: kA KP o R I T—
®u00'¢r = 0 on N,. This implies that

’ ’
RA BCC'DD’ IiBoX*CC = ‘I)A BC'D’ IQBO I_ic o0KRDo0o = 0 along :E'LL(T).
The contraction of (1.46) with xZ ¢ thus gives

d ] 1-
E( FkABIQBo)—I—(TFlABHBo)(SL(T 1C‘uk)—|—Fk lXi(TFiABHBo):O,
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whence
w2 5rPo=0 along (7).

’ ! ! = ! ’
Consequently, T, €¢ ppr XPP =T, p kP o8 o +T1 ¢ pr k€ g RP o = 0 along z#(7)
and equation ([@48]) reduces to

d .
Td—c‘uk—I—C‘uk—i-cﬂlé,ljcyk—l—l—‘kleiTC‘ui =0
T
The only C! solution vanishing at 7 = 0 is given by c* ; = 0 and thus

et =06"y whence g, =mn, along z"(7).
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