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Abstract: We construct initial data for the conformal vacuum field equations on a cone
N, with vertex p so that for the prospective vacuum solution, the point p will repre-
sent past time-like infinity i ~, the set \/,,\{p} will represent past null infinity 7, and
the freely prescribed (suitably smooth) data will acquire the meaning of the incoming
radiation field. It is shown that: (i) On some coordinate neighbourhood of p there exist
smooth fields which satisfy at the point p the conformal vacuum field equations at all
orders and induce the given data at all orders. The Taylor coefficients of these fields at p
are uniquely determined by the free data. (ii) On the cone V, there exists a unique set of
fields which induce the given free data and satisfy the transport equations and the inner
constraints induced on )V}, by the conformal field equations. These fields are smooth at
p in the sense that they coincide there at all orders with the fields which are obtained
by restricting to V,, the functions considered in (i) and they are smooth on the smooth
three-manifold \V,,\{p} in the standard sense.

1. Introduction

A purely radiative, asymptotically flat space-time should be generated solely by gravi-
tational radiation coming in from past null infinity. Extraneous information entering the
space-time at past time-like infinity should be excluded. A natural problem to study then
is the asymptotic characteristic initial value problem for the conformal vacuum field
equations where data are prescribed on a cone ), with vertex p, similar to the cone
{x x* =0, x> 0} in Minkowski space with vertex at x* = 0. It is to be arranged
such that the prospective vacuum solution admits a smooth conformal extension in which
the point p acquires the meaning of past time-like infinity i ~, and the set \,,\ { p}, swept
out by the future directed null geodesics through p, represents past null infinity 7.
As in any other initial value problem for Einstein’s field equations, two different
subproblems must be analysed here: (i) one needs to analyse which part of the initial
data can be prescribed freely and how the remaining data are determined on the initial
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set V), by the field equations, (ii) for suitably given data one has to show the existence of
a smooth solution inducing these data on the initial set. In the situation indicated above
both tasks are complicated by the fact that the initial set \V}, is a smooth hypersurface
only away from the vertex p. The notion of smoothness and the way data are given thus
require particular considerations.

The present article is concerned with the first problem. It shows the existence of
initial data on the cone N, which satisfy the inner equations induced on N, by the
conformal field equations, which are smooth in the standard sense on the three-manifold
Np\{p}, and which behave at the point p at all orders like fields induced on ), by
smooth fields that are defined on some smooth coordinate neighbourhood of p. Data
with these properties provide a necessary input for the analysis of the second problem
with the arguments used in the article [2] by Chrusciel and Paetz.

From the point of view of the physical/geometrical interpretation, one would like to
construct the space-times from a minimal set of free data on N, which admit a physical
interpretation. There are various ways to prescribe data for Einstein’s field equations in
characteristic initial value problems (cf. [1]), the specific choice usually depending on
technical considerations and the particular situation at hand. A natural datum to prescribe
at null infinity is the radiation field, a complex-valued function that encodes asymptotic
information on the two components of the conformal Weyl tensor with the slowest fall-
off behaviour at past null infinity. It is thought to represent the two polarization states of
the incoming gravitational radiation.

That the radiation field is convenient from the technical point of view has been shown
in the proof of J. Kdnndr’s existence results on the characteristic asymptotic initial value
problem, where data are prescribed on an incoming null hypersurface C which intersects
past null infinity in a space-like slice ¥ = C N 7~ and on the future 7'~ of that slice
in past null infinity [8]. A basic step in that proof consists in showing that given the
radiation field on [7'~, the solution and its derivatives of any order can be determined
on J'~ by solving ODE’s along the null generators of 7'~, where the initial data for
the integration are derived from the data prescribed on C and X.

In the problem to be considered here the analysis is complicated by the fact that an
analogue of X on the hypersurface representing past null infinity necessarily shrinks to
a point when it approaches past time-like infinity, leaving no space for a hypersurface
like C. The information for the integration of the solution along the null generators of
N, has thus to be extracted completely from the radiation field on ). Together with
the need for a careful discussion of the smoothness requirements near the vertex p, this
leads to various algebraic subtleties.

This problem was studied for the first time in [5], where it was shown that for a suitably
smooth prescribed radiation field on \V,, and a gauge involving a null coordinate adapted
to V), the prospective solution to the conformal field equations is determined uniquely
at all orders along the cone \V,,. However, even under the most convenient assumptions,
such a null coordinate is singular at and near p. To show that any smooth solution is
determined uniquely in the future of the cone N, by its radiation field, there has been
performed in [5] a transformation into a gauge which is regular up to an order sufficient
for the argument. An existence result for smooth solutions would require, however, a
smooth gauge and thus, due to the quasi-linearity of the equations, a transformation
which enters the solutions at all orders.

To simplify this tedious problem (in Sect. 9 it will be seen that the analysis of the
transport equations on \V,, requires a discussion of singular equations in any case), the
analysis in the present article will be based on a smooth gauge right from the outset.
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The basic setting of our analysis is described in Sects. 2, 3 and 4, where the field
equations are discussed; a suitable gauge for the conformal factor, the coordinates, and
the frame field is introduced; and those features of the gauge are pointed out which will
be important in the following. This discussion is completed in Sect. 5 by introducing a
certain type of expansion of the fields at the point p, referred to as normal expansion at
p, and by considering its relation to the concept of null data and, in particular, to the
notion of the radiation field on N,.

In Sect. 6, 7, and 8, we analyse in detail the Taylor expansion at p of the prospective
solution to the conformal field equations. It is shown in particular how the Taylor coeffi-
cients are related to the freely prescribed radiation field on V), and that these coefficients,
which to begin with are determined only on a formal level, can indeed be realized as
Taylor coefficients of smooth fields near p. This property is important in establishing
the existence theorem given in [2].

In Sect. 6 an argument by Penrose ([10,11]) is adapted to the present situation and
it is shown (Lemma 6.1) that the covariant derivatives at p of the curvature fields, the
conformal factor, and a further scalar field are determined on a formal level uniquely
at all orders by the radiation field and that the latter is not subject to any restriction. To
relate these data to a space-time metric, we consider in Sect. 7 the structural equations,
written as equations for the metric coefficients and connection coefficients. It turns out
that a subset of these equations already determines the formal Taylor expansions of these
fields uniquely and that the expansion coefficients so obtained encode the information
on the chosen gauge (Lemma 7.1).

Borel’s theorem then ensures the existence of smooth fields near p whose Taylor
expansion coefficients at p are given precisely by the (symmetric parts of the) coeffi-
cients determined by the formal calculations. However, because only the symmetric parts
of the covariant derivatives enter the definition of these functions and only a subset of
the structural equation has been formally solved in the calculations, it is far from obvious
that the functions so defined do indeed satisfy at p the conformal field equations at all
orders in the standard sense of the covariant differential calculus. That this is in fact the
case (Proposition 8.1) follows by a somewhat involved induction argument.

In Sect. 9 it is finally shown how the data on N, are determined in terms of the
radiation field. The conformal field equations induce a system of inner equations on
which splits naturally into two subsets. The equations in the first set, referred to as trans-
port equations, allow us to determine all unknown fields entering the conformal field
equations once the radiation field is given (Proposition 9.1). The equations in the second
set are inner constraints on the fields so obtained. It is shown that they are satisfied by
a solution to the transport equations without imposing any restriction on the prescribed
radiation field.

To identify and analyse the inner equations on V,,, one needs to express the equations
in terms of a frame adapted to the cone, which is necessarily singular at p. If the result-
ing equations are solved and the fields are then transformed back into the regular gauge
underlying Proposition 8.1, they coincide with the field discussed in that Proposition at
all orders at p and thus satisfy a necessary smoothness requirement (Sect. 9.1).

The fields so obtained constitute a complete set of initial data on V), for the conformal
field equations and any solution to the vacuum field equations which admits a smooth con-
formal extension at past null and time-like infinity induces there data of this type. They are
the starting point for an existence proof in the category of smooth functions as givenin [2].

Besides supplying these initial data, the discussion of this article is of independent
interest because it provides a large set of detailed information, in particular on the
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asymptotic behaviour of the various field components. Following the considerations of
[5] in the present setting, it is also possible to determine along N, higher order deriv-
atives of the fields in directions transverse to \,,. This is not done here because this
information is not needed in [2]. At lowest order the following observation is of interest,
however. As shown in [6], the Newman-Penrose constants ([9]) of the solutions con-
sidered here are given by the values of the components W; i, of the rescaled conformal
Weyl tensor at the point p. It follows from the calculations below that these are encoded
in the radiation field. The discussion of this article and the existence results of [2] thus
show that there exist asymptotically flat (at null infinity) solutions to the vacuum field
equations with arbitrarily prescribed Newman-Penrose constants.

As pointed out at various places, the analysis presented in this paper also applies to
the finite characteristic initial value problem where data are given on a finite cone which
is thought of as being generated by the (future directed) null geodesics through a point
which is an inner point of a smooth vacuum space-time. In fact, the analogues of the
arguments used in Sects. 2—8 considerably simplify in that case. In Sect. 9, however, we
take advantage of the fact that the conformal Weyl tensor vanishes at null infinity. This
allows us to obtain explicit expression for various fields. The analogue of Proposition
9.1 has to be established in the finite problem by an abstract discussion of the transport
equations, which is not given here.

2. The Metric Conformal Field Equations

Let g denote a Lorentzian metric on a four dimensional manifold and V a connection
which is metric compatible so that Vg = 0. In the following we shall make use of a
frame {ey}x=o,...,3 which is orthonormal so that g;; = g(e;, ej) = n;;. With the direc-

.....

tional covariant derivative operators V; = V,, the connection coefficients I'; k j are
defined, by the equation V; e; =T'; k j ex. Therelation Vg = 0 1is then equivalent to the
anti-symmetry I';; ; = —I"; j;, where I';; ; = T k j &ki- All tensors (except the frame

fields) will be given in the following in terms of the frame ey.
For a vector field Z the commutator of the covariant derivatives satisfies

ViV, =V, Vo Z =l i 28 — 1% v 2!, 2.1)

where #; ' ; denotes the torsion tensor, given in terms of coordinates x* and the frame
coefficients e/ = < eg, dx* > by the relation

e =e'y e’ ety et k=T =Tk ey, (2.2)
and r' jki 1s the curvature tensor, given by
rtj =Tt jope s =T jue® + Tt p TPy =Tt TP
—Tk P =P e=u?lpry' . (2.3)

The last term on the right hand side of the equation above can also be expressed in terms
of the commutator of the frame fields because [e, e;] = ('t P | — ;P — P 1) e by
(2.2). The metric is torsion free if and only if the torsion tensor vanishes, which is the
case if and only if

(ViVike = Vi V)) f =0, (2.4)

for any C>-function f.
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The torsion and the curvature tensor satisfy in general the Bianchi identities

D Viiti= D My —ajrwt o, 2.5)
cycl(ijl) cycl(ijl)

Z Virhkﬂ: Z fjmirhkml’ (2.6)
cycl(ijl) cycl(ijl)

where the sums are performed after a cyclic permutation of the indices i, j, /.

Assume now that the metric g is torsion free and related by a conformal rescaling
g = Q2 with a conformal factor €2 to a ‘physical’ metric g which satisfies Einstein’s
vacuum field equations. These equations can then be expressed in terms of g and 2 and
derived fields as follows. We write

Rijki = Cijr +2{gitk Liyj + Lik g5}
where Cjjy; is the conformal Weyl tensor and

! ! , 1
Lij==(Sij+-—=Rg;j) with S;; =R;; — Z R gij,

2 12

denotes the Schouten tensor of g with Ricci tensor Ry; and Ricci scalar R. In terms of
the tensor fields

. e Lo 1
Q. gij=mnij. Lij. Win=9"C"ju. M= ViviQ+RQ,

the (metric) conformal field equations read ([3,4])
6QI—-3V,QViQ=0,
ViViQ=—-QLj+Ilgj,
Vil =-V¥Q Ly,
ViLjx—V;Lix =V w! kij»
\A wi ikt = 0.
These equations must be complemented by the structural equations, namely the torsion-
free condition
%' =0, 2.7)
and the equation
rt jkl = R ki (2.8)
which will be referred to as the Ricci identity.
We note that with the choice €2 = 1 the conformal field equations reduce to the vac-

uum field equations. The only non-trivial fields are then e/ x, I'; / ¢, and W' ji; = C' ji
and the only non-trivial equations are the vacuum Bianchi identity V; Wi jki = 0 and
the structural equations.

In the case of a more general conformal factor the equation 6 QT —3V;Q ViQ = 0
will be satisfied on the connected component C,; of a point g if it holds at g and the other
equations are satisfied on C,. This is a consequence of the fact that the other equations
imply the relation

Vi(6QIT-3V;QV/Q)=0.

In the situations considered here, i_n which either 2 = 0, V; 2 = 0 or Q2 = 1 at the point
p, the equation 6 Q IT — 3 V; Q2 V'Q = 0 need not be considered any longer.



268 H. Friedrich

3. The 2-Index Spinor Representation

The 2-index spin frame formalism is well adapted to the null geometry and will sim-
plify our algebraic task considerably. It amounts essentially to taking complex linear
combinations of various expressions in terms of maps of the form

4 A .
Tijk.. = Tanspcc... = Tijk..o' qa 0! gpra ccr ..., (3.1
where the «’s denote the constant van der Waerden symbols

aiMzi Sh+8h 8 —idh
V2 \si+isy s8-8 )

which are hermitian matrices so that ok 45 = ok pa’- Frame indices k, [, ... are thus
replaced by pairs of indices AA’, BB/, ..., where A, B, ..., A, B/, ... take values 0
and 1. None of the operations applied in the following to spinor fields mix primed and
unprimed indices. Therefore we shall write Tapc.. a'p/c’... instead of Taappccr... if
convenient. There is an operation of complex conjugation under which unprimed indi-
ces are converted into primed indices and vice versa. Because of the hermiticity of the
a’s the reality of a tensor Tj ... is then expressed by the relation

Taap'cc.. = Tan'Bpcc .-

These tensor fields are considered as members of a tensor algebra which is generated by
a 2-dimensional complex vector space and its primed version, both being related to each
other by an operation of complex conjugation. The members of these spaces are called
spinors. For more details (not in all cases employing the same curvature conventions as
used here) we refer to [11].

The ¢y, are also replaced by e4 o = a* 447 ey so that the indices A, A’ specify in this
case the frame vector fields. Then ey, e’ are real and eqy/, ey are complex (conjugate)
null vector fields with scalar products

j k
gleaar,epp) =njra’ qan Q" pp = €apeap, (3.2)

/ ! . . . .
where €ac, €4/¢/, €€ eA'C denote the anti-symmetric spinor fields with €g; = €y 1y =
/17 . . . . . .
€O = %" = 1, 50 that, assuming the summation rule for primed and unprimed indices
/ Pall . N

separately, 4 B = e4c €B€ and ey B = €41 €8°C denote Kronecker spinors. The €’s
are use to raise and lower indices according to the rules

A _ (AB

A
K B, KB =K €A4AB,

and similar rules apply to primed indices. Upper frame indices can be converted into
spinor indices by the van der Waerden symbols «; AAT — nij eAB A'B ] BB’

Though it will occasionally be convenient to go back to the standard frame notation
(or to employ a hybrid notation as discussed below), we shall assume most of the time
the fields (except the frame and the spin frame) to be given by their components with

respect to a suitably chosen spin frame field {t4}4=0,1 which is normalized such that
€(ta, tB) = €as, (3.3)

where € denotes the antisymmetric form on spinor space. As discussed in detail in
[11], the fields egyy = oty and ey = t1 1 correspond to real null vector fields while
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eor = Lot and eyy = t1 iy correspond to complex (conjugate) null vector fields which
have the scalar products (3.2) as a consequence of (3.3).
’ . . ’ .
Weset Daa BB cor =T 7 pal 4u afB o ccr. As a consequence of the anti-sym-
metry I';jx = —T'jx; these connection coefficients can be decomposed in the form
’ / - /
Tan PP co=TanPcec® +Tan? cec®,
. . . . 4 .
with spin connection coefficients ['aar 2 ¢ = 3 Taa BE ¢ that satisfy Tyapc =
. . . . !
I"447(Bc)- Covariant derivatives of spinor fields k4 resp. 72" are then defined by
’ - / /
VAA/KB = eZA/aM ICB + 1 gn B CICC, VAA/T[B = eZA,aM JTB + M gn B c’ JTC y

and the definition of the covariant derivative is extended to arbitrary spinor fields by
requiring the Leibniz rule for spinor products. For the commutators of covariant deriv-
atives we get

(Vee'Vop — Voo Vee) kK = R pecrpp 5, (3.4)

and its complex conjugate, where Rapcc'pp’ = Reapycc'pp’ denotes the curvature
spinor. The usual curvature tensor describing the commutator of covariant derivatives
acting of vector field is then given by

’

R* ppcopp =R kI @ A o g cerd ppy
=R geopp e + RY pecppep . (3.5)
The curvature spinor admits a decomposition of the form
Rapcc'pp = Vapcp €c'p + Papc'p €cp +2 A €ac €pyp€cp - (3.6)
The different components are the Weyl spinor
Wapcp = Wapcep) = —Cijua’ ap ol p Eokepd pl,
which contains the information on the conformal Weyl tensor, given by
Caaspccpp =—VYapepean €c'p — VaB /D €AB €CD-

and the spinor

_ 1 1 .
Daparp = Puapyap) = Papap = 3 (Rjk — — Rnji) ol an ok g,

4
which represents the trace free part of the Ricci tensor, and
- 1
A=A=—R
24
It holds then

Lapap = Papap + A€apeap,

and the rescaled conformal Weyl tensor wi ikl = Q- lci jki is represented by the
rescaled Weyl spinor

_1
Yapcp =2 Wapep.
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With this notation the conformal field equations read

Van T =-VEEQ@apap + Acapean),
VAA’ VBB/ Q=—-Q (QABA/B’ + AEAB EA’B/) + HEAB €A'B’,
VaP? ®pepp +2ean Vo A = Vascp VP g,

V2 g Yagcp = 0.

and the structural equations take the form

v v cc’ cc’
O=e" gu ve’ pp —e" g ve’ an —(Tpp " aar —Taa " et ce,
A A A A
r“ pccpp = RY” pecpecp + Q7 peprecp+2 A €7 (cepypecip-

where

A A A A F
r® gecpp =Tpp " Bue coo—Tee " e pp+Tec” FTpp " B
A F FF' FF' A
~Tpp " Flcc” B—Tcc™" pp—Tpp """ cc)Urp "B (37)

In the case of the vacuum field equations, in which Q2 = 1, the non-trivial unknowns are
given by e” 44/, Can/ B, Y apcp and the field equations reduce to VD g Yapcp =0
and the structural equations.

The following observations will become important later. Forget the meaning of the
fields considered above and let the spinor field R4opcc/pp’ in (3.6) be given by spinor
fields Wapcp, Papc p €cp,and A which satisfy the symmetries and reality conditions
stated above. The tensor RA4’ pp'cc'pp defined by (3.5) then satisfies the analogue of
the first Bianchi identity R’ | jki1 = 0 as a consequence of the symmetries and reality
conditions. In fact, the anti-symmetric tensor €; jx; = €[; jki] With €g123 = 1 has the spinor
representation

€AA'BB'CC'DD =1 (EAC €BD €EA'D/ €B'C’ — €AD €BC €A'C' €B'D')>

which implies

Raagpcepp €gp PECCPY =2i (Rap pa ™ & — Ry ape ™) =0, (3.8)
because
Ramea ™ o= ®apar —3Neapenr = Ry ape
An analogue of the second Bianchi identity Vi, R «] = 0 follows under suitable

assumptions. It holds
EE' __ cC'DD'
VEe'Raa s cc'pp €7 FF
=2i VEP'R VEP'R 3.9
=2i(epa ABCF'FD' +€BA A'B'CF'FD')» (3.9
and, with Wapcp = Q¥ aBcD,

cp c
V" Rapcrrp = =2 V" papcr

+ {VF Do ypprpy + 2era Ve A —VE pQ I/IABCF} , (3.10)
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which will vanish if the conformal field equations are satisfied. These relations are not
surprising, because the Bianchi identities have in fact been used to derive the symmetry
properties of the curvature spinors and also the conformal field equations. Later on we
shall need to consider the last two relations, however, under circumstances in which it
is not clear, whether the conformal field equations hold.

To shorten the following expressions it will be convenient to introduce some addi-
tional notation. In the case of spinor fields which carry pairs of spinor indices like AA’
which correspond to a standard frame indices j we shall occasionally employ a hybrid
notation by using the index j, so that equation (3.7) takes for instance the form

A A A A F
ripij=Tj%p et i=T;"p el ;+T;" ;" p
A F k k A
e T R R (Al D D I e B

The symmetric part of a spinor field Sap..gr is denoted by Sap..gr). The totally
symmetric part of a spinor field Ty, 4, B|..B is then given by T4, AL (B]..Bl)

J J
If T is a spinor field and n = (iy, ..., i,) a multi-index of order n| = n we write
VnT = V...V, T and VisT = Vg, ...V, T. If X' is a vector field we set
X" = X ... X and write X' ... X" V; ...V, T = X"VoT = X" Vi T.

In

4. Gauge Conditions

Unless stated otherwise the connection V will be assumed in the following to be g-com-
patible and torsion free. We need to restrict the gauge freedom for the conformal factor,
the frame, and the coordinates.

The conformal gauge near i~ .

The data for the conformal field equations are to be prescribed on the cone N, =
J~U{i~}. The vertex p = i~ is to represent past time-like infinity and V), is thought to
be generated by the future directed null geodesics starting at p. Thus one must assume that

Q:O, VAA/QZO, H#O at  p.

The equations V; Vi Q = —Q L jx +I1 g rand V; I1 = —VAQ Ly suitably transvected
with the geodesic null vectors tangent to the null generators of NV}, imply then that

Q=0 and MT#0 on N,, V;Q#0 on N,\{p}.

(Note that the assumption IT|, = 0 would imply that V;Q = 0 on \V),).

The sign of IT depends on the signature of g. The equation V,, V, Q = —Q L, +
IT g, implies for a future directed time-like geodesics y starting at p the relation
Og(y', vy = V,V,Q|,. If we want this to be positive we must assume that
sign(TT) = sign(g(y’,y")) = sign(noo) at i~. This discussion shows that with the
assumptions above on €2 and IT at p the field equations themselves will take care for the
conformal factor €2 to evolve so that it will show near p the desired behaviour on N,
and on the physical space-time region I*(\),).

Under a rescaling gy — &uv = 02 8uv> 2 — Q = 6 Q with some function § > 0
it follows

M|, — M|, = (M6~ YH|,.
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The transformation laws
Ruvlgl = Ryl = Rulgl =267V, V,0+467°V,0V,0
—07 'V, VRO 4072V, 0 VA 0) g,
and
Rlgl — RIg1=67"{R[g] — 667"V, V" 6}, 4.1)
of the Ricci tensor and the Ricci scalar imply the transformation behaviour
Suwlgl = S8l = Suwlgl — 2071 V.V, 0 +46072 V. 0V,0
Lo ) -2 A
+§{9 Vi V0 —207°V, 0 V" 0} g0

Let [* # 0 denote the tangent vector of a future directed null geodesics y (7) on J, with
y(0) = p, sothat V;l = 0. Then [ = 62 satisfies g(/, [) = 0, V;/ = 0. This gives

O I 1Y S, (8] = 1M 1" Syulgl — 207 (1MV,)* 0 + 4072 (1" V,,0)%,
or equivalently
M1 8,181 63 = 11" S,0lgl 671 +2(1* V)2 (071, 4.2)

For prescribed value of mps (8] this represents an ODE for 6 along the null generator
tangent to /. While the value of 8 can be fixed at p by specifying there the value of |IT|,
there remains the freedom to specify the value of V,,6 at p. The equations above suggest
that a convenient conformal gauge can be defined in a neighbourhood of p in J*(N},)
by requiring

Q=0 V,Q=0, IIT=2ny at p, 4.3)
and
"1V S,,[g1=0 on N, near p, R[g] =0 onJ*(N)) near p. 4.4)

This conformal gauge will be assumed in the following without any problem. When this
type of conformal gauge is used in a wider context, however, it is important to know that
for a given smooth background g equation (4.2) with rv Suwlg] = 0 yields arescaling
factor & on AV, which has the appropriate smoothness behaviour on AV, near the vertex
p so that the wave equation obtained on the right hand side of (4.1) by setting R[g] = 0
can be solved with these data on V), for a smooth function 6 near p. This question will
be discussed in the article [2].

The choice of the coordinates neari™.

We shall consider p-centered g-normal coordinates x** near p. These are determined by
the requirements that x*(p) = 0, that g,,(0) = 1,,, and that for given x* # 0 and a
real parameter T with |t| small enough, the curve y : T — 7 x* is a geodesic through
the point p. If g, and ", # ,, denote the metric coefficients and the Christoffel symbols
in the coordinates x*, the latter condition is equivalent to

0=2gp (V¥ ) =2gupx" Ty P 5t x) x* =2x" g5 (T ) x* — x¥ x* gua (7, X),
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which gives in particular that
x"Ty P (tx)x* =0, (4.5)

for small enough | |. The first equation above implies further 0 = x” x* g, 5 (7 x) x* =

% (x¥ x* gy (T x)) and thus x¥ x# g, ( x) = x" x* g,,,(0), whence

2x" gt x) + x"x* g pu(Tx) =2x"g,,(0).

With the first equations it follows then

d
0= 72" gy (T ) x" = Tx"x" g (1, 0) = 2 {7 (¢ guu(T %) = 27 20 (0) },

and thus

xvgvu(rx) =x" gvu(o)- (4.6)
This equation implies in turn xV x* g, (7 x) = x" x* g,,,(0) which gives by differen-
tiation 7 x" x* guapu(Tx) =—=2x"gy,(tx)+2x" g,,(0) = 0. Because differentiation

of (4.6) with respect to 7 gives 0 = x" g,,,,.(7 x) x* we see that (4.6) implies that the
curves y considered above are in fact geodesics. The relation (4.6) thus completely char-
acterizes normal coordinates in terms of algebraic conditions on the metric coefficients.
It follows from the equations above that g,,, ,(p) =0,T,” ,(p) =0.

In this gauge )V, is now given by the set {x" € R Nuw XM x7, x> 0).

The choice of the frame near i—.

Assume now that p-centered g-normal coordinates x* are given on a convex normal
neighbourhood U’ of p and take their values in a neighbourhood U of the origin of R*.
A frame {eg }r=0,12.3 is called a normal frame centered at p if it satisfies on U’

g(ej’ ek) = Njk;, and V}/’ek = O,

for any geodesic y passing through p. The frame coefficients satisfying ex = e 9,
are assumed to satisfy

et (0) = 6,6 .
The 1-forms dual to e; will be denoted by o/. Theno/ = o/ , dx” witho/ ,, e/ = (S,{.
That the frame field depends in fact smoothly on the coordinates x* follows by arguments

known from the discussion of the exponential function.
The equation x" gy, (t x) e” (T x) = x" nyu 8,’: expresses that the scalar product

g(y’, ex) is constant along the geodesic y. The representation g,,, = 1;; ol “ ol al-
lows us to rewrite it in the form

xHol w(tx) =xt 8,’; resp. x* 8{; e’ j(tx)=x". 4.7)
With this relation equation (4.6) implies
xH 1y 87 ol y(tx) = x"nu tesp. xF e’ k(tx) =x" 8k (4.8)

If the fields o/ « and the coordinates x** satisfy the last two relations, it follows
without further assumptions that the metric g,., = n;; o' ; 0/, satisfies (4.6). In terms
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of the frame field, the information that the x* are normal coordinates is thus encoded in

4.7), (4.8). ‘

Writing V; = V,,, the connection coefficients I'; / ; with respect to the frame e;
are defined by the relations V; e, = I Jre j- They satisfy I';jx = —Ijxj, where
Tije =il

The tensor field X (x) = x* 9, tangential to the geodesics through p is characterized
uniquely by the conditions

X(p)=0, V., X"(p)=g."(p), VxX=X. (4.9)

By (4.7) it can be written X = Xker with X¥(x) = 85 xV. The relation Vxe; = 0 is
equivalent to

Xy =8kx" ey =0, x* e, (4.10)
or
XM ) Tan Bex) =0, x*eU. 4.11)

This is the characterizing property of the normal frame.

In the following we shall refer to coordinates x* and a frame ey (resp. e 4/) which
satisfy the conditions above as to a normal gauge. We shall always assume this to be
supplemented by a normalized spin-frame {t4}a—0 1 Which satisfies eq4’ = t4 14 and
Vxta = 0. All spinor fields will be assumed to be given in this frame.

5. Normal Expansions

Let x* and eq 4 be given in a normal gauge and let X be the vector field defined
by (4.9) so that X = X'¢; = xAA ean Wwith XA (x) = xPoay AA" \where we set

L Y
Let 7' denote a smooth spinor field and Ty, 4, B|..B] its components in the normal
frame. If x} # 0, then we get with (4.7) and (4.11) along the geodesic y : T — 7 x}
d

— M
77 Tara; BB (T X = Ty a;my, (T X)X
!

cc

= xC Ty, a8 € co (T x)
Teo Py, T, Teo Big T

—Tecr ™ ay Tp,..a;8)..8,(TX:) ... = Tccr ™k g Ty, a8y (T Xx)

cc’

=X, VecrTa,..a;8)...8) (T Xs)

. 4 7 ! . .
with x*c C = xtsi O CC" Applying the argument repeatedly gives

d" ate CaC,
I = 1 n=n
don TAI-"AjBi-'-B]/c(T x*) X R ) Vclci . ..Vcnc;’ TAI-"AjBi-'-B]/c(T x*).

Setting x* = 7 x/ in the Taylor expansion

N
1 d’ N+l
Ta,..a;B,..B(TXs) = > o 14 Ton Lar.a;p;..5 (0) + O (7] ),
n=!
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the Taylor expansion of T}, A;B|..B, AP is obtained in the form

N
1
Tpyod B, () = D X VaTara;8.8,0) O(lx|V*h
mj=0 """
Vo
= 2 i X Ve Ta s g O+ O™, 5D
In|=0 ’

This will be referred to as the normal expansion of T at p. It will be known once the
symmetrized covariant derivatives Viy) Ty, . A,B)...B] (p), In|] > 0, are given.

5.1. The null data. The set C, ~ §? of future directed null vectors at p satisfying
g(, 1) = 0and g(l, eg) = 1oo/~/2 defines a parametrization of the null generators of
N, which are given in the normal gauge by the curves T — 1 I#, [#* € Cp,0<t<a
for some suitable @ > 0. Denote by W, the subset of V,, which is generated by the null
generators parametrized by a proper open subset W of C),.

Let x4 (x) be a smooth spinor field on W, \{p} which is parallely propagated along
the null generators and such that k4 A is tangent to the null generators of W,. Be-
cause the components x4 are given in the normal frame they are constant along the null
generators. Thus, k4 assumes a limit as T — 0 along the curve T — 7 [* and it can be
A = AN along that curve. The field x4 is then determined uniquely
A s ¢/ 4 with smooth phase factors which are constant

assumed that x4

up to phase transformations k

along the null generators.
For a given tensor field 7' with spin frame components Ty, 4, B|..B, We define its

null datum on VW, as the spin weighted function
To(x) = kM1 () .. @)RBI(x) L 2 Br () Ty, BB (), X e W,\{p).

With the normal expansion for 7' given above this gives at p the asymptotic representation

N n
T ’ ’
C ~C, A -B N+1
To(tx)zzmx Lo kG @BV o Ve,ep Taya s 0+0 (V.
n=0 "

for T > 0. The sum is determined uniquely by the coefficients
To(e) = k€ kGt b Veiop -+ Voo Tay a8, 0).

Because the directions 4 k4 = /44" are allowed to vary in the open subset W of C,,

knowing these coefficients is equivalent to knowing the symmetrized derivatives

Toar.ap BB ), Ve, €1...Ve, G Tayap BB00), n=12,.... (52)
In fact, let Say..A, ApAy = S(Al--AAp)(All---A;) be a symmetric spinor. It will be known
once its ‘essential components’, denoted by S;; = S(4, . Ap)i (A]..AL) > ATE known, which
are obtained by setting for given integers i, j, with0 < i < p,0 < j < g, precisely i
unprimed resp. j primed indices to equal to one. Choose (k°, k) = 8 (1, z) withz € C
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and the factor B = (1 + |z|%)~!/? which ensures the normalization condition on /. If
the function S(k) = k41 ... k% § Ar..A, A"..Ar 1s known then also the function
< Ap Ay

p q
/3_17_4 S(K) = Z Z (I;) (3) Sl] Zi Z/’

and the essential components are given by S;; = % (q;,j)' 82 ag (B7P718(k))|z=0-
While the null datum on VW, is a spin weighted function which depends on the

choice of k4, the spinors (5.2) at p are given with respect to the spin-frame ¢4 and are

independent of any phase factors. They will be referred to as to the null data of T at p.
Of particular importance will be for us the null datum

Yo =k kB kC kP Yapep, (5.3)

associated with the rescaled conformal Weyl spinor {¥4apcp. It is referred to as the
radiation field.

To illustrate some of its properties it will be convenient to proceed as follows. Let
SU(2,C) denote the subgroup of transformations (s ) A.B=0.1 € sI(2,C) which
satisfy eac s455¢p = epp and s4 54 B’ a(I)SB/ = oeg‘A,. Then the null vectors
[* = [*(s) at p with spinor components [ AL — gA 54 o sweep out the null directions
at p and the mAA = mAA (5) = 54 o 54 1 are complex null vectors orthogonal to JAA
By requiring them to be constant along the null generators tangent to / A they will be
parallely transported and tangent to \/,, along the generators.

The information on the radiation field is equivalent to the information contained
in the pull back of the tensor W;jx I’ I¥ to NV},. In fact, the latter can be specified by
the contractions of the symmetric tensor W;j I I¥ with the field m and 7. Because
Wijki 1" m7 1Xm! and W, 1" m/ I¥ ' are complex conjugates of each other and the
trace-freeness of W;jx; implies that Wy 1" m/ I¥ m! = 0, the information is stored in
Wijk 1P m/ 1 m! = 54458 05C 05D o ¥apcp = Yo. Note that this description includes
the complete freedom to perform phase transformations. If this is to be removed, one has
to restrict the choice of s to a local section of the Hopf map SU(2) 5 s — [ AN (s) € S2,
where S? is identified with the set of future directed null directions at p.

The null data of Y at p can be extracted from the null datum v on N, as follows. By
taking derivatives with respect to T at T = 0 one gets from the null datum the quantities

7 ¢ <C Co <C, A B C D
Yn(s) =s""05 1o ...s7" 05 "osT 05T 08" 08" 0 Ve - Ve,c,¥asep(0).

As discussed in detail in [5], these functions on SU (2, C) translate naturally into
expansions in terms of the coefficients 7, j(s) of certain finite unitary representa-
tions of the group SU (2, C). With this understanding the essential components of the
null data V(c, € ... Vg, )Y apc py(0) can be obtained by performing integrals of
1},, () Tt ;j(s) with respect to the Haar measure on SU (2, C). Any ambiguities related
to choices of phase factors as indicated above are cancelled out by the integration.

To prescribe the null datum in a way which ensures the necessary smoothness proper-
ties, we start with some symmetric spinor field ¥} z -, = ¥ g p (x*) which is defined
and smooth in a suitable neighbourhood of the origin p of R* (so that x*(p) = 0).
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This field will be thought of as being given in a conformal and normal gauge as
described in Sect. 4. Assuming s4 p as above, one can then consider on the cone

Np = {nuw x*x" =0, x0 > 0} (or more precisely on the bundle /\~/'p ~R{ x SU(Q2)
over V,,, see Sect. 9) the complex-valued function

A B _C_ D E_-E
Yo(t,8) =s" 05" 05 05 0¥ ipep (T s” 05" o), (5.4)

as a ‘smooth’ radiation field.

The gauge conditions give control on the null data at p for some of the unknowns
in the conformal field equations. It follows immediately from the discussion above and
the first of conditions (4.4) that the conformal gauge implies

®a5 P 0) =0, Ve, D Ve, G oan MO =0, n=12.... (55

6. Formal Expansions at i —

In a conformal gauge satisfying (4.4) the conformal field equations read

VaarVpp 2= —QPupap +11€apenp, (6.1)
Vaa T =-VEEQdpap, (6.2)

Va? ®pepy = Yapep VP @, (6.3)
VP g Yapep =0, (6.4)

and the curvature spinor (3.6) takes the form

Rapcc'pp = QV¥apcpec'p + Papce'p €cp. (6.5)

The following algebraic considerations will be simplified by rewriting equations (6.3)
and (6.4). The symmetry of ¥ 4pcp and the fact that vanishing spinor contractions
indicate index symmetries imply that equation (6.4) is equivalent to

Ve Yagep = Ve E YaBCD)- (6.6)

If (6.4) holds, equation (6.3) and its complex conjugate are equivalent to the equations

Vad @pcBC — VA 040 BC = —exp Ve T QyAEC (6.7
Vat @pc B¢ — VB 0pc?C = e B VHCQ yupen. (6.8)
With the identity
/ 4 ! / ! A 2 ! ! ! /
VAA CDBCBC :V(A(A CDBC)BC)+§V(AH CDBC)H/(B GC)A
2 ’ 1Fall 4 ’ ’ !/ !
3 €AB VHA @)y BC) - g €A VAL @)y B e

these two equations are seen to be equivalent to the equation
A B'C’ A B'C’
Va® ®pe =V @pc) )

2 / A ’ 2 - 18 all !
+§ WABCH VH(B Q EC)A +§€A(B VC)HIQ WABCH. (6.9)
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‘We note that

Yascp©), Ve Yapep(0) = VE £ Yapcp)(0), (6.10)

represent null data of {4 pcp and that the conformal gauge (4.3), (4.4) implies by (5.5)
and (6.9) that

Dpe FC0) =0, VoY Dpe FC0) =V Y Dpey BC0)=0.  (6.11)
With this it follows from equations (6.2), (6.1) and the gauge conditions that

VaaVppR2(0) =T1(0)eapeap, VkR0) =0 for |k|=0,1,3,4,5, (6.12)

VkII(0) =0 for |k|=1,2,3. (6.13)
The relations above imply furthermore that

Rapccpp'(0) =0,  VegRapccpp(0)=0. (6.14)

The following result, which relates the formal expansion of the curvature fields at
a given point p to the null data of Y 4pcp at p, applies and extends arguments of the
theory of exact sets of fields discussed in [10,11].

Lemma 6.1. In a neighbourhood of the point p let the fields 2, T1, ®apa'p, YaBCD,
e" anr, Tanr B ¢ be smooth and be given in a p-centered normal gauge for the coordi-
nates and the frame and in a conformal gauge satisfying (4.3), (4.4). Then, if they satisfy
the structural equations and the conformal field equations the covariant derivatives of
the fields 2, T1, ® apa'p, Yapcp at all orders are determined uniquely at p by the null
data V(El (B} - VEn E,) wABCD)(P), n € Ny, at p.

The resulting map, which relates to the null data of ¥ at p the covariant derivatives
of the fields 2, T1, ® spa'p’, YapcD at p, extends in a unique way so that it associates
with any freely specified sequence of totally symmetric spinors

EiE’
gABCD’ EE].‘.E:ABCD’ n = 1,2,3,...

at p formally ‘covariant derivatives’ the of fields 2, T1, ® spa'p’, Y apcp of any order
at p such that

/ ’ E/‘..E,/l
Yapcn(p) = Eapen, Vi, F1o Ve, B0 Yapepy(p) = & E'apcp. (6.15)

Remark. The coefficients e 44 and 'y 4 & ¢ have been listened in the first statement
because the field equations involve covariant derivatives of tensor fields and thus require
the frame and connection coefficients for their formulation. The following argument
will, however, never make use of explicit expressions of covariant derivatives in terms
of these coefficients and partial derivatives of the fields. It only uses formal expressions of
covariant derivatives and the standard rules for covariant derivatives such as commutation
relations and the Leibniz rule. Therefore the coefficients are not mentioned in the second
part of the Lemma. How they are determined will be discussed in the following section.
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Proof. Atlowest order the first assertion of the Lemma follows from (6.10), (6.11), (6.12)
and (6.13). That it is true at higher orders will be shown by an induction argument. In
this we shall repeatedly make use of (3.4) and (3.6) with A = 0. With the identity

Vee' Voo — Voo Vee = ecp Vi VY pry+ecrp Ve Voy 7

it is seen that (3.4) and its complex conjugate are with our assumptions equivalent to the
relations

c D' B c D - B
ec'p Vi~ Vpy  ka=QYapcpk”, €cpVie Vpy© ka = Pcpap k”,

’ ’ 'y ’ no_ - 'n _ n’
PV C P, = 0, pC0 kB PV C vy Py = Qe CP kB

k]

While the induction argument is fairly obvious for the fields €2, I1, it is more involved
in the case of ® 4 g 43 and Y4 pcp- The following observations are important. Consider

the quantities Vg, Ep . VE, E, Y apcp with n > 2. If the covariant derivatives would
commute it would follow that
Ve, Bt Vg, B agep = Vg, B L Ve, BV Yagen). (6.16)

In fact, any order of the upper indices can be achieved by commuting the covariant deriva-
tives. If can be shown that the lower indices can be brought into any order without chang-
ing the position of the upper indices, the assertion will follow. Consider, for instance, the
index positions given on the left hand side of the equation above. To interchange the indi-
ces Ey and A (say) we commute Vg, E} to the right until we can use (6.6) to swap Ej and
A, then we commute again to bring V4 E} back to the k-th position. To show that indices
Ey, E can be interchanged we operate with Vg, Ey as before to get V4 Ei, then commute

VE; Ej to the right and use (6.6) again to get Vg, E} , then commute VA Et to the right

to get VE; Ey by using again (6.6). Finally, commute V; Et and VE, E} into the k-th
and j-th position respectively so that the order of the upper indices remains unchanged.

If the covariant derivatives do not commute one can still operate as above but use (3.4)
and (3.6) with A = 0 each time we commute derivatives. By this procedure the curvature
spinor R* pcc/pp and its derivatives enter the expressions and (6.16) is replaced by an
equation of the form

VE, Er . Vg, Ey YaBcp = V(E, Er . Vg, En) YaBcpy + ..., (6.17)

where the dots indicate terms which depend on the curvature tensor and its derivatives
and thus via the field equations on the fields €2, s, @ 4pa’p’, Y apcp and their covariant
derivatives of order < n — 2. Restriction to p then implies with the induction hypothesis
that the Vy ¥ 4pcp(0)with [n| > 2 can be expressed in terms of s(0) and the null data
of Y apcp of order < n.

Using (6.7) and (6.8) to interchange unprimed as well as primed indices we conclude
by similar arguments that for n > 2

VElEl ...VEnE"CDBCBC :V(EI(EI --~VE,7 "q)BC)BC)+ Cey (6.18)

where the dots indicate the terms of order < n — 2, which are generated by commutat-
ing covariant derivatives and the terms which arise from the right hand sides of equa-
tions (6.7) and (6.8). These terms and the commutators contain expressions V¥ Apcp,
Vj}[_/A/B/C/D/ with |K|, |j| < n—1 and derivatives V] Q with |1| < n. Equation (6.1) allows
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us to express the latter in terms of Vi 2, Vp s and Vq @ apcp with im|, |p|, |q| < n—2.
Restricting to x* = 0 and observing that the right hand side of (6.7), (6.8) vanish at
p, we conclude with our induction hypothesis that Vy, ®gcp/¢/(0) is obtained as an
expression of s(0) and the null data of Y 4pcp of order < n — 2.

For the quantities V2 (0) the induction step follows immediately from (6.1) and for
the quantities Vyps(0) it follows with (6.2) by using (6.1) again.

This proves the first part of the Lemma. The second statement follows because equa-
tion (6.17) shows that no restrictions are imposed by the field equations on the quantities

Vg, E . Vg, E Yapcp)y(0). By the argument given above, all formal covariant
derivatives are given by algebraic expressions of the null data of ¢ at p and these
expressions impose no restrictions on the null data. 0O

By (5.1) the symmetric parts of the covariant derivatives determined in Lemma 6.1
can be regarded as Taylor coefficients of correspondmg tensor fields. By Borel’s theo-

rem ([7]) we can then find smooth fields SZ H 1//ABCD, CDABA/B/ near p whose Taylor
coefficients at p coincide with the Taylor coefficients determined by the procedure
above (but fairly arbitrary away from p). We can assume that these fields satisfy near
p the symmetry and the reality properties discussed in Sect. 3. With these fields we

set Ragcce'pp = QL¥apep €c'p + Paperp’ €cp, which corresponds to the curvature
spinor whose Taylor coefficients entered the discussion above, and define the ‘curvature
tensor’ R! ik by following (3.5).

To decide whether these smooth fields do in fact satisfy the field equations at all
orders at p we first need to determine frame and connection coefficients consistent with
the curvature tensor.

7. The Structural Equations

The frame and the connection coefficients which we want to satisfy the structural equa-
tions with the ‘curvature spinor’ R4gcc pp Will be denoted in the following by é*;
and Iy o € p. It turns out that these functions are determined already by the subsystem

flrer X' =0, (1 pu— R pu) XF =0, (7.1)

of the structural equations, where the fields i1 and 74 gy are given by the right hand
sides of (2.2), (2.3) with e and T replaced by ¢ and I" and where Xt =4t u X", Assuming
(4.7) and (4.10) to be satisfied by ¢ ; and I aa € B, these equations can be written

p xSl —sh e xer =0, (7.2)
~A NOA ok N oykp A pA k
I B’M)CM+F]( B5ﬂe“1+rljkx Fj B=R"pru X", (7.3)
where the I'; ! ; are given in spinor notation by
A / A ’ ~ /
Can €€ g =Tun pep © +Tan© pes®,

so that they are real and satisfy fkil = —fkli as a consequence of fz AB = fl (AB)-
Equations (7.2), (7.3) imply that a smooth solution é* ; (x*), r aa € p(x*)near x* =0
with det(e* ;) # 0 must satisfy

e p(0) = 8"y, Ty p0)=0. (7.4)
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Equations (7.2), (7.3) can be discussed by analysing the ODE’s which are implied by
them along the curves T — T xE, x #£ 0. These ODE’s will be considered in Sect. 9,
for our present purpose a more direct approach will be sufficient. To simplify the algebra
we rewrite the equations in terms of the unknowns

A _ 2 - C
Mr=ey =58y, Taa" B,
to obtain them in the form
E"k,vx”+é“k+E“18ié”k+Fki1Xlé“i+Fki1X18“,-=O, (7.5)
FZAB’UXV+F[AB+FkA35ﬁéH1+F1ijijA3—RABkIXkZO. (7.6)

By taking formally partial derivatives, observing (7.4), and evaluating at x** = 0 one
obtains unique sequences of derivatives

o), T2 00, keN,

which are symmetric in the indices v; ... v and are determined by the partial deriva-
tives of the field R4 Bkl at the origin. By Borel’s theorem ([7]) we can then find smooth
fields ¢ ; and f‘z A p near x* = 0 whose Taylor coefficients coincide with the coef-
ficients given above. Because of R ABK = R( AB)k and the structure of the equations,

these fields can be chosen such that ¢/ j is real and f‘; AB = f‘l (AB)- While the choice
of the fields is rather arbitrary away from x* = 0 they satisfy the structural equations
at all orders at x** = 0 so that

xS T X+ T XS = 0(x™), (1)
DA pox + T g+ T A gl "+ T XA T4 g — R gy XF = 0(1x|™),

(7.8)

where the symbols O (]x|*) on the right hand sides indicate that the quantities on the

left hand side are for all n € N of the order O (]x|") as x* — 0.
With (7.4) it follows that

¢ p(0) =0, &4, (0)=0, I450) =0. (7.9)

We restrict the following discussion to some neighbourhood of the origin on which the
smooth field e ; = §* k + Py satisfies det(e* ;) # 0. It is there orthonormal for the
metric g,w =n;j6' 67 vy where the 6' ,, denote the 1-forms dual to the é/ ;. Because

F, AB = I‘l BA, Whence Fl ik = _Flk]7 the connection V defined by e and F Iy
resp. l" B, which satisfies for instance V ep = F J ¢ éx with V = Ve , is g-metric
compatible in the sense that & g=0.

The symmetries of the fields ['capand Rap jk imply the following results.

Lemma 7.1. (i) The coordinates x"* and the frame coefficients e* y satisfy the require-
ments (4.7), (4.8), (4.10) of a normal gauge at all orders at x"* = 0, so that

@ j(x) = 8" ))&l x" = 0(Ix™), (7.10)
xH (@Y g (x) — 8" 1) = 0(1x]™), (7.11)
KXV T (x) = O(Ix|). (7.12)
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(ii) Consider the curve v — x*(t) = © x&, x! # 0, through the origin. The components

of its tangent vectors x* = xL' in the frame " |, given by K(r) = xl 6% w (T X4), satisfies

@) =8kl = 0l ™), (7.13)
the curve satisfies the geodesic equation at all orders at T = 0,
Vik = 0t x,%), (7.14

and the frame é; = é* dyn satisfies the equation of parallel transport along these
curves at all orders at T =0,

Viér = O(t x:|). (7.15)

Proof. To obtain the relations (7.10), (7.11), (7.12) we contract (7.7) and (7.8) with
3ﬁ x* and 3L x™ respectively to obtain the relations

o xV et sl e H T X @R+ 8 = 0(1x]™), (7.16)
A g xV+ DA sl + 17 XA T4 5 = 0(1x™). (7.17)
for the quantities
&= )8l = at e @), T =8 xt T p(),
f’ij = (S{fx” f‘kij(x).
If é* = O(|x|?) and T4 g = O(|x|9) with some p, g € N, these relations imply with
(7.9) relations of the form

&y x” = 0(x|P?y + o(x4th, T, x" = 0(xIPh + 0(x|77?).

Because ¢#* = O(|x|3) and ['4 B = 0(|x|2) by (7.9), the second relation implies that

' 5, x" = O(|x[*) whence also ['4 5 = O(|x|*) and the first relation gives then

¢* ,x¥ = O(|x]’) whence é* = O(|x]’). Repeating the argument we conclude that

& = 0(|x|®) and T4 5 = O(|x|*), which are the relations (7.10) and (7.12).
Observing that

Dol XP8%x e = T jr X T 88 x* iy = T i X9 X' =0,
the contraction of (7.7) with x* au gives
G x" +&8L e A T X+ T T X8 = 0(1x]™), (7.18)
which implies with the previous result that ¢ = 0(|x|°°), which is in fact (7.11).
Contraction of the relation (" ;(t x4) — 8" ;) B[L x4 = O(]t x4]°), which holds by
(7.10), with —6% , (7 x4) gives (7.13). In terms of the frame one has
(@0 = e B K v 2 = Ol l),
and
Viee =2/ T et x) 8 = O(IT x,]™),

by (7.13) and (7.12). O
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8. Formal and Factual Derivatives

The subsystem (7.1) of the structural equations determines the functions é* ; and f‘i J e
uniquely and implies that

il =00x", = R = o(xI" (8.1)

with n = 1. Moreover, direct calculations involving (7.4), (6.10), (6.11), (6.12), (6.13)
show that

Vk Q0) = Vk (0), Vi I1(0) = Vi TT1(0), (8.2)
for |k| < 3 and
Vik®apap(0) = Vk®apap (), Vivapep©) = Vkvapep(©0),  (8.3)
whence
VkR' j11(0) = VkR' j1(0), (8.4)
for k| < 1 where on the right hand sides are given the formal expressions derived in
the previous section and on the left hand sides the factual covariant derivatives of the

smooth ﬁeldAs fZ, S, qA)ABA’B’, &ABCD, R jki at the point x* = 0 with respect to the
connection V. These relations imply that

Van Ve Q@+ Q@apap — Meapean = O(x|"), (8.5)
Varn T+ VEEQ b apap = 0(x/"), (8.6)

VP ®appp — VE pQ Yapcr = O(x "), (8.7)
VE paser = O (x|, (8.8)

hold with n = 1. Because the quantities Vi R jk1(0) have been determined by invoking
the Bianchi identities (see the discussion of (3.9), (3.10)) it follows from (8.4) that

> ViR'yi=0(x"), (8.9)
cycl(ijl)
with n = 1. The purpose of this section is to derive the following result.

Proposition 8.1. Relations (8.1) to (8.9) hold true for all integers n € N resp. multi-
indices k.

Remark 8.2. The following argument covers in particular the vacuum case in which
is set equal to 1 and the only non-trivial fields are given by e* , I'; / x and ¥ apcp.

Before we begin with the proof we need to make a few observations. Because only
a subsystem of the structural equations has been used so far, it is not clear whether the
order relations (8.1) hold for all n € N. The following result shows in particular how
this question is related to the Bianchi identity (8.9).
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Lemma 8.3. Denote by 7. "'1 the connection coefficients of the Levi-Civita connection
of the metric g,y = 067 &k, with respect to the frame éy. If the torsion tensor

i d of the connection V behaves as fidy = O(|x|N)f0r some N € N, N > 1, then
Dy =t = 0(x V).
IfN e N, N > 1, and

> ViR = 0(x), (8.10)
cycl(ijl)

then 1% = O(Ix|N*?), #' 41 — R" kji = O(1x|N*).

Proof. Denote by ¢/ the commutator coefficients satisfying [é;éx] = &7/ é; I
With &k = &7/ xnji and ;5 = 7/ xnj; the torsion free relation can be written
Fl,k — Fk,l &1ik = fx i1 It is well known that this implies

20w = {Crik+Ckii = Cinty = hix +1x1i — likl.
The same relations hold with f;;x = 0 if fz i k is replaced by ;. This gives
2 Uk = Pri) = fik +fri — fikas
which implies the desired result.
The connection V defined by ¢; and I'; / ; is metric compatible but at this stage not

known to'be torsion free. As pointed out in Sect. 2, the Bianchi identities for the torsion
tensor #; / ;. and the curvature tensor 7' ji; then take the form

> Vidifi= D =i i, @.11)

cycl(ijl) cycl(ijl)
Vit i= DL 5" (8.12)
cycl(ijl) cycl(ijl)

By the symmetries and reality conditions of the fields defining R, j1 the arguments which
led to (3.8) imply >\ i) Rk iji = O near p. Equation (8.11) can thus be written

ri _A _A'mjAml-
Z Z( jl ijl — i fmk D)

cycl(ijl) cycl(ijl)

Transvecting this equation with X, observing (7.1) and the anti-symmetry of the torsion
tensor gives

A

Xivifjk[+fjkilei+Vinfik[=xi(fkij[—Rkij1).

Similarly, transvecting the rewrite

S (nh ph ~ ~h A
DN =R = D i e — D ViR,

cycl(ijl) cycl(ijl) cycl(ijl)
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of (8.12) with X' gives

XUV " jr — R ) + G gji — R 1) Vi X+ Vi XD i — R ar)

S ah i i & ph
=0 i X =X DT ViR
cycl(ijl)

The result follows now with (4.9) by taking derivatives and evaluating at x* = 0. O

Assume that there exists a smooth solution to the field equations in the given gauge
which induces the prescribed null data at p. By the arguments given above the co-jet of
the solution at p must then coincide with the expressions on the right hand sides of (8.2),
(8.3), (8.4). It is not obvious, however, that it must also coincide with the co-jets of the
functions e , F It Q 1'[ ‘DABA/B' lpABCD at p. The reason is, that, following (5.1),
these functions have been defined so that their Taylor coefficients at x* = 0 coincide with
the symmetrized derivatives Vg 2(0), V) I1(0), Vay @ aparp (0), Vi)W apcp(0) and
it is not clear how much of the information encoded in the unsymmetrized derivatives
is transported by the symmetrized derivatives. In particular, while the Bianchi identities
are by (3.9), (3.10) part of the conformal field equations and the coefficients on the right
hand sides of (8.2), (8.3), (8.4) have been determined so as to satisfy these identities, it
is not obvious at this stage that relation (8.10) should be satisfied for integers N > 1.

Proof of Proposition 8.1. The induction argument to be given below will make use of
the following general considerations. Let Ty, A; B|..B| denote a smooth spinor field

and V a metric compatible connection with curvature tensor ri jki and torsion tensor

ti /. To begin with assume that #; J ¢ = 0. If the derivatives on the right hand side of
the symmetrization formula

V(il N Vln)TA] Aj B Bk i’l' Z Vlrr(l) Vin(n)TAl.HAj B;..‘Bi
eS8,

are then commuted to bring them into their natural order, one obtains an equation of the
form

VYnTa,. a;B,..8, =V Ta, a8 B/+C Al..Aj B|..B}’

where the spinor field C* is a sum of terms which depend on the covariant derivatives
of T and r' jki of order < |n| — 2. Using these formulas to substitute successively in
the formulas for n = 3,4, ... the covariant derivatives of 7' of lower order by their
symmetric parts one obtains formulas

YT .a;8,.8, = Vo) Ta,..a; 8.8, * Cna,.a;8..8, M=0, (813)
with spinor valued functions
Ch = Cn(v(p)T» Vq r) where [pl,Iq| < [n|]—2

which satisfy Cny = 0. These formulas show how the covariant derivatives of T at the
point x = 0 are determined from the Taylor coefficients in (5.1) and the derivatives of
the curvature tensor at x = 0.
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Formulas (8.13) represent universal relations. The functions C,, depend on the con-
nection V only via the derivatives Vg r of its curvature tensor. (We ignore the fact that
the explicit dependence of Cy on the Vg r may be written in different forms by using
the symmetries and the differential identities satisfied by the curvature tensor). The full
index notation of (8.13) emphasizes that the explicit structure of the functions Cy, does
depend on the index type of the spinor field T and in following equations we shall write
out the appropriate indices.

With the notation of Sect. 6 the unknowns in the field equations must have represen-
tations of the form

VnQ = Vi) @+ Ca(Vip) Q. Vg R). (8.14)
Va Il = Vig) T+ Ca(Vip) I, Vg R), (8.15)

Vn @Papap = V) Papap +Cn apars (V) @, Vg R), (8.16)
VaV¥aBcp = Vay YaBcep + Cn abcp(Vp) ¥, Vq R), (8.17)

with [p[, |q] < [n| — 2 and quantities Vq R which are understood as derivatives of
the curvature defined by V. Using these as a starting point we can impose equations
(6.1) to (6.5) and proceed, as in Sect. 6, to derive for all multi-indices k expressions
for the quantities Vi ©2(0), Vi I1(0), Vk® 4p4'5(0), Vk¥apcp(0), and thus also for
VkR! jk1(0) in terms of the null data, which are given by the totally symmetric part of

@n 1& ABcp(0). These expressions could be inserted into the equations above but for the
sake of comparison it will be better not to do this here.

Formulas (8.13) do not immediately apply to the functions Q, f[, o ABA'B'» 1} ABCD
with the connection V and the curvature tensor 7 jki- They can be generalized, however,
to the case where the connection V is not torsion free by observing (2.1). The functions Cp
will then depend on the symmetrized derivatives Vi) Ty, . A; B|..B] of order |k| < |n|—1
and on the derivatives of the torsion as well as on those of the curvature tensor.

Consider now the point p with x*(p) = 0 and assume that #; / ; (x*) = 0(|x|N/)
with some integer N’ > 1 as x* — 0. It follows then with (2.1) that the restriction of
(8.13) to the point x* = 0 is valid as it stands if |n| < N’ + 1. At that point we thus get
for In| < N’ + 1 the relations

Va2 = Vi) @+ Ca(Vip) 2, Vg 7), (8.18)

Vn I = Vi) T+ Co (Vi) T1, Vg 7), (8.19)

Vo @asan = V) Paap +Cn apan (Vi) @, V), (8.20)
VaVapcp = @(n) Vapcp + Cn ABCD (%(p) v, @q 7), (8.21)

with |p[, |q] < |n| — 2 and functions Cy, which are identical with those appearing in the
corresponding equation in (8.14) to (8.17).

To compare these two sets of equations we observe that only the properties (4.7)
and (4.10) of the frame and the connection coefficients have been used to derive the
normal expansion (5 1). Because these are satisfied by Lemma 7.1 also by the coef-
ficients e*; and F J ¢, the normal expansions of the fields Q S, <I>ABA/B/ I/fABCD
can thus be expressed in terms of the derivatives with respect to the connection V.
This implies VaoQ = Va2 Vaoll = VaoTl, Vag®asas = VaoPasas',
V(k) w aBcD = Vay¥apcp for all multi-indices k (here and in the following all spinors
are thought to be taken at the point x* = 0). It follows that the right hand sides of the
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two sets of equations are distinguished now only by the occurrence of the spinors Vg R

in the first set and the spinors @q 7 in the second set.

Consider now as an induction hypothesis the relations (8.2), (8.3) (8.4) with multi-
indices k such that |k| < N’. Because the formal derivatives of the tensor R’ jki have
been determined such that the Bianchi identities are satisfied at all orders, relations
(8.4) imply that (8.10) holds with N = N’. It follows then from Lemma 8.3 that the
assumption above on the torsion tensor is satisfied and (8.4) implies with the Lemma that
@qf" kil = @qﬁh kjt = VgqR" 1ji with |q] < N’. Comparing the two sets of equations
above we can obtain relations (8.2), (8.3) (8.4) with multi-indices k such that |k| = N'+1.

With the properties noted in the beginning of this section this implies that (8.2), (8.3)
(8.4) hold true for multi-indices k of all orders. It follows that the order relations (8.1)
and (8.5) to (8.9) are true for all integersn € N. 0O

9. Transport Equations and Inner Constraints

We have prescribed the radiation field, read off the null data at the vertex p, and con-
structed sequences of expansion coefficients at p which can be realized as co-jets at
p of smooth fields which satisfy the (conformal) field equations at all orders at p. We
want to discuss now which information can be derived from the radiation field in some
neighbourhood of p on V.

By definition, the characteristics of any hyperbolic system of first order are those
hypersurfaces on which the system induces inner equations on (combinations of) the
dependent variables. On the other hand, the (conformal) Einstein equations induce as
a consequence of their gauge freedom constraints on their Cauchy data on any hyper-
surface. On null hypersurfaces, which represent the characteristics of the (conformal)
Einstein equations, these facts combine and result in a particular set of inner equations.
This set splits into two subsets. There are equations which involve in particular deriv-
atives in the direction of the null generators of the null hypersurface. These will be
referred to as transport equations. The remaining equations only involve derivatives
in directions which are still tangent to the null hypersurface but transverse to the null
generators. These will be referred to as inner constraints.

At most points of \V,, none of the frame vectors ¢ in the normal gauge is tangent
to \V,,. To derive from the complete set of equations subsystems which only contain
derivatives in directions tangent to A/}, one thus needs to take (point dependent) linear
combinations of the equations and the dependent variables. Whatever one does to obtain
the maximal number of transport equations will amount in the end to expressing the
equations in terms of a new frame field on \V},\{p} which is such that three of the new
frame vectors will be tangent to NV, \{p}.

We shall describe the procedure and the resulting equations and derive the informa-
tion which will be needed to construct the desired fields on NV, near p. The following
discussion, which works out some of the considerations at the end of Sect. 5 in a sys-
tematic way, makes use of the analysis in [5], to which we refer for more details. Let
{ra}a=0,1 denote the new spin frame field. If it is chosen such that the null vector ki
is tangent to the null generators on NV, \{p}, the vectors koi' and k& will be tangent
to N, \{p} as well. Because such a frame field cannot have a direction independent limit
at p, particular care has to be taken to construct this frame so near p that the result-
ing equations will still admit a convenient analysis near p. It will be required that the
frame assumes regular limits at the point p if p is approached along the null generators
of N,\{p}. Let k, denote such a limit frame at p. It can be expanded in terms of the
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normal spin frame ¢4 underlying our earlier analysis in the form k, = k4 , 14. It will be
convenient and implies no restriction to assume the spinors k4,4, a =0, 1 or, in other
words, the frame transformation matrix (x4 ;) A.a=0.1 to be normalized such that

A B A - B’
K" a€ABK b = €ab, K aTAB' K p = Tap'- 0.1

Here 745 = v2a% 44 = €4%ep o 4 ealey U the quantities €4p, T,y and ot 44
referring to the new frame take the same numerical values as €4, T4’ and @ 44/, and
the small letter indices are treated in the same way as the large letter indices.

Because we did not specify the null generator along which the limit was taken, the
conditions above characterize in fact a family of frames at p. To describe them in detail,
denote by SU (2) the Lie group given by the set of complex 2 x 2-matrices (% p)4.5=0.1
satisfying the conditions

—h
54 c €ab sbd = €bd, 54 c Tab’' Sb d = Ted' - 9.2)

Any s € SU(2) can be written in the form

s:(; _f) a,BeC, |a*+|B* =1, 9.3)

and a basis of its Lie-algebra is given by the matrices

1L(i 0 1(0 i L0 -1

The subgroup of SU(2) consisting of the matrices

1 ei% 0
exp(ph) = 5 0 . s ¢ eR, 9.5)

P ¢
—i5

will be denoted by U (1). Comparing (9.1) with (9.2) shows that a complete parame-
trization of the transformation matrices k4 , is obtained by setting k4 ,05) =84, sb a
with s € SU(2). The corresponding frame spinors will be denote by «,(s).

We shall make use of the left invariant vector fields Z,,, Z,,, Z, generated by u1,
uz, h and define the operators

Z+ = _(Zuz +1i Zul)» Z_ = _(Zuz —i Zul),

which satisfy the commutation relation [Z,, Z_] = 2i Zj,. It should be noted that SU (2)
is a real but not a complex analytic Lie group and Z,,, Z,, must be considered as real
vector fields while Z and Z_ take values in the complexifications of the tangent spaces
of SU (2) and are complex conjugate to each other. If f is a complex-valued function on
SU(2) with complex conjugate f it holds thus Z+ f = Z= f. In particular, if the k4,
are considered as complex-valued functions on SU (2) as indicated above we get

Zixkho=0, Zik1=ky  Z_kto=-k"1, Z_«k*1=0, 9.6
and if €4’ «' 18 its spinor complex conjugate we find with the rule above

_ Al _A/ _A/ _ Al A Al
Z+KA o= —icA s Z+KA =0, Z_iA o =0, Z_ it 0 =i4 o-
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Let ¢ 40 (s) = e* a7 k™ 4(5) A « (s) be the frame field associated with «, at p and
denote by S? the sphere {x* € TyM/x, x* =0, V2 x% = 1} in the tangent space of p.
It holds

!
xi(s) =cloy(s) =al  s905 o

= % (8" 0 +2 Re(a B) 8" 1 +2Im(a B) 8" 2 + (la|* — |B*) 8" 3),  (9.8)

and x!'(s - t) = xk(s) for all t € U(1). The Hopf map
§3 ~SU@2) 55 — xl(s) € §2,

thus associates with the left cosets s - U(1), s € SU(2) the null directions xX (s). It
will be assumed that the frame «, (s) (resp. ¢,/ (s)) is parallelly propagated along the
null geodesic 7 — txk'(s), T > 0, of N Because 14 (resp. eqa) is a p-centered
normal frame, it is related to the frame k, (resp. ¢,/ (s)) along this curve by the t-inde-
pendent transformation K4 4 (s) (resp. K4, s «' (8), which corresponds to a rotation
in SOB3,R) ~ SU(2))/{1, —1} that leaves the direction ¢q invariant). While the null
directions x. (s) are invariant under the action of U (1) the frames ¢, resp. ¢, are not
and our prescription defines in fact a smooth bundle of frames ¢, (z, s) (resp. c o/ (7, 5))
over N, \{p} with projection 7 : t,4(t, s) — T xk (s) (resp. cua' (T, 5) — T Xk (5)) and
structure group U (1) (resp. U(1)/{1, —1}). For simplicity we will concentrate in the
following on the bundle of spin frames, the discussion of the bundle of vector frames
being very similar. The parallel transport of the frames defines lifts of the null geodesics
7 — 1 x!(s) to this bundle (‘horizontal curves’). The tangent vector field defined by the
lifts will be denoted by 9, and t will be considered as a coordinate on N, - In the limit as
t — 0 everything extends smoothly with the limits of the fibers corresponding to the left
cosets of SU(2) (in this sense the limit is even preserving the bundle structure). However,
while the projection 7 has rank three over points of \},\{p}, its rank drops to one in the
limit to 7 ~'(p). In the new setting this fact will be reflected by the singular behaviour
at 7~ !(p) of the frame and the connection coefficients defined below. We denote the
bundle in the following by N, p and consider it as a four dimensional smooth manifold
with boundary 7 ~!(p), the set of frames ¢, (s) at p, diffeomorphic to RS x SU(2).

To discuss the field equations one could choose a local section of the Hopf fibration
at p and push it forward with the flow of d; to generate a section of N »- Because the
restriction of the projection 7 will then be a 1 : 1 map away from 7~ (p), it will then
be obvious how to lift the frame field. However, apart from a subtlety which will be dis-
cussed in the proof of the second part of Proposition 9.1, it will in fact be more convenient
to formulate the transport equations as equations on N, as has been done in [5].

A suitable lift of the frame field can conveniently be discussed by introducing on N, »

besides 9, vector fields X+ and S. Because the set 7! (p) is parametrized by SU (2),
the field Z4 transfer naturally to this set. We set

Xe=2Zy, S=-2iZ, on 7 ' (p),
and extend these fields to A, » by Lie transport so that

[8f3X:t]=O, [af, S]ZO.



290 H. Friedrich

It follows then that S is tangent to the fibers of A/, and
Xtt=0, [Xy, X ]=-S.

In fact, the first result follows from 0 = [0;, X+ ] 7 = 0; (X4 7)— X4+ 1 = 9;(X+ 7) and
the observation thatlim;_,g X+ T = 0 because the fields X+ become in this limit tangent
to the set 7~ (p) on which 7 vanishes. The second result follows because it is satisfied
in the limit as t — 0 and because the definitions imply that [d;, [X4+, X_]+ S] =0 on
N, p- Because the images of the fields Z+ under the Hopf map are linearly independent,
the images of the fields X 1 under the projection 7 will be linearly independent for t > 0
(and sufficiently small that no caustic points will be met).

The scalar fields €2 and s lift from NV, to N, p by simple pull-back under the projection
map. The fields ¥ 4pcp and @ 4p4 5 are in addition subject to a frame transformatlon
so that they are related to the lifted fields by I/Iabca'(‘l,' s) = wABCD(r xH(s)) KA a(s)

kP 4(s) and Dyprpy (T, 8) = Yapap (T xk (S))K a(s) . kB (s).

Only the fields ¢, = esa' k2 4 P « Withaa' # 11’ are tangent to V), at the points

T xk (s) with T > 0. Lifts of these tangent vector fields on N, to points of J\f are not
immediately well defined because the kernel of the projection 7 is one- d1mens1onal
For T > 0 there exist, however, unique lifts ¢, for aa’ # 11, i.e. fields satisfying
Tr(Caq) = Caa, that can be expanded in terms of the vector fields d;, X, X_. Because
coo is tangent to the null geodesics of V), it follows then immediately that ¢, = 9;. To
analyse the precise behaviour of ¢,,» as T — 0, we observe that by our earlier discussions

Hoan =at ga+0(x])asx* — 0, whichgives c” 4o = a sa k4 o k4 y+0(|T])in
thls limit. For any smooth function f = f(x*) we find thus with x* = 7 x (s) and (9.3)
fucaw = fpat an kh ok o+ 0(z)) for aa #11.

To see how this is related to the action of the vector field X on the lift of this function
to NV}, we observe that the vector fields X+ inherit properties of the fields Z+ such as
(9.6), (9.7) and find with (9.8)

!

A=A A=A
Xof =t fuXe@® qa ok o) =—1 fua® anc®ok” v,
and similarly
A=A
X_f=—tfua qac®1k% ¢,

so that we can write
n 1 I 1
fuce 01/=—;X+f+0(|fl), fuce 10’=—;X—f+0(|f|)~
It follows that the lifted fields with aa’ # 11’ must have expansions of the form

~ / 4
Caa/:6a0€a/0 ar——(éaoea/l X++6a16a X_ )+Caa/, (99)
T

with
Crat = baa X+ +baa X— +rqq 8z, (9.10)
and complex fields b, and r,, satisfying

Faa' = Taa's bOO’ =0, roo =0, baa’ = 0(t]), re = O0(7). (9.11)
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Because there has not been specified a rule how to extend the new coordinates and the
fields ¢4, off AV, there cannot be given an explicit coordinate expression for the field

¢11. It should be noted, however, that the field ¢/ is determined on N, » once the fields
Caar»aa’ # 11’, are known there.

If it is assumed that the relation ¢, = esa k4 4 kA « holds in a full neighbour-
hood of the point p with an x*-dependent transformation matrix k4 , and it is used that
k%4 = € B epy satisfies k2 k% p = —ep 4, the well known transformation law

which relates the connection coefficients ["yype With respect to the frame ¢, to the
connection coefficients I" 4 4 g With respect to the frame e 4 4+ is obtained in the form

C A C

- B A B
Coarbe = —K7 p€BC K C,/.Lcuaa""FAA’BCK akK oK bK c.

Under our assumptions the derivatives € . u c qq are defined on N, ponlyforaa” # 11
so that the formula above can only be used under this restriction. With (9.6) and (9.9) it
follows then that

Faa/bcz—%(eaoea/ Ve e +ea'en? e,%€0) + Taupe for aa’ # 11, (9.12)
with a complex-valued field ',/ that satisfies

Loobe =0, Taane = O(I7)), (9.13)
so that
Coobe = 0.

In this form the coefficients lift to AV »- As discussed in [5], the coefficients |
are in fact obtained by contracting the connection form on the bundle of frames with the
frame field ¢ /.

On \, » the covariant derivative in the direction of ¢4,, aa’ # 11’, which will be
denoted by Vaa's is NOW given with (9.9), (9.12) by the same rule as known on the base
space so that e.g.

V4 o Vabed = €% Cooy Wabea) — Teor @ Wheay £)-

It will be convenient to introduce X 44/ = V44/ as an additional unknown tensor
field. Because no rule has been specified to extend the new coordinates and the fields ¢,/

away from N, there cannot be given an explicit coordinate expression for the derivative
of  in the direction of ¢;-. Because the field ¢/ is determined on N » once the fields
Caa» aa’ # 11', are known there, the field Sgq (1, s) = Zau k2 o8 4 can still be
discussed as a tensor field on N, P

We are in a position now to obtain the expressions for the transport equations induced
on N, p in the new gauge and to prove the following result.

Proposition 9.1. In the conformal gauge (4.3), (4.4) the transport equations induced on
N, by the conformal field equations and the structural equations uniquely determine
the fields 2, T1, ® b1 and Yapeq on N, p once the radiation field

¢ , 9.14)

_ A __B D
Yo(r,s) =k"0k” 0k 0K OWABCD'XM:IQIEE/KEO,ZE’O/

is prescribed there.
The fields so obtained also satisfy the inner constraint equations on N,.
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Remark 9.2. A similar result can be obtained in the vacuum case 2 = 1. The discussion
of that case is more complicated than the one below because then the conformal Weyl

tensor does not necessarily vanish on N »- We do not work out the details here.
Proof. The gauge conditions (4.3), (4.4) read in the present setting
Q=0, Tgy =0 M=TL,=2n0 on 7 '(p), (9.15)
Do =0, A=0 on N,. (9.16)

The transport equations induced by (6.1), i.e. the equations which involve the directional
derivative ¢y imply in particular

0r Q= Xop, 09z Zoo =0,
and thus 2 =0, gy = 0 on N, p- With this it follows further
0r Zorr =0, 9; Ty =0,

whence Zg;r = 0, £; = 0on N, p- The transport equations induced by (6.1), (6.2) then
finally imply

0 =11, 9, I1=0,

and thus Xy = t [, IT = I1, on /Vp. Collecting results we find

Q=0, S,w=tMe'e !, M=TM, on N,. 9.17)
The transport equations induced by the torsion free conditions are given by

e

~ - - ~ ’ ~ ’ -
0 = tpp aar = [Coiys Caa’] — Uy e aa’ — Laa ¢ bb') Cee'»

with b’ = 00" and aa’ # 11’. Inserting here expressions (9.9), (9.12) and setting the
factors of d;, X4, X_ in the resulting equation separately equal to zero shows that the
content of this equation is equivalent to the conditions

1 _ _
Ocbye + ; baa + ; Caaro0r = Taaroo b1or + Caaroor bor (9.18)
1 _ _
0cTaa + ZTaa’ = Laaroo rior + Laaroor ror — Taaror — Taarorrs 9.19)
(which are satisfied identically for aa’ = 00').
The Ricci identity is given for c¢’, dd’ # 11" on N/, by

C~1cc/(1:daz”ab) - Edd’(fcc’ah) + I:cc/af I:da” f b — l:aid’af INﬂcc/ f b
~(Coer " gar = Caar 77 e T ffrab = QYabed€car + Paberar €cd-

With (9.17), Tooap = 0 and &y = 9, it follows

9 T1oap — Tooo Doar — Tiooo Tovas = Pavoors

9:To1ap — Toroo Uoar — Dovoo Tovas = 0,
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and thus with (9.9), (9.12)

1 _
0.0 11
0 Ciyap + = {Flo’ah —Too€a €r + Lo € €b }
= I'1o00 T10rap + Trooo Tovas + Pavorors (9.20)
1 0.0, F 11
:Corap + = Covap + Toroo €a €b - + Dovoo €a €b
= Lo1oo C1oran + Tovoo Toran- 9.21)
. . = / .
The transport equations induced by (6.3) are Vg ¢ ®peprer = Ypeao ¢ or, more explic-
itly,
1 1 o s
0 Qpepr1r + - Xi@pepr —2€p Poyopo + €~ Pperroy + Poep1 | — o1 (Pocror)
f

b Ppepror — Torr Iy Dpepy 1 — T I Wbeoo €p/ v
(9.22)

=—2Tor ! 6 Pe) s — Tor

while the transport equations induced by (6.4) are V¥ y Yapeq = 0, or, more explicitly,

1
Or Yabe1 + - {X—lﬁahco +3€@ 0 Ybeyo1 + Iﬁabcl} — ¢l (Vabeo)
=—=3T10 7 @¥berso — Tio ' 0 Vaber- (9.23)

While the initial data at T = 0 are given for b,,/, 740/, Taape by (9.11) and (9.13),
they still have to be specified for ®,5,/5/, Yapcq- In principle they can be read off from the
formal expansions determined earlier but we give a different argument because it sheds
some light on the content of the equations. It is convenient here to use the ‘essential com-
ponents” Y = k4 (k8 k€ . kP 4), Yapcp(0)) which are obtained by setting k of the
lower indices in brackets equal to 1 and the remaining ones equal to 0. Because the vector
fields X+ approach inthe limit t — 0 the vector fields Z 1, it follows with (9.6) and (9.14)

lim Xy = Z— (" 0”0k 0k 0) Yapcp(0) = —4 lim v,
T— T—>
and, more generally,
lim X_v = —(4 — k) lim Yp4q, k=0,...,4.
70 T—0
In the notation of (9.23) this is precisely the relation
lim (X—Yabco +3 €@’ Yoero1 + Yaber) = 0.
=0
It allows one to determine the initial data ¥,p.4(0) from the radiation field and at the
same time ensures that the formally singular term in (9.23) admits a limit as T — 0
along any given given null generator of V,,. Similarly one can determine by X, and X _

operations the values of lim;_,g @pqpy from Dgggy With the result that

. /
11H})(X+q)bcb’0’ —2€p ! Doyopoy + €py O Dy + Ppeprr) =0,
T—



294 H. Friedrich

so that the formally singular term in (9.22) admits a limit along a fixed null generator.
However, because Py = 0 on N, by (9.16), it follows that

lim q)aba’b’ =0.
T—0

The gauge condition (9.16) and the vanishing of the Weyl tensor on N p lead to simpli-
fications. With this (9.22) implies

2 _
9r Do + = Dooorr = 2 Toroo Poroo + 2 Fovoo Pooor-
Because @ is by assumption the complex conjugate of Py - it follows that

CDOOO’I/ = 0, CDO]()/()/ =0 on Np. (924)

Equation (9.21) implies the coupled system

d:Toro0 + % Toroo = (Moo + Toroo) Toroos
d:Covor + % Toror = o1 Toroo + Coroo Tovor
for I'y1/00 and I'y19; whence
Toroo =0, Toror =0 on N, (9.25)
With (9.16), (9.24), (9.25) equation (9.20) implies
9: 1000 = 1000 'iov00,
0: 101 + % io01 = oo Ciovors
from which we conclude that
Ti000 =0, Tigor =0 on N, (9.26)

With this the remaining equations of (9.21) and (9.20) read

1

0:Tor11 + = Lo =0,
{ (9.27)

:Tygq1 + = T = Prioos

which give
1 , _
Fori1 =0, T = e @100 dt’ on N, (9.28)
0

With these results it follows from (9.18), (9.19) that

baw =0, raw =0, ¢y =0 on N, for aa' #11'. (9.29)
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With the resulting simplifications equations (9.22) read
2
0 D101 + = Do =0,
1
0r Poor'1 + = Door'1r = —7 Ix Y0000,
1
0 Por1yr + - {X+Po101 + Por11} = —7 Ik Yooo1,
1
P01+ = (X4 Pri00 +2P11011} =0,
T
1 _
0Py + - {(X: @101+ Prir}=—2To1r11 Poror —Torr Prioo — Ik Yi100-
The first three of these equations imply
H* ! 2 /
Doy =0, Pgory = A Y0000 dT,
0
n* ! 2 / (/
(DOII/I’ = —T T I//()()()l dt’ on Np. (930)
0

Explicit expressions can also be obtained for the solutions of the remaining equations.
In particular, imposing the reality conditions, using in the forth equation the expression
for g1/’ given by (9.30), and observing that X1t = 0 gives for @/’ the alternative

expression
_ IT, i ‘ "2 ” /
(DOII/]’ = ‘L'_Z T Xflm)()()() dt dt’. (931)
0 0

Comparing this with the expression in (9.30), it is seen that consistency requires

1
9z o001 + - {X_ Y0000 + 4 Yooo1} =0,

which is in fact the first of the equations which follow.
With the results obtained so far the transport equations (9.23) read

9z Yooo1 + % {X 0000 +4 Y0001} =0, 9.32)
9t Yoo11 + % {X—-¥0010 + 3 Y0011} = —T1011 Yoooo, (9.33)
9z Yor11 + % {X—voo11 +2¥0111} = =2 T10'11 Yooo1, 9.34)
dr Yin + % {X—vo111 + Y111} = =3T1011 Yoour- (9.35)

Equation (9.32) has the regular solution

1 T
1ﬂ0001=—1—4/ " X o000 d’.
0
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With (9.28), (9.30) one obtains

I T 7/ B
F10/11 = —T* / (/ 'L’”2 100/0/0/0/ dl’”)d‘[l, (936)
0 0

which allows one to obtain successively integral expressions for the remaining compo-

nents of Yapeq on N, »- This completes the proof of the first part of the Proposition.
Equations (6.1) and (6.2) imply the inner constraints

0= o1 (Zew) — Tov ! 5Z sy — Forr ! oy Zppr + Q2 Poprry — Meop €1
0 = & (1) + =P gy,

and their complex conjugates. A direct calculation using (9.17), (9.25), (9.26) shows
that they are indeed satisfied on \V,,.

There do not arise inner constraints from (6.3), (6.4). Those which have not been
discussed yet contain the operator ¢11 and thus differentiations in directions transverse
to N,.

Irfner constraints are implied by the torsion-free condition and the Ricci identity.
Formula (2.2) suggests that the torsion free condition should read on N, »

0= {[501’, Gl = For 10 — Tio o) 5ee’} (9.37)

There arises, however, a subtlety because the commutator of the fields ¢o;r and ¢y
contributes a component which is tangential to the fibers of N, p- One way to deal this
problem is to follow the torsion-free condition in the form (2.4) and test whether the
operator above applied to a function f vanishes if this function is the lift of a scalar func-
tion on N,,, whence constant on the fibres. For reasons which become clear when we
discuss the Ricci identity, we prefer a different procedure. If the operator (2.2) is lifted
according to our rules, it should not contain a vertical part and therefore the formula
above should be corrected by subtracting the vertical part supplied by the commutator.
By (9.29) the commutator is, however, totally vertical,

-~ 1 1
[Corr, C1o] = — [X4, X-1 = —= S,
T T

and thus drops out after the correction altogether (as it does if applied to the lift of
a scalar function). A second subtlety arises because the relation above appears to in-
volve the operator ¢j;» which suggests that it is not an inner condition on N, p- With
(9.25), (9.26) and with (9.28), which states that I'gy/11 as well as its complex conjugate
Flo/l/y vanishes, 1t follows however that not only the factor of ¢/ vanishes but that
(Torr ee! w =T 01/) = 0 for arbitrary indices e¢’. The inner constraint induced by
the torsion free conditions is thus indeed satisfied on V.

The problem arising from the commutator of ¢y- and ¢ also affects the discus-
sion of the inner constraints induced by the Ricci identity. If one calculates the spinor
analogue of (2.1), which reads for the components of interest here

VorVie = Vio Vor)r® = r por0 A2 — 101 “ 10 Veer 2,
one finds that the second term on the right hand side contains a term of the form

[Go1s €101 — (Tor “¢ 100 — T1or  o17) Ceer (A%).
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Performing here the replacement [cqy/, ¢1or] — [Cor/, Cror](AY) + 1']_2 S(A%) and then
ignoring the torsion term as suggested above, has to be compensated by the replacement

o1 A = 1 o1 AP — = sS4,

of the curvature term. To show that the inner constraint induced by the Ricci identity
vanishes, we have to take into account the corrected curvature term.

Under the action of the group U (1) the frame «,, transforms as k, — «p (exp(¢ )t .
and the components of a spinor field A = A%k, transform thus as A —
(exp(—¢ h))® , AP This implies that

d
SA“=—ai55«&wﬂ—¢hwbx%w:o=2iwux%

with (h“ p)4.p=0.1 denoting the matrix / in (9.4). The equation which should be checked
thus reads

f f,

0 = Gorr (Ciorap) — 10 (Covas) + Lovar Tio 7 5 — Tiay Tor

o T vy = Fro 7 o) E ey — 2 By — €2 o — Pupre
Tor 7 10 107 0) Trprap 2 tab Yab0o1€1°0 abl’0y €015

where we set iy, = h€ p €¢4. Inthe cases ab = 00 and ab = 01 a direct calculation using
the results obtained above shows that this condition is indeed satisfied on N, p- The case
ab = 11isslightly more difficult. With the given results it readily reduces to the condition

1 -
0= — X111 — @rior-

Observing (9.36), taking the complex conjugate, and using (9.31) shows that the condi-
tion is indeed satisfied. This proves the second assertion of the Proposition. O

9.1. The fields on N, in the normal gauge. In the first part of this section, 4 has been
shown that there is associated with the radiation field (5.4), which reads in the present
notation

A B C D w o E -F
Vo(t,s) =« 0k” ok" 0k” 0¥apcp(Tapp K™ 0k™ o),
a unique set of fields
Q, Zuar, T, Puparprs Yabea, and Cuur, I:aa’bc’ ad' #* 11, (9.38)

on N, p which satisfy the transport equations and the inner constraints induced by the con-
formal field equations so that the 0000 components of ¥,p.4 coincides with (7, s).
Apart from the explicitly described singular terms of ¢,,, and [ aape these fields are
smooth functions of 7 and s € SU(2). On the other hand, it has been shown in Sects. 6
to 8 that with the null data derived from o at p can be associated fields

Q, Yan, I, ®apap, Yarcp, €* aa, Tansc, (9.39)

which are defined and smooth on a neighbourhood of p, satisfy at p the conformal field
equations at all orders, and which have oco-jets at p which are uniquely determined by
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this property and the requirement that null data derived from /g at p coincide with null
data at p derived from

7 A B C D 7 E -E'
Yo(t,s) =k okP ok ok ovasep(Tay kb okt o).

While the Taylor expansions of these functions at p are fixed uniquely, they are fairly
arbitrary away from p.

To understand the relations between these two sets of fields, we consider the fields
(9.39) at the points x* =t agE, P E o of NV, and use the t-independent frame
transformation x4 , employed in Sect. 9 to express the fields (9.39) in terms of the
adapted frame to obtain on R x SU(2) ~ N, p the fields

Qr,5) = Qealt, kEoif o), Mz, s) =Mak, kFokt o), (9.40)
Saa (T, 5) = Ban(wak  kE o o) '@t o, (9.41)
upaiy (1.5) = Pagap (o kb okE o)t a i i &8y, 9.42)
Vabea (. 5) = Fapep (T dpp kB ok gyt ok p i€ kP g, (9.43)

Further, we use the considerations of Sect. 9 to derive fields ¢ ,,/, f‘aa/bc, aa’ # 11’ on
RE x SU(2) from e* 44, r AA’gc Which have the meaning and the singularity/regularity
structure described in (9.9), (9.12).

Because the fields (9.39) satisfy the field equations at all orders at p and have only
been subject to a coordinate and frame transformation, the new fields (9.40)—(9.43) must
satisfy, together with the transformed frame and connection coefficients, the transport
equations and inner constraints induced on \V; p atall orders at p. The uniqueness property
stated in Proposition 9.1 thus implies that the Taylor expansion of the fields (9.40)—(9.43)
in terms of T at T = 0 must coincide with the corresponding Taylor expansion of the
fields (9.38) at T = 0.

This fact can be expressed in the following way. If the curvature fields given by (9.38)
are transformed into the normal gauge of Sect. 4 by setting

b -d =l b d
Daparp = Paparpy k* Ak’ gk ak” g1y Yapcp = Yabcak ak” pk ck® p,

(9.44)
on NV, then
2
Ei  E| E, E, N+1
Papay =D, — Tk ok o kB 0k g Vi gy Vg, @asas (0) + O(TI,
n=0 "
ARy
Ey  E| E, E, N+l
VaBCD =Z;fnl€ LokP g L kT 0k g Vi gy VE, g Wasep(0) + O(ITITT),
n=0 """

for given N € N, where the coefficients on the right hand sides are the expansion coef-
ficients associated with the null data derived from ¢ at p as described in Sects. 5 and 6.

One can also transform the frame vector fields and the connection coefficients given
by (9.38) into the normal gauge but more complete information is obtained by using the
curvature spinor

Ragcc'pp = RVapcp ec'p + Papc'p €cp,
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supplied on V,, by (9.44) to integrate the analogues of equations (7.5) and (7.6) on V),

- A .
along the curves T — x*(7) = 7 x, where x! = a* 44 k4 o k4 (v is constant along

these curves. Letet , and T'; 4 p denote the frame and connection coefficients which con-
stitute in the normal gauge together with the fields 2, [T ® opc'p’, Y apcp supplied by
(9.38) initial data on V), for the conformal vacuum equations and set ¢/ y = e/* y — 8" .
The restriction of equations (7.5) and (7.6) to the curves x*(t) can then be written in
the form

d 4
‘L'Ec“k+c“k+c“18fjcvk+rkll‘rXi (c*;+8";) =0, (9.45)
d ; .
‘L'EFkAB+FkAB+F1ABSLCMk+Fkl[‘L’XiFiAB—RABik‘L’ka=0, (9.46)
with X! = §' , x'. We are interested here in the solutions which are C! in 7 and satisfy

Hkle=0 =0, Tx" plr—o =0.
If the left hand sides of the equations are contracted with X fk, the curvature term drops out
and one gets for ¢ =t X i andTA =X i T4 p equations which can be written
d .
T T+ @t psl e’y + () XL (e + 84 ) =0,
T
d ,
T d—(rFAB)+(f‘ DA, (te)+@r Xt =0.
T

Because of the smoothness assumption and the initial conditions we can assume that
771 ¢k and 714 5 extend as continuous functions to 7 = 0. This allows us to
conclude that

(Mg —8" )8k xt =0, 88, x* T A5 =0 along x*(r).
By contracting (9.45) with x}!n,, and observing that I'y 4 ka SMixy oy =

| Xi ka = 0, one gets for ¢y = x 1, c* ; the equation

d ) -1 v i l
E(Tck)+(fcl)5,,(f )+ X (te) =0,

which implies
x" gy (¥ — 8 k) =0 along x*(7).

This shows that the gauge conditions (4.7), (4.8), (4.11) will be satisfied on N, p by any
C! solution to (9.45), (9.46).

We know from the explicit calculations above that ® 4 pa k4 4 kP o b oiP / J =
@ 4004 = 0 on N),. This implies that

R gecpp kB0 XEC =0 gop kP ok okpo =0 along x*(7).

The contraction of (9.46) with « 8 o thus gives

d B .
@D )+ T P 0) 8, (T )+ Tk X (e T A k) =0,
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whence

Consequently, I’y cc DD’ XED/ =% pk

e 5B0=0 along x"(1).

_ — ’ - n
DOKC 0/+ch D/KC()KD o = 0 along

x*(7) and equation (9.45) reduces to

d .
‘L’d—C“k+C”'k+C“13f)cuk+rk'1Xi‘[cui=0
T

The only C! solution vanishing at 7 = 0 is given by c¢* ; = 0 and thus

e’ =8", whence g, =n, along x*(7).
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