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Abstract: We construct initial data for the conformal vacuum field equations on a cone
Np with vertex p so that for the prospective vacuum solution, the point p will repre-
sent past time-like infinity i−, the set Np\{p} will represent past null infinity J −, and
the freely prescribed (suitably smooth) data will acquire the meaning of the incoming
radiation field. It is shown that: (i) On some coordinate neighbourhood of p there exist
smooth fields which satisfy at the point p the conformal vacuum field equations at all
orders and induce the given data at all orders. The Taylor coefficients of these fields at p
are uniquely determined by the free data. (ii) On the cone Np there exists a unique set of
fields which induce the given free data and satisfy the transport equations and the inner
constraints induced on Np by the conformal field equations. These fields are smooth at
p in the sense that they coincide there at all orders with the fields which are obtained
by restricting to Np the functions considered in (i) and they are smooth on the smooth
three-manifold Np\{p} in the standard sense.

1. Introduction

A purely radiative, asymptotically flat space-time should be generated solely by gravi-
tational radiation coming in from past null infinity. Extraneous information entering the
space-time at past time-like infinity should be excluded. A natural problem to study then
is the asymptotic characteristic initial value problem for the conformal vacuum field
equations where data are prescribed on a cone Np with vertex p, similar to the cone
{xμ xμ = 0, x0 ≥ 0} in Minkowski space with vertex at xμ = 0. It is to be arranged
such that the prospective vacuum solution admits a smooth conformal extension in which
the point p acquires the meaning of past time-like infinity i−, and the set Np\{p}, swept
out by the future directed null geodesics through p, represents past null infinity J −.

As in any other initial value problem for Einstein’s field equations, two different
subproblems must be analysed here: (i) one needs to analyse which part of the initial
data can be prescribed freely and how the remaining data are determined on the initial
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set Np by the field equations, (ii) for suitably given data one has to show the existence of
a smooth solution inducing these data on the initial set. In the situation indicated above
both tasks are complicated by the fact that the initial set Np is a smooth hypersurface
only away from the vertex p. The notion of smoothness and the way data are given thus
require particular considerations.

The present article is concerned with the first problem. It shows the existence of
initial data on the cone Np which satisfy the inner equations induced on Np by the
conformal field equations, which are smooth in the standard sense on the three-manifold
Np\{p}, and which behave at the point p at all orders like fields induced on Np by
smooth fields that are defined on some smooth coordinate neighbourhood of p. Data
with these properties provide a necessary input for the analysis of the second problem
with the arguments used in the article [2] by Chruściel and Paetz.

From the point of view of the physical/geometrical interpretation, one would like to
construct the space-times from a minimal set of free data on Np which admit a physical
interpretation. There are various ways to prescribe data for Einstein’s field equations in
characteristic initial value problems (cf. [1]), the specific choice usually depending on
technical considerations and the particular situation at hand. A natural datum to prescribe
at null infinity is the radiation field, a complex-valued function that encodes asymptotic
information on the two components of the conformal Weyl tensor with the slowest fall-
off behaviour at past null infinity. It is thought to represent the two polarization states of
the incoming gravitational radiation.

That the radiation field is convenient from the technical point of view has been shown
in the proof of J. Kánnár’s existence results on the characteristic asymptotic initial value
problem, where data are prescribed on an incoming null hypersurface C which intersects
past null infinity in a space-like slice � = C ∩ J − and on the future J ′− of that slice
in past null infinity [8]. A basic step in that proof consists in showing that given the
radiation field on J ′−, the solution and its derivatives of any order can be determined
on J ′− by solving ODE’s along the null generators of J ′−, where the initial data for
the integration are derived from the data prescribed on C and �.

In the problem to be considered here the analysis is complicated by the fact that an
analogue of � on the hypersurface representing past null infinity necessarily shrinks to
a point when it approaches past time-like infinity, leaving no space for a hypersurface
like C. The information for the integration of the solution along the null generators of
Np has thus to be extracted completely from the radiation field on Np. Together with
the need for a careful discussion of the smoothness requirements near the vertex p, this
leads to various algebraic subtleties.

This problem was studied for the first time in [5], where it was shown that for a suitably
smooth prescribed radiation field on Np and a gauge involving a null coordinate adapted
to Np the prospective solution to the conformal field equations is determined uniquely
at all orders along the cone Np. However, even under the most convenient assumptions,
such a null coordinate is singular at and near p. To show that any smooth solution is
determined uniquely in the future of the cone Np by its radiation field, there has been
performed in [5] a transformation into a gauge which is regular up to an order sufficient
for the argument. An existence result for smooth solutions would require, however, a
smooth gauge and thus, due to the quasi-linearity of the equations, a transformation
which enters the solutions at all orders.

To simplify this tedious problem (in Sect. 9 it will be seen that the analysis of the
transport equations on Np requires a discussion of singular equations in any case), the
analysis in the present article will be based on a smooth gauge right from the outset.
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The basic setting of our analysis is described in Sects. 2, 3 and 4, where the field
equations are discussed; a suitable gauge for the conformal factor, the coordinates, and
the frame field is introduced; and those features of the gauge are pointed out which will
be important in the following. This discussion is completed in Sect. 5 by introducing a
certain type of expansion of the fields at the point p, referred to as normal expansion at
p, and by considering its relation to the concept of null data and, in particular, to the
notion of the radiation field on Np.

In Sect. 6, 7, and 8, we analyse in detail the Taylor expansion at p of the prospective
solution to the conformal field equations. It is shown in particular how the Taylor coeffi-
cients are related to the freely prescribed radiation field on Np and that these coefficients,
which to begin with are determined only on a formal level, can indeed be realized as
Taylor coefficients of smooth fields near p. This property is important in establishing
the existence theorem given in [2].

In Sect. 6 an argument by Penrose ([10,11]) is adapted to the present situation and
it is shown (Lemma 6.1) that the covariant derivatives at p of the curvature fields, the
conformal factor, and a further scalar field are determined on a formal level uniquely
at all orders by the radiation field and that the latter is not subject to any restriction. To
relate these data to a space-time metric, we consider in Sect. 7 the structural equations,
written as equations for the metric coefficients and connection coefficients. It turns out
that a subset of these equations already determines the formal Taylor expansions of these
fields uniquely and that the expansion coefficients so obtained encode the information
on the chosen gauge (Lemma 7.1).

Borel’s theorem then ensures the existence of smooth fields near p whose Taylor
expansion coefficients at p are given precisely by the (symmetric parts of the) coeffi-
cients determined by the formal calculations. However, because only the symmetric parts
of the covariant derivatives enter the definition of these functions and only a subset of
the structural equation has been formally solved in the calculations, it is far from obvious
that the functions so defined do indeed satisfy at p the conformal field equations at all
orders in the standard sense of the covariant differential calculus. That this is in fact the
case (Proposition 8.1) follows by a somewhat involved induction argument.

In Sect. 9 it is finally shown how the data on Np are determined in terms of the
radiation field. The conformal field equations induce a system of inner equations on Np
which splits naturally into two subsets. The equations in the first set, referred to as trans-
port equations, allow us to determine all unknown fields entering the conformal field
equations once the radiation field is given (Proposition 9.1). The equations in the second
set are inner constraints on the fields so obtained. It is shown that they are satisfied by
a solution to the transport equations without imposing any restriction on the prescribed
radiation field.

To identify and analyse the inner equations on Np, one needs to express the equations
in terms of a frame adapted to the cone, which is necessarily singular at p. If the result-
ing equations are solved and the fields are then transformed back into the regular gauge
underlying Proposition 8.1, they coincide with the field discussed in that Proposition at
all orders at p and thus satisfy a necessary smoothness requirement (Sect. 9.1).

The fields so obtained constitute a complete set of initial data on Np for the conformal
field equations and any solution to the vacuum field equations which admits a smooth con-
formal extension at past null and time-like infinity induces there data of this type. They are
the starting point for an existence proof in the category of smooth functions as given in [2].

Besides supplying these initial data, the discussion of this article is of independent
interest because it provides a large set of detailed information, in particular on the
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asymptotic behaviour of the various field components. Following the considerations of
[5] in the present setting, it is also possible to determine along Np higher order deriv-
atives of the fields in directions transverse to Np. This is not done here because this
information is not needed in [2]. At lowest order the following observation is of interest,
however. As shown in [6], the Newman-Penrose constants ([9]) of the solutions con-
sidered here are given by the values of the components Wi jkl of the rescaled conformal
Weyl tensor at the point p. It follows from the calculations below that these are encoded
in the radiation field. The discussion of this article and the existence results of [2] thus
show that there exist asymptotically flat (at null infinity) solutions to the vacuum field
equations with arbitrarily prescribed Newman-Penrose constants.

As pointed out at various places, the analysis presented in this paper also applies to
the finite characteristic initial value problem where data are given on a finite cone which
is thought of as being generated by the (future directed) null geodesics through a point
which is an inner point of a smooth vacuum space-time. In fact, the analogues of the
arguments used in Sects. 2–8 considerably simplify in that case. In Sect. 9, however, we
take advantage of the fact that the conformal Weyl tensor vanishes at null infinity. This
allows us to obtain explicit expression for various fields. The analogue of Proposition
9.1 has to be established in the finite problem by an abstract discussion of the transport
equations, which is not given here.

2. The Metric Conformal Field Equations

Let g denote a Lorentzian metric on a four dimensional manifold and ∇ a connection
which is metric compatible so that ∇g = 0. In the following we shall make use of a
frame {ek}k=0,...,3 which is orthonormal so that gi j = g(ei , e j ) = ηi j . With the direc-
tional covariant derivative operators ∇i ≡ ∇ei the connection coefficients �i

k
j are

defined, by the equation ∇i e j = �i
k

j ek . The relation ∇g = 0 is then equivalent to the
anti-symmetry �i l j = −�i j l , where �i l j = �i

k
j gkl . All tensors (except the frame

fields) will be given in the following in terms of the frame ek .
For a vector field Z the commutator of the covariant derivatives satisfies

(∇i∇ j − ∇ j∇i )Z
l = rl

ki j Zk − ti
k

j ∇k Zl , (2.1)

where tk i
l denotes the torsion tensor, given in terms of coordinates xμ and the frame

coefficients eμ k =< ek, dxμ > by the relation

tk
i

l eμ i = eμ k, ν eν l − eμ l, ν eν k − (�l
i

k − �k
i

l) eμ i , (2.2)

and r i
jkl is the curvature tensor, given by

r i
jkl ≡ �l

i
j, μ eμ k − �k

i
j, μ eμ l + �k

i
p �l

p
j − �l

i
p �k

p
j

−(�k
p

l − �l
p

k − tk
p

l) �p
i

j . (2.3)

The last term on the right hand side of the equation above can also be expressed in terms
of the commutator of the frame fields because [ek, el ] = (�k

p
l − �l

p
k − tk p

l) ep by
(2.2). The metric is torsion free if and only if the torsion tensor vanishes, which is the
case if and only if

(∇ j∇k − ∇k ∇ j ) f = 0, (2.4)

for any C2-function f .
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The torsion and the curvature tensor satisfy in general the Bianchi identities
∑

cycl(i jl)

∇i t j
k

l =
∑

cycl(i jl)

(rk
i jl − ti

m
j t m

k
l), (2.5)

∑

cycl(i jl)

∇i r h
k jl =

∑

cycl(i jl)

t j
m

i rh
kml , (2.6)

where the sums are performed after a cyclic permutation of the indices i, j, l.
Assume now that the metric g is torsion free and related by a conformal rescaling

g = �2 g̃ with a conformal factor � to a ‘physical’ metric g̃ which satisfies Einstein’s
vacuum field equations. These equations can then be expressed in terms of g and� and
derived fields as follows. We write

Ri jkl = Ci jkl + 2 {gi[k Ll] j + Li[k gl] j },
where Ci jkl is the conformal Weyl tensor and

Li j = 1

2
(Si j +

1

12
R gi j ) with Si j = Ri j − 1

4
R gi j ,

denotes the Schouten tensor of g with Ricci tensor Rkl and Ricci scalar R. In terms of
the tensor fields

�, gi j = ηi j , Li j , W i
jkl = �−1 Ci

jkl , � = 1

4
∇i∇ i � +

1

24
R�,

the (metric) conformal field equations read ([3,4])

6��− 3 ∇i�∇ i� = 0,

∇ j ∇k � = −� L jk +� g jk,

∇l � = −∇k� Lkl ,

∇i L jk − ∇ j Lik = ∇l�W l
ki j ,

∇i W i
jkl = 0.

These equations must be complemented by the structural equations, namely the torsion-
free condition

tk
i

l = 0, (2.7)

and the equation

r i
jkl = Ri

jkl , (2.8)

which will be referred to as the Ricci identity.
We note that with the choice � ≡ 1 the conformal field equations reduce to the vac-

uum field equations. The only non-trivial fields are then eμ k , �i
j

k , and W i
jkl = Ci

jkl

and the only non-trivial equations are the vacuum Bianchi identity ∇i W i
jkl = 0 and

the structural equations.
In the case of a more general conformal factor the equation 6�� −3 ∇i�∇ i� = 0

will be satisfied on the connected component Cq of a point q if it holds at q and the other
equations are satisfied on Cq . This is a consequence of the fact that the other equations
imply the relation

∇k(6��− 3 ∇ j�∇ j�) = 0.

In the situations considered here, in which either� = 0, ∇i� = 0 or� ≡ 1 at the point
p, the equation 6��− 3 ∇i�∇ i� = 0 need not be considered any longer.
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3. The 2-Index Spinor Representation

The 2-index spin frame formalism is well adapted to the null geometry and will sim-
plify our algebraic task considerably. It amounts essentially to taking complex linear
combinations of various expressions in terms of maps of the form

Ti jk... → TAA′ B B′CC ′... = Ti jk... α
i

AA′ α j
B B′ αk

CC ′ . . . , (3.1)

where the α’s denote the constant van der Waerden symbols

αi
AA′ = 1√

2

(
δi

0 + δi
3 δi

1 − i δi
2

δi
1 + i δi

2 δi
0 − δi

3

)
,

which are hermitian matrices so that αk
AB′ = αk

B A′ . Frame indices k, l, . . . are thus
replaced by pairs of indices AA′, B B ′, . . ., where A, B, . . ., A′, B ′, . . . take values 0
and 1. None of the operations applied in the following to spinor fields mix primed and
unprimed indices. Therefore we shall write TABC ...A′ B′C ′... instead of TAA′ B B′CC ′... if
convenient. There is an operation of complex conjugation under which unprimed indi-
ces are converted into primed indices and vice versa. Because of the hermiticity of the
α’s the reality of a tensor Ti jk... is then expressed by the relation

TAA′ B B′CC ′... = TAA′ B B′CC ′....

These tensor fields are considered as members of a tensor algebra which is generated by
a 2-dimensional complex vector space and its primed version, both being related to each
other by an operation of complex conjugation. The members of these spaces are called
spinors. For more details (not in all cases employing the same curvature conventions as
used here) we refer to [11].

The ek are also replaced by eAA′ = αk
AA′ ek so that the indices A, A′ specify in this

case the frame vector fields. Then e00′ , e11′ are real and e01′ , e10′ are complex (conjugate)
null vector fields with scalar products

g(eAA′ , eB B′) = η jk α
j

AA′ αk
B B′ = εAB εA′ B′ , (3.2)

where εAC , εA′C ′ , εAC , εA′C ′
denote the anti-symmetric spinor fields with ε01 = ε0′1′ =

ε01 = ε0′1′ = 1, so that, assuming the summation rule for primed and unprimed indices
separately, εA

B = εAC ε
BC and εA′ B′ = εA′C ′ εB′C ′

denote Kronecker spinors. The ε’s
are use to raise and lower indices according to the rules

κ A = εAB κB, κB = κ A εAB,

and similar rules apply to primed indices. Upper frame indices can be converted into
spinor indices by the van der Waerden symbols αi

AA′ = ηi j ε
AB εA′ B′

α j
B B′ .

Though it will occasionally be convenient to go back to the standard frame notation
(or to employ a hybrid notation as discussed below), we shall assume most of the time
the fields (except the frame and the spin frame) to be given by their components with
respect to a suitably chosen spin frame field {ιA}A=0,1 which is normalized such that

ε(ιA, ιB) = εAB, (3.3)

where ε denotes the antisymmetric form on spinor space. As discussed in detail in
[11], the fields e00′ = ι0 ῑ0′ and e11′ = ι1 ῑ1′ correspond to real null vector fields while
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e01′ = ι0 ῑ1′ and e10′ = ι1 ῑ0′ correspond to complex (conjugate) null vector fields which
have the scalar products (3.2) as a consequence of (3.3).

We set �AA′ B B′
CC ′ = �i

j
k α

i
AA′ αB B′

j αk
CC ′ . As a consequence of the anti-sym-

metry �i jk = −�ik j these connection coefficients can be decomposed in the form

�AA′ B B′
CC ′ = �AA′ B

C εC ′ B′
+ �̄AA′ B′

C ′ εC
B,

with spin connection coefficients �AA′ B
C = 1

2 �AA′ B E ′
C E ′ that satisfy �AA′ BC =

�AA′(BC). Covariant derivatives of spinor fields κ A resp. π A′
are then defined by

∇AA′κB = eμAA′∂μ κ
B + �AA′ B

C κ
C , ∇AA′π B = eμAA′∂μ π

B′
+ �̄AA′ B′

C ′ πC ′
,

and the definition of the covariant derivative is extended to arbitrary spinor fields by
requiring the Leibniz rule for spinor products. For the commutators of covariant deriv-
atives we get

(∇CC ′∇DD′ − ∇DD′∇CC ′) κ A = R A
BCC ′ DD′ κB, (3.4)

and its complex conjugate, where RABCC ′ DD′ = R(AB)CC ′ DD′ denotes the curvature
spinor. The usual curvature tensor describing the commutator of covariant derivatives
acting of vector field is then given by

R AA′
B B′CC ′ DD′ = Ri

jkl αi
AA′

α j
B B′ αk

CC ′ αl
DD′

= R A
BCC ′ DD′ εB′ A′

+ R̄ A′
B′CC ′ DD′ εB

A. (3.5)

The curvature spinor admits a decomposition of the form

RABCC ′ DD′ = �ABC D εC ′ D′ +�ABC ′ D′ εC D + 2� εA(C εD)B εC ′ D′ . (3.6)

The different components are the Weyl spinor

�ABC D = �(ABC D) = −Ci jkl α
i

AE ′ α j
B

E ′
αk

C F ′ αl
D

F ′
,

which contains the information on the conformal Weyl tensor, given by

CAA′ B B′CC ′ DD′ = −�ABC D εA′ B′ εC ′ D′ − �̄A′ B′C ′ D′ εAB εC D,

and the spinor

�AB A′ B′ = �(AB)(A′ B′) = �̄AB A′ B′ = 1

2
(R jk − 1

4
R η jk) α

j
AA′ αk

B B′ ,

which represents the trace free part of the Ricci tensor, and

� = �̄ = 1

24
R.

It holds then

L AB A′ B′ = �AB A′ B′ + �εAB εA′ B′ ,

and the rescaled conformal Weyl tensor W i
jkl = �−1 Ci

jkl is represented by the
rescaled Weyl spinor

ψABC D = �−1�ABC D .
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With this notation the conformal field equations read

∇AA′ � = −∇B B′
�(�AB A′ B′ + �εAB εA′ B′),

∇AA′ ∇B B′ � = −�(�AB A′ B′ + �εAB εA′ B′) +�εAB εA′ B′ ,

∇A
D′
�BC B′ D′ + 2 εA(B ∇C)B′ � = ψABC D ∇D

B′�,

∇D
B′ ψABC D = 0.

and the structural equations take the form

0 = eμ AA′, ν eν B B′ − eμ B B′, ν eν AA′ − (�B B′ CC ′
AA′ − �AA′ CC ′

B B′) eμ CC ′ ,

r A
BCC ′ DD′ = �ψ A

BC D εC ′ D′ +�A
BC ′ D′ εC D + 2� εA

(C εD)B εC ′ D′ .

where

r A
BCC ′ DD′ = �DD′ A

B, μ eμ CC ′ − �CC ′ A
B, μ eμ DD′ + �CC ′ A

F �DD′ F
B

−�DD′ A
F �CC ′ F

B − (�CC ′ F F ′
DD′ − �DD′ F F ′

CC ′) �F F ′ A
B . (3.7)

In the case of the vacuum field equations, in which� ≡ 1, the non-trivial unknowns are
given by eμ AA′ , �AA′ B

C , ψABC D and the field equations reduce to ∇D
B′ ψABC D = 0

and the structural equations.
The following observations will become important later. Forget the meaning of the

fields considered above and let the spinor field RABCC ′ DD′ in (3.6) be given by spinor
fields�ABC D ,�ABC ′ D′ εC D , and�which satisfy the symmetries and reality conditions
stated above. The tensor R AA′

B B′CC ′ DD′ defined by (3.5) then satisfies the analogue of
the first Bianchi identity Ri [ jkl] = 0 as a consequence of the symmetries and reality
conditions. In fact, the anti-symmetric tensor εi jkl = ε[i jkl] with ε0123 = 1 has the spinor
representation

εAA′ B B′CC ′ DD′ = i (εAC εB D εA′ D′ εB′C ′ − εAD εBC εA′C ′ εB′ D′),

which implies

RAA′ B B′CC ′ DD′ εE E ′ B B′CC ′ DD′ = 2 i (RAH E A′ H
E ′ − R̄A′ H ′ AE ′ E

H ′
) = 0, (3.8)

because

RAH E A′ H
E ′ = �AE A′ E ′ − 3�εAE εA′ E ′ = R̄A′ H ′ AE ′ E

H ′
.

An analogue of the second Bianchi identity ∇[m Ri j
kl] = 0 follows under suitable

assumptions. It holds

∇E E ′ RAA′ B B′CC ′ DD′ εE E ′
F F ′ CC ′ DD′

= 2 i (εB′ A′ ∇C D′
RABC F ′ F D′ + εB A ∇C D′

R̄A′ B′C F ′ F D′), (3.9)

and, with �ABC D = �ψABC D ,

∇C D′
RABC F ′ F D′ = −� ∇C

F ′ψABC F

+
{
∇F

D′
�AB F ′ D′ + 2 εF(A ∇B)F ′�− ∇C

F ′� ψABC F

}
, (3.10)
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which will vanish if the conformal field equations are satisfied. These relations are not
surprising, because the Bianchi identities have in fact been used to derive the symmetry
properties of the curvature spinors and also the conformal field equations. Later on we
shall need to consider the last two relations, however, under circumstances in which it
is not clear, whether the conformal field equations hold.

To shorten the following expressions it will be convenient to introduce some addi-
tional notation. In the case of spinor fields which carry pairs of spinor indices like AA′
which correspond to a standard frame indices j we shall occasionally employ a hybrid
notation by using the index j , so that equation (3.7) takes for instance the form

r A
B i j = � j

A
B, μ eμ i −�i

A
B, μ eμ j + �i

A
F � j

F
B

−� j
A

F �i
F

B − (�i
k

j − � j
k

i ) �k
A

B .

The symmetric part of a spinor field SAB...E F is denoted by S(AB...E F). The totally
symmetric part of a spinor field TA1 ... Ak B′

1...B
′
j

is then given by T(A1 ... Ak ) (B′
1...B

′
j )

.

If T is a spinor field and n = (i1, . . . , in) a multi-index of order |n| = n we write
∇nT = ∇i1 . . .∇in T and ∇(n)T = ∇(i1 . . .∇in)T . If Xi is a vector field we set
Xn = Xi1 . . . Xin and write Xi1 . . . Xin ∇i1 . . .∇in T = Xn ∇nT = Xn ∇(n)T .

4. Gauge Conditions

Unless stated otherwise the connection ∇ will be assumed in the following to be g-com-
patible and torsion free. We need to restrict the gauge freedom for the conformal factor,
the frame, and the coordinates.

The conformal gauge near i−.

The data for the conformal field equations are to be prescribed on the cone Np =
J − ∪{i−}. The vertex p = i− is to represent past time-like infinity and Np is thought to
be generated by the future directed null geodesics starting at p. Thus one must assume that

� = 0, ∇AA′� = 0, � 
= 0 at p.

The equations ∇ j ∇k � = −� L jk +� g jk and ∇l � = −∇k� Lkl suitably transvected
with the geodesic null vectors tangent to the null generators of Np imply then that

� = 0 and � 
= 0 on Np, ∇ j� 
= 0 on Np\{p}.
(Note that the assumption �|p = 0 would imply that ∇ j� = 0 on Np).

The sign of � depends on the signature of g. The equation ∇μ ∇ν � = −� Lμν +
� gμν implies for a future directed time-like geodesics γ starting at p the relation
� g(γ ′, γ ′)|p = ∇γ ′∇γ ′�|p. If we want this to be positive we must assume that
sign(�) = sign(g(γ ′, γ ′)) = sign(η00) at i−. This discussion shows that with the
assumptions above on� and� at p the field equations themselves will take care for the
conformal factor � to evolve so that it will show near p the desired behaviour on Np
and on the physical space-time region I +(Np).

Under a rescaling gμν → ĝμν = θ2 gμν , � → �̂ = θ � with some function θ > 0
it follows

�|p → �̂|p = (� θ−1)|p.
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The transformation laws

Rμν[g] → Rμν[ĝ] = Rμν[g] − 2 θ−1 ∇μ ∇ν θ + 4 θ−2 ∇μ θ ∇ν θ
−{θ−1 ∇λ ∇λ θ + θ−2 ∇λ θ ∇λ θ} gμν,

and

R[g] → R[ĝ] = θ−2 {R[g] − 6 θ−1 ∇λ ∇λ θ}, (4.1)

of the Ricci tensor and the Ricci scalar imply the transformation behaviour

Sμν[g] → Sμν[ĝ] = Sμν[g] − 2 θ−1 ∇μ ∇ν θ + 4 θ−2 ∇μ θ ∇ν θ
+

1

2
{θ−1 ∇λ ∇λ θ − 2 θ−2 ∇λ θ ∇λ θ} gμν.

Let lμ 
= 0 denote the tangent vector of a future directed null geodesics γ (τ) on Jp with
γ (0) = p, so that ∇l l = 0. Then l̂ = θ−2 l satisfies ĝ(l̂, l̂) = 0, ∇̂l̂ l̂ = 0. This gives

θ4 l̂μ l̂ν Sμν[ĝ] = lμ lνSμν[g] − 2 θ−1 (lμ∇μ)2 θ + 4 θ−2 (lμ ∇μ θ)2,
or equivalently

l̂μ l̂ν Sμν[ĝ] θ3 = lμ lν Sμν[g] θ−1 + 2 (lμ∇μ)2 (θ−1). (4.2)

For prescribed value of l̂μ l̂ν Sμν[ĝ] this represents an ODE for θ along the null generator
tangent to l. While the value of θ can be fixed at p by specifying there the value of |�|,
there remains the freedom to specify the value of ∇μθ at p. The equations above suggest
that a convenient conformal gauge can be defined in a neighbourhood of p in J +(Np)

by requiring

� = 0, ∇μ� = 0, � = 2 η00 at p, (4.3)

and

lμ lν Sμν[g] = 0 on Np near p, R[g] = 0 on J +(Np) near p. (4.4)

This conformal gauge will be assumed in the following without any problem. When this
type of conformal gauge is used in a wider context, however, it is important to know that
for a given smooth background g equation (4.2) with l̂μ l̂ν Sμν[ĝ] = 0 yields a rescaling
factor θ on Np which has the appropriate smoothness behaviour on Np near the vertex
p so that the wave equation obtained on the right hand side of (4.1) by setting R[ĝ] = 0
can be solved with these data on Np for a smooth function θ near p. This question will
be discussed in the article [2].

The choice of the coordinates near i−.

We shall consider p-centered g-normal coordinates xμ near p. These are determined by
the requirements that xμ(p) = 0, that gμν(0) = ημν , and that for given xμ 
= 0 and a
real parameter τ with |τ | small enough, the curve γ : τ → τ xμ is a geodesic through
the point p. If gμν and �μ ρ ν denote the metric coefficients and the Christoffel symbols
in the coordinates xμ, the latter condition is equivalent to

0=2 gμρ (∇γ ′γ ′)ρ=2 gμρ xν �ν
ρ
λ(τ x) xλ=2 xν gνμ,λ(τ x) xλ − xν xλ gνλ,μ(τ, x),
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which gives in particular that

xν �ν
ρ
λ(τ x) xλ = 0, (4.5)

for small enough |τ |. The first equation above implies further 0 = xν xμ gνμ,λ(τ x) xλ =
d

dτ

(
xν xμ gνμ(τ x)

)
and thus xν xμ gνμ(τ x) = xν xμ gνμ(0), whence

2 xν gνμ(τ x) + τ xν xλ gνλ,μ(τ x) = 2 xν gνμ(0).

With the first equations it follows then

0 = τ 2 xν gνμ,λ(τ x) xλ − τ xν xλ gνλ,μ(τ, x) = 2
d

dτ

{
τ

(
xν gνμ(τ x)− xν gνμ(0)

)}
,

and thus

xν gνμ(τ x) = xν gνμ(0). (4.6)

This equation implies in turn xν xμ gνμ(τ x) = xν xμ gνμ(0) which gives by differen-
tiation τ xν xλ gνλ,μ(τ x) = −2 xν gνμ(τ x) + 2 xν gνμ(0) = 0. Because differentiation
of (4.6) with respect to τ gives 0 = xν gνμ,λ(τ x) xλ we see that (4.6) implies that the
curves γ considered above are in fact geodesics. The relation (4.6) thus completely char-
acterizes normal coordinates in terms of algebraic conditions on the metric coefficients.
It follows from the equations above that gμν, ρ(p) = 0, �μ ρ ν(p) = 0.

In this gauge Np is now given by the set {xμ ∈ R
4| ημν xμ xν, x0 ≥ 0}.

The choice of the frame near i−.

Assume now that p-centered g-normal coordinates xμ are given on a convex normal
neighbourhood U ′ of p and take their values in a neighbourhood U of the origin of R

4.
A frame {ek}k=0,1,2,3 is called a normal frame centered at p if it satisfies on U ′

g(e j , ek) = η jk, and ∇γ ′ek = 0,

for any geodesic γ passing through p. The frame coefficients satisfying ek = eμ k ∂μ
are assumed to satisfy

eμ k(0) = δ
μ
k .

The 1-forms dual to ek will be denoted by σ j . Then σ j = σ j
ν dxν with σ j

μ eμ k = δ
j
k .

That the frame field depends in fact smoothly on the coordinates xμ follows by arguments
known from the discussion of the exponential function.

The equation xν gνμ(τ x) eμ k(τ x) = xν ηνμ δ
μ
k expresses that the scalar product

g(γ ′, ek) is constant along the geodesic γ . The representation gμν = ηi j σ
i
μ σ

j
ν al-

lows us to rewrite it in the form

xμ σ j
μ(τ x) = xμ δ j

μ resp. xμ δ j
μ eν j (τ x) = xν . (4.7)

With this relation equation (4.6) implies

xμ ημρ δ
ρ
j σ

j
ν(τ x) = xμ ημν resp. xμ ημν eν k(τ x) = xμ ημν δ

ν
k . (4.8)

If the fields σ j
μ and the coordinates xμ satisfy the last two relations, it follows

without further assumptions that the metric gμν = ηi j σ
i
μ σ

j
ν satisfies (4.6). In terms
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of the frame field, the information that the xμ are normal coordinates is thus encoded in
(4.7), (4.8).

Writing ∇i ≡ ∇ei , the connection coefficients �i
j

k with respect to the frame e j

are defined by the relations ∇i ek = �i
j

k e j . They satisfy �i jk = −�ik j , where
�i jk = �i

l
k ηl j .

The tensor field X (x) = xμ ∂μ tangential to the geodesics through p is characterized
uniquely by the conditions

X (p) = 0, ∇μ Xν(p) = gμ
ν(p), ∇X X = X. (4.9)

By (4.7) it can be written X = Xkek with Xk(x) = δk
ν xν . The relation ∇X e j = 0 is

equivalent to

Xk(x) �k
i

j (x) = δk
ν xν �k

i
j (x) = 0, xμ ∈ U, (4.10)

or

X AA′
(x) �AA′ B

C (x) = 0, xμ ∈ U. (4.11)

This is the characterizing property of the normal frame.
In the following we shall refer to coordinates xμ and a frame ek (resp. eAA′ ) which

satisfy the conditions above as to a normal gauge. We shall always assume this to be
supplemented by a normalized spin-frame {ιA}A=0,1 which satisfies eAA′ = ιA ῑA′ and
∇X ιA = 0. All spinor fields will be assumed to be given in this frame.

5. Normal Expansions

Let xμ and eAA′ be given in a normal gauge and let X be the vector field defined
by (4.9) so that X = Xi ei = X AA′

eAA′ with X AA′
(x) = xμ αμ AA′

, where we set
αAA′
μ = δi

μ αi
AA′

.
Let T denote a smooth spinor field and TA1...A j B′

1...B
′
k

its components in the normal

frame. If xμ∗ 
= 0, then we get with (4.7) and (4.11) along the geodesic γ : τ → τ xμ∗
d

dτ
TA1...A j B′

1...B
′
k
(τ x∗) = TA1...A j B′

1...B
′
k , μ
(τ x∗) xμ∗

= xCC ′
∗

{
TA1...A j B′

1...B
′
k , μ
(τ x∗) eμ CC ′(τ x∗)

−�CC ′ D1
A1 TD1...A j B′

1...B
′
k
(τ x∗) . . .− �̄CC ′ E ′

k B′
k

TA1...A j B′
1...B

′
k
(τ x∗)

}

= xCC ′
∗ ∇CC ′ TA1...A j B′

1...B
′
k
(τ x∗)

with xCC ′
∗ = xμ∗ δi

μ αi
CC ′

. Applying the argument repeatedly gives

dn

dτ n
TA1...A j B′

1...B
′
k
(τ x∗) = x

C1C ′
1∗ . . . x

CnC ′
n∗ ∇C1C ′

1
. . .∇CnC ′

n
TA1...A j B′

1...B
′
k
(τ x∗).

Setting xμ = τ xμ∗ in the Taylor expansion

TA1...A j B′
1...B

′
k
(τ x∗) =

N∑

n=0

1

n! τ
n dn

dτ n
TA1...A j B′

1...B
′
k
(0) + O(|τ |N+1),
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the Taylor expansion of TA1...A j B′
1...B

′
k

at p is obtained in the form

TA1...A j B′
1...B

′
k
(x) =

N∑

|n|=0

1

|n|! Xn ∇nTA1...A j B′
1...B

′
k
(0) + O(|x |N+1)

=
N∑

|n|=0

1

|n|! Xn ∇(n)TA1...A j B′
1...B

′
k
(0) + O(|x |N+1). (5.1)

This will be referred to as the normal expansion of T at p. It will be known once the
symmetrized covariant derivatives ∇(n) TA1...A j B′

1...B
′
k
(p), |n| > 0, are given.

5.1. The null data. The set C p ∼ S2 of future directed null vectors at p satisfying
g(l, l) = 0 and g(l, e0) = η00/

√
2 defines a parametrization of the null generators of

Np, which are given in the normal gauge by the curves τ → τ lμ, lμ ∈ C p, 0 ≤ τ < a
for some suitable a > 0. Denote by Wp the subset of Np which is generated by the null
generators parametrized by a proper open subset W of C p.

Let κ A(x) be a smooth spinor field on Wp\{p} which is parallely propagated along
the null generators and such that κ A κ̄ A′

is tangent to the null generators of Wp. Be-
cause the components κ A are given in the normal frame they are constant along the null
generators. Thus, κ A assumes a limit as τ → 0 along the curve τ → τ lμ and it can be
assumed that κ A κ̄ A′ = l AA′

along that curve. The field κ A is then determined uniquely
up to phase transformations κ A → ei φ κ A with smooth phase factors which are constant
along the null generators.

For a given tensor field T with spin frame components TA1 ... A j B′
1 ... B′

k
we define its

null datum on Wp as the spin weighted function

T0(x) = κ A1(x) . . . κ A j (x)κ̄B′
1(x) . . . κ̄B′

k (x) TA1 ... A j B′
1 ... B′

k
(x), xμ ∈ Wp\{p}.

With the normal expansion for T given above this gives at p the asymptotic representation

T0(τ x)=
N∑

n=0

τ n

n! κ
C1 . . . κ̄C ′

n κ A1 . . . κ̄B′
k ∇C1C ′

1
. . . ∇CnC ′

n
TA1...A j B′

1...B
′
k
(0)+O(|τ |N+1).

for τ > 0. The sum is determined uniquely by the coefficients

T̃n(κ) = κC1 . . . κ̄C ′
n κ A1 . . . κ̄B′

k ∇C1C ′
1
. . . ∇CnC ′

n
TA1...A j B′

1...B
′
k
(0).

Because the directions κ A κ̄ A′ = l AA′
are allowed to vary in the open subset W of C p,

knowing these coefficients is equivalent to knowing the symmetrized derivatives

T(A1...A j )
(B′

1...B
′
k )(0), ∇(C1

(C ′
1 . . .∇Cn

C ′
n TA1...A j )

B′
1...B

′
k )(0), n = 1, 2, . . . . (5.2)

In fact, let SA1...Ap A′
1...A

′
q

= S(A1...Ap) (A′
1...A

′
q )

be a symmetric spinor. It will be known
once its ‘essential components’, denoted by Si j = S(A1...Ap)i (A′

1...A
′
q ) j

, are known, which
are obtained by setting for given integers i, j , with 0 ≤ i ≤ p, 0 ≤ j ≤ q, precisely i
unprimed resp. j primed indices to equal to one. Choose (κ0, κ1) = β (1, z) with z ∈ C
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and the factor β = (1 + |z|2)−1/2 which ensures the normalization condition on lμ. If
the function S(κ) = κ A1 . . . κ̄ A′

q SA1...Ap A′
1...A

′
q

is known then also the function

β−p−q S(κ) =
p∑

i=0

q∑

j=0

(
p

i

)(
q

j

)
Si j zi z̄ j ,

and the essential components are given by Si j = (p−i)!
p!

(q− j)!
q! ∂ i

z ∂
j

z̄ (β
−p−q S(κ))|z=0.

While the null datum on Wp is a spin weighted function which depends on the
choice of κ A, the spinors (5.2) at p are given with respect to the spin-frame ιA and are
independent of any phase factors. They will be referred to as to the null data of T at p.

Of particular importance will be for us the null datum

ψ0 = κ A κB κC κD ψABC D, (5.3)

associated with the rescaled conformal Weyl spinor ψABC D . It is referred to as the
radiation field.

To illustrate some of its properties it will be convenient to proceed as follows. Let
SU (2,C) denote the subgroup of transformations (s A

B)A,B=0,1 ∈ sl(2,C) which
satisfy εAC s A

B sC
D = εB D and s A

B s̄ A′
B′ αB B′

0 = αAA′
0 . Then the null vectors

lμ = lμ(s) at p with spinor components l AA′ = s A
0 s̄ A′

0′ sweep out the null directions
at p and the m AA′ = m AA′

(s) = s A
0 s̄ A′

1′ are complex null vectors orthogonal to l AA′
.

By requiring them to be constant along the null generators tangent to l AA′
they will be

parallely transported and tangent to Np along the generators.
The information on the radiation field is equivalent to the information contained

in the pull back of the tensor Wi jkl li lk to Np. In fact, the latter can be specified by
the contractions of the symmetric tensor Wi jkl li lk with the field m and m̄. Because
Wi jkl li m j lk ml and Wi jkl li m̄ j lk m̄l are complex conjugates of each other and the
trace-freeness of Wi jkl implies that Wi jkl li m j lk m̄l = 0, the information is stored in
Wi jkl li m j lk ml = s A

0 s B
0 sC

0 s D
0 ψABC D = ψ0. Note that this description includes

the complete freedom to perform phase transformations. If this is to be removed, one has
to restrict the choice of s to a local section of the Hopf map SU (2) � s → l AA′

(s) ∈ S2,
where S2 is identified with the set of future directed null directions at p.

The null data ofψ at p can be extracted from the null datumψ on Np as follows. By
taking derivatives with respect to τ at τ = 0 one gets from the null datum the quantities

ψ̃n(s) = sC1
0 s̄C ′

1 0′ . . . sCn
0 s̄C ′

n 0′s A
0 s B

0 sC
0 s D

0 ∇C1C ′
1
. . .∇CnC ′

n
ψABC D(0).

As discussed in detail in [5], these functions on SU (2,C) translate naturally into
expansions in terms of the coefficients Tm

i
j (s) of certain finite unitary representa-

tions of the group SU (2,C). With this understanding the essential components of the
null data ∇(C1

(C ′
1 . . .∇Cn

C ′
n)ψABC D)(0) can be obtained by performing integrals of

ψ̃n(s) T̄m
i

j (s) with respect to the Haar measure on SU (2,C). Any ambiguities related
to choices of phase factors as indicated above are cancelled out by the integration.

To prescribe the null datum in a way which ensures the necessary smoothness proper-
ties, we start with some symmetric spinor field ψ∗

ABC D = ψ∗
ABC D(x

μ)which is defined
and smooth in a suitable neighbourhood of the origin p of R

4 (so that xμ(p) = 0).
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This field will be thought of as being given in a conformal and normal gauge as
described in Sect. 4. Assuming s A

B as above, one can then consider on the cone
Np = {ημν xμ xν = 0, x0 ≥ 0} (or more precisely on the bundle Ñp ∼ R

+
0 × SU (2)

over Np, see Sect. 9) the complex-valued function

ψ0(τ, s) = s A
0 s B

0 sC
0 s D

0 ψ
∗
ABC D(τ α

μ

E E ′ s E
0 s̄ E ′

0′), (5.4)

as a ‘smooth’ radiation field.
The gauge conditions give control on the null data at p for some of the unknowns

in the conformal field equations. It follows immediately from the discussion above and
the first of conditions (4.4) that the conformal gauge implies

�AB
A′ B′

(0) = 0, ∇(C1
(C ′

1 . . .∇Cn
C ′

n �AB)
A′ B′)(0) = 0, n = 1, 2, . . . . (5.5)

6. Formal Expansions at i−

In a conformal gauge satisfying (4.4) the conformal field equations read

∇AA′ ∇B B′ � = −��AB A′ B′ +�εAB εA′ B′ , (6.1)

∇AA′ � = −∇B B′
��AB A′ B′ , (6.2)

∇A
D′
�BC B′ D′ = ψABC D ∇D

B′�, (6.3)

∇D
B′ ψABC D = 0, (6.4)

and the curvature spinor (3.6) takes the form

RABCC ′ DD′ = �ψABC D εC ′ D′ +�ABC ′ D′ εC D. (6.5)

The following algebraic considerations will be simplified by rewriting equations (6.3)
and (6.4). The symmetry of ψABC D and the fact that vanishing spinor contractions
indicate index symmetries imply that equation (6.4) is equivalent to

∇E
E ′
ψABC D = ∇(E E ′

ψABC D). (6.6)

If (6.4) holds, equation (6.3) and its complex conjugate are equivalent to the equations

∇A
A′
�BC

B′C ′ − ∇B
A′
�AC

B′C ′ = − εAB ∇C
H ′
� ψ̄ A′ B′C ′

H ′ , (6.7)

∇A
A′
�BC

B′C ′ − ∇A
B′
�BC

A′C ′ = − εA′ B′ ∇HC ′
� ψABC H . (6.8)

With the identity

∇A
A′
�BC

B′C ′ = ∇(A (A′
�BC)

B′C ′) +
2

3
∇(A H ′

�BC)H ′ (B
′
εC ′)A′

−2

3
εA(B ∇H(A′

�C)H
B′C ′) − 4

9
εA(B ∇H H ′

�C)H H ′ (B
′
εC ′)A′

,

these two equations are seen to be equivalent to the equation

∇A
A′
�BC

B′C ′ = ∇(A (A′
�BC)

B′C ′)

+
2

3
ψABC H ∇H(B′

� εC ′)A′
+

2

3
εA(B ∇C)H ′� ψ̄ A′ B′C ′ H ′

. (6.9)



278 H. Friedrich

We note that

ψABC D(0), ∇E
E ′
ψABC D(0) = ∇(E E ′

ψABC D)(0), (6.10)

represent null data of ψABC D and that the conformal gauge (4.3), (4.4) implies by (5.5)
and (6.9) that

�BC
B′C ′

(0) = 0, ∇A
A′
�BC

B′C ′
(0) = ∇(A (A′

�BC)
B′C ′)(0) = 0. (6.11)

With this it follows from equations (6.2), (6.1) and the gauge conditions that

∇AA′∇B B′�(0) = �(0) εAB εA′ B′ , ∇k �(0) = 0 for |k| = 0, 1, 3, 4, 5, (6.12)

∇k�(0) = 0 for |k| = 1, 2, 3. (6.13)

The relations above imply furthermore that

RABCC ′ DD′(0) = 0, ∇E E ′ RABCC ′ DD′(0) = 0. (6.14)

The following result, which relates the formal expansion of the curvature fields at
a given point p to the null data of ψABC D at p, applies and extends arguments of the
theory of exact sets of fields discussed in [10,11].

Lemma 6.1. In a neighbourhood of the point p let the fields �, �, �AB A′ B′ , ψABC D,
eμ AA′ , �AA′ B

C be smooth and be given in a p-centered normal gauge for the coordi-
nates and the frame and in a conformal gauge satisfying (4.3), (4.4). Then, if they satisfy
the structural equations and the conformal field equations the covariant derivatives of
the fields �,�,�AB A′ B′ , ψABC D at all orders are determined uniquely at p by the null
data ∇(E1

(E ′
1 . . .∇En

E ′
n) ψABC D)(p), n ∈ N0, at p.

The resulting map, which relates to the null data of ψ at p the covariant derivatives
of the fields �, �, �AB A′ B′ , ψABC D at p, extends in a unique way so that it associates
with any freely specified sequence of totally symmetric spinors

ξABC D, ξ
E ′

1...E
′
n

E1...En ABC D, n = 1, 2, 3, . . .

at p formally ‘covariant derivatives’ the of fields �, �, �AB A′ B′ , ψABC D of any order
at p such that

ψABC D(p) = ξABC D, ∇(E1
(E ′

1 . . .∇En
E ′

n) ψABC D)(p) = ξ
E ′

1...E
′
n

E1...En ABC D . (6.15)

Remark. The coefficients eμ AA′ and �AA′ B
C have been listened in the first statement

because the field equations involve covariant derivatives of tensor fields and thus require
the frame and connection coefficients for their formulation. The following argument
will, however, never make use of explicit expressions of covariant derivatives in terms
of these coefficients and partial derivatives of the fields. It only uses formal expressions of
covariant derivatives and the standard rules for covariant derivatives such as commutation
relations and the Leibniz rule. Therefore the coefficients are not mentioned in the second
part of the Lemma. How they are determined will be discussed in the following section.
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Proof. At lowest order the first assertion of the Lemma follows from (6.10), (6.11), (6.12)
and (6.13). That it is true at higher orders will be shown by an induction argument. In
this we shall repeatedly make use of (3.4) and (3.6) with � = 0. With the identity

∇CC ′∇DD′ − ∇DD′∇CC ′ = εC D ∇H(C ′ ∇H
D′) + εC ′ D′ ∇(C|H ′| ∇D)

H ′
,

it is seen that (3.4) and its complex conjugate are with our assumptions equivalent to the
relations

εC ′ D′ ∇(C C ′∇D)
D′
κA = �ψABC D κ

B, εC ′ D′ ∇(C C ′∇D)
D′
κ̄A′ = �C D A′ B′ κB′

,

εC D ∇C
(C ′∇D

D′)κA = �AB
C ′ D′

κB, εC D ∇C
(C ′∇D

D′)κ̄A′ = �ψ̄A′ B′ C ′ D′
κ̄B′
.

While the induction argument is fairly obvious for the fields�,�, it is more involved
in the case of�AB A′ B′ andψABC D . The following observations are important. Consider
the quantities ∇E1

E ′
1 . . . ∇En

E ′
n ψABC D with n ≥ 2. If the covariant derivatives would

commute it would follow that

∇E1
E ′

1 . . . ∇En
E ′

n ψABC D = ∇(E1
(E ′

1 . . . ∇En
E ′

n) ψABC D). (6.16)

In fact, any order of the upper indices can be achieved by commuting the covariant deriva-
tives. If can be shown that the lower indices can be brought into any order without chang-
ing the position of the upper indices, the assertion will follow. Consider, for instance, the
index positions given on the left hand side of the equation above. To interchange the indi-
ces Ek and A (say) we commute ∇Ek

E ′
k to the right until we can use (6.6) to swap Ek and

A, then we commute again to bring ∇A
E ′

k back to the k-th position. To show that indices
Ek , E j can be interchanged we operate with ∇Ek

E ′
k as before to get ∇A

E ′
k , then commute

∇E j
E ′

j to the right and use (6.6) again to get ∇Ek
E ′

j , then commute ∇A
E ′

k to the right

to get ∇E j
E ′

k by using again (6.6). Finally, commute ∇E j
E ′

k and ∇Ek
E ′

j into the k-th
and j-th position respectively so that the order of the upper indices remains unchanged.

If the covariant derivatives do not commute one can still operate as above but use (3.4)
and (3.6) with� = 0 each time we commute derivatives. By this procedure the curvature
spinor R A

BCC ′ DD′ and its derivatives enter the expressions and (6.16) is replaced by an
equation of the form

∇E1
E ′

1 . . . ∇En
E ′

n ψABC D = ∇(E1
(E ′

1 . . . ∇En
E ′

n) ψABC D) + . . . , (6.17)

where the dots indicate terms which depend on the curvature tensor and its derivatives
and thus via the field equations on the fields �, s, �AB A′ B′ , ψABC D and their covariant
derivatives of order ≤ n −2. Restriction to p then implies with the induction hypothesis
that the ∇n ψABC D(0)with |n| ≥ 2 can be expressed in terms of s(0) and the null data
of ψABC D of order ≤ n.

Using (6.7) and (6.8) to interchange unprimed as well as primed indices we conclude
by similar arguments that for n ≥ 2

∇E1
E ′

1 . . . ∇En
E ′

n �BC
B′C ′ = ∇(E1

(E ′
1 . . . ∇En

E ′
n �BC)

B′C ′) + . . . , (6.18)

where the dots indicate the terms of order ≤ n − 2, which are generated by commutat-
ing covariant derivatives and the terms which arise from the right hand sides of equa-
tions (6.7) and (6.8). These terms and the commutators contain expressions ∇kψABC D ,
∇jψ̄A′ B′C ′ D′ with |k|, |j| ≤ n−1 and derivatives ∇l �with |l| ≤ n. Equation (6.1) allows
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us to express the latter in terms of ∇m �, ∇p s and ∇q �ABC D with |m|, |p|, |q| ≤ n −2.
Restricting to xμ = 0 and observing that the right hand side of (6.7), (6.8) vanish at
p, we conclude with our induction hypothesis that ∇n �BC B′C ′(0) is obtained as an
expression of s(0) and the null data of ψABC D of order ≤ n − 2.

For the quantities ∇n�(0) the induction step follows immediately from (6.1) and for
the quantities ∇ns(0) it follows with (6.2) by using (6.1) again.

This proves the first part of the Lemma. The second statement follows because equa-
tion (6.17) shows that no restrictions are imposed by the field equations on the quantities
∇(E1

(E ′
1 . . . ∇En

E ′
n) ψABC D)(0). By the argument given above, all formal covariant

derivatives are given by algebraic expressions of the null data of ψ at p and these
expressions impose no restrictions on the null data. ��

By (5.1) the symmetric parts of the covariant derivatives determined in Lemma 6.1
can be regarded as Taylor coefficients of corresponding tensor fields. By Borel’s theo-
rem ([7]) we can then find smooth fields �̂, �̂, ψ̂ABC D , �̂AB A′ B′ near p whose Taylor
coefficients at p coincide with the Taylor coefficients determined by the procedure
above (but fairly arbitrary away from p). We can assume that these fields satisfy near
p the symmetry and the reality properties discussed in Sect. 3. With these fields we
set R̂ABCC ′ DD′ = �̂ ψ̂ABC D εC ′ D′ + �̂ABC ′ D′ εC D , which corresponds to the curvature
spinor whose Taylor coefficients entered the discussion above, and define the ‘curvature
tensor’ R̂i

jkl by following (3.5).
To decide whether these smooth fields do in fact satisfy the field equations at all

orders at p we first need to determine frame and connection coefficients consistent with
the curvature tensor.

7. The Structural Equations

The frame and the connection coefficients which we want to satisfy the structural equa-
tions with the ‘curvature spinor’ R̂ABCC ′ DD′ will be denoted in the following by êμ i

and �̂AA′ C
B . It turns out that these functions are determined already by the subsystem

t̂k
i

l êμ i Xl = 0, (r̂ A
B kl − R̂ A

B kl) Xk = 0, (7.1)

of the structural equations, where the fields t̂k i
l and r̂ A

B kl are given by the right hand
sides of (2.2), (2.3) with e and� replaced by ê and �̂ and where Xi = δi

μ xμ. Assuming
(4.7) and (4.10) to be satisfied by êμ i and �̂AA′ C

B , these equations can be written

êμ k, ν xν + êμ l (δ
l
ν êν k − δl

k) + �̂k
i

l Xl êμ i = 0, (7.2)

�̂l
A

B, μ xμ + �̂k
A

B δ
k
μ êμ l + �̂l

j
k Xk �̂ j

A
B = R̂ A

B kl Xk, (7.3)

where the �̂k
i

l are given in spinor notation by

�̂AA′ CC ′
B B′ = �̂AA′ C

B εB′ C ′
+ ¯̂
�AA′ C ′

B′ εB
C ,

so that they are real and satisfy �̂k i l = −�̂k l i as a consequence of �̂l AB = �̂l (AB).
Equations (7.2), (7.3) imply that a smooth solution êμ i (xμ), �̂AA′ C

B(xμ) near xμ = 0
with det(êμ i ) 
= 0 must satisfy

êμ k(0) = δμ k, �̂l
A

B(0) = 0. (7.4)
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Equations (7.2), (7.3) can be discussed by analysing the ODE’s which are implied by
them along the curves τ → τ xμ∗ , xμ∗ 
= 0. These ODE’s will be considered in Sect. 9,
for our present purpose a more direct approach will be sufficient. To simplify the algebra
we rewrite the equations in terms of the unknowns

ĉμ k ≡ êμ k − δμ k, �̂AA′ C
B,

to obtain them in the form

ĉμ k, ν xν + ĉμ k + ĉμ l δ
l
ν ĉν k + �̂k

i
l Xl ĉμ i + �̂k

i
l Xl δμ i = 0, (7.5)

�̂l
A

B, ν xν + �̂l
A

B + �̂k
A

B δ
k
μ ĉμ l + �̂l

j
k Xk �̂ j

A
B − R̂ A

B kl Xk = 0. (7.6)

By taking formally partial derivatives, observing (7.4), and evaluating at xμ = 0 one
obtains unique sequences of derivatives

ĉμ k, ν1 ... νk (0), �̂l
A

B, ν1 ... νk (0), k ∈ N,

which are symmetric in the indices ν1 . . . νk and are determined by the partial deriva-
tives of the field R̂ A

B kl at the origin. By Borel’s theorem ([7]) we can then find smooth
fields ĉμ k and �̂l

A
B near xμ = 0 whose Taylor coefficients coincide with the coef-

ficients given above. Because of R̂AB kl = R̂(AB) kl and the structure of the equations,
these fields can be chosen such that ĉμ k is real and �̂l AB = �̂l (AB). While the choice
of the fields is rather arbitrary away from xμ = 0 they satisfy the structural equations
at all orders at xμ = 0 so that

ĉμ k, ν xν + ĉμ k + ĉμ l δ
l
ν ĉν k + �̂k

i
l Xl ĉμ i + �̂k

i
l Xl δμ i = O(|x |∞), (7.7)

�̂l
A

B, ν xν + �̂l
A

B + �̂k
A

B δ
k
μ ĉμ l + �̂l

j
k Xk �̂ j

A
B − R̂ A

B kl Xk = O(|x |∞),
(7.8)

where the symbols O(|x |∞) on the right hand sides indicate that the quantities on the
left hand side are for all n ∈ N of the order O(|x |n) as xμ → 0.

With (7.4) it follows that

ĉμ k(0) = 0, ĉμ k,ν(0) = 0, �̂l
A

B(0) = 0. (7.9)

We restrict the following discussion to some neighbourhood of the origin on which the
smooth field êμ k ≡ δμ k + ĉμ k satisfies det(êμ k) 
= 0. It is there orthonormal for the
metric ĝμν ≡ ηi j σ̂

i
μ σ̂

j
ν , where the σ̂ i

μ denote the 1-forms dual to the êμ k . Because
�̂i AB = �̂i B A, whence �̂i j k = −�̂i k j , the connection ∇̂ defined by êμ k and �̂i

j
k

resp. �̂i
A

B , which satisfies for instance ∇̂i êk = �̂i
j

k êk with ∇̂i ≡ ∇̂êi , is ĝ-metric
compatible in the sense that ∇̂ ĝ = 0.

The symmetries of the fields �̂k AB and R̂AB jk imply the following results.

Lemma 7.1. (i) The coordinates xμ and the frame coefficients êμ k satisfy the require-
ments (4.7), (4.8), (4.10) of a normal gauge at all orders at xμ = 0, so that

(êν j (x)− δν j ) δ
j
μ xμ = O(|x |∞), (7.10)

xμ ημν (ê
ν

k(x)− δν k) = O(|x |∞), (7.11)

δk
ν xν �̂k

i
j (x) = O(|x |∞). (7.12)
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(ii) Consider the curve τ → xμ(τ) = τ xμ∗ , xμ∗ 
= 0, through the origin. The components
of its tangent vectors ẋμ = xμ∗ in the frame êμ k , given by zk(τ ) = xμ∗ σ̂ k

μ(τ x∗), satisfies

zk(τ )− δk
μ xμ∗ = O(|τ x∗|∞), (7.13)

the curve satisfies the geodesic equation at all orders at τ = 0,

∇̂ẋ ẋ = O(|τ x∗|∞), (7.14)

and the frame êk = êμ k ∂xμ satisfies the equation of parallel transport along these
curves at all orders at τ = 0,

∇̂ẋ êk = O(|τ x∗|∞). (7.15)

Proof. To obtain the relations (7.10), (7.11), (7.12) we contract (7.7) and (7.8) with
δk
μ xμ and δl

μ xμ respectively to obtain the relations

ĉμ , ν xν + ĉμ l δ
l
ν ĉν + �̂i

l Xl (ĉμ i + δμ i ) = O(|x |∞), (7.16)

�̂A
B, ν xν + �̂k

A
B δ

k
μ ĉμ + �̂ j

k Xk �̂ j
A

B = O(|x |∞). (7.17)

for the quantities

ĉν ≡ ĉν j (x) δ
j
μ xμ, ĉν k ≡ xμ ημν ĉν k(x), �̂

A
B ≡ δk

ν xν �̂k
A

B(x),

�̂i
j ≡ δk

ν xν �̂k
i

j (x).

If ĉμ = O(|x |p) and �̂A
B = O(|x |q) with some p, q ∈ N, these relations imply with

(7.9) relations of the form

ĉμ , ν xν = O(|x |p+2) + O(|x |q+1), �̂A
B, ν xν = O(|x |p+1) + O(|x |q+2).

Because ĉμ = O(|x |3) and �̂A
B = O(|x |2) by (7.9), the second relation implies that

�̂A
B, ν xν = O(|x |4) whence also �̂A

B = O(|x |4) and the first relation gives then
ĉμ , ν xν = O(|x |5) whence ĉμ = O(|x |5). Repeating the argument we conclude that
ĉμ = O(|x |∞) and �̂A

B = O(|x |∞), which are the relations (7.10) and (7.12).
Observing that

�̂k
i

l Xl δμ i xλ ηλμ = �̂k j l Xl η j i δμ i xλ ηλμ = �̂k j l X j Xl = 0,

the contraction of (7.7) with xλ ηλμ gives

ĉk, ν xν + ĉl δ
l
ν ĉν k + �̂k

i
l Xl ĉi + �̂k

i
l Xl δμ i = O(|x |∞), (7.18)

which implies with the previous result that ĉk = O(|x |∞), which is in fact (7.11).
Contraction of the relation (êν j (τ x∗)− δν j ) δ

j
μ xμ∗ = O(|τ x∗|∞), which holds by

(7.10), with −σ̂ k
ν(τ x∗) gives (7.13). In terms of the frame one has

(∇̂ẋ ẋ)k = d

dτ
zk + z j �̂ j

k
l(τ x∗) zl = O(|τ x∗|∞),

and

∇̂ẋ êk = z j �̂ j
l

k(τ x∗) êl = O(|τ x∗|∞),
by (7.13) and (7.12). ��
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8. Formal and Factual Derivatives

The subsystem (7.1) of the structural equations determines the functions êμ k and �̂i
j

k
uniquely and implies that

t̂i
j

k = O(|x |n), r̂ h
k jl − R̂h

k jl = O(|x |n) (8.1)

with n = 1. Moreover, direct calculations involving (7.4), (6.10), (6.11), (6.12), (6.13)
show that

∇̂k �̂(0) = ∇k �(0), ∇̂k �̂(0) = ∇k �(0), (8.2)

for |k| ≤ 3 and

∇̂k�̂AB A′ B′(0) = ∇k�AB A′ B′(0), ∇̂kψ̂ABC D(0) = ∇kψABC D(0), (8.3)

whence

∇̂k R̂i
jkl(0) = ∇k Ri

jkl(0), (8.4)

for |k| ≤ 1 where on the right hand sides are given the formal expressions derived in
the previous section and on the left hand sides the factual covariant derivatives of the
smooth fields �̂, ŝ, �̂AB A′ B′ , ψ̂ABC D , R̂i

jkl at the point xμ = 0 with respect to the
connection ∇̂. These relations imply that

∇̂AA′ ∇̂B B′ �̂ + �̂ �̂AB A′ B′ − �̂ εAB εA′ B′ = O(|x |n), (8.5)

∇̂AA′ �̂ + ∇̂B B′
�̂ �̂AB A′ B′ = O(|x |n), (8.6)

∇̂F
D′
�̂AB F ′ D′ − ∇̂C

F ′�̂ ψ̂ABC F = O(|x |n), (8.7)

∇̂C
F ′ψ̂ABC F = O(|x |n), (8.8)

hold with n = 1. Because the quantities ∇k Ri
jkl(0) have been determined by invoking

the Bianchi identities (see the discussion of (3.9), (3.10)) it follows from (8.4) that

∑

cycl(i jl)

∇̂i R̂h
k jl = O(|x |n), (8.9)

with n = 1. The purpose of this section is to derive the following result.

Proposition 8.1. Relations (8.1) to (8.9) hold true for all integers n ∈ N resp. multi-
indices k.

Remark 8.2. The following argument covers in particular the vacuum case in which �
is set equal to 1 and the only non-trivial fields are given by eμ k , �i

j
k and ψABC D .

Before we begin with the proof we need to make a few observations. Because only
a subsystem of the structural equations has been used so far, it is not clear whether the
order relations (8.1) hold for all n ∈ N. The following result shows in particular how
this question is related to the Bianchi identity (8.9).
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Lemma 8.3. Denote by γ̂k
i

l the connection coefficients of the Levi-Civita connection
of the metric ĝμν = η jk σ̂

j
μ σ̂

k
ν with respect to the frame êk . If the torsion tensor

t̂i j
k of the connection ∇̂ behaves as t̂i j

k = O(|x |N ) for some N ∈ N, N ≥ 1, then
�̂k

i
l − γ̂k

i
l = O(|x |N ).

If N ∈ N, N ≥ 1, and

∑

cycl(i jl)

∇̂i R̂h
k jl = O(|x |N ), (8.10)

then t̂ j
k

l = O(|x |N+2), r̂ h
k jl − R̂h

k jl = O(|x |N+1).

Proof. Denote by ĉl
j

k the commutator coefficients satisfying [êl êk] = ĉl
j

k ê j .
With ĉl i k = ĉl

j
k η j i and t̂l i k = t̂l j

k η j i the torsion free relation can be written
�̂l i k − �̂k i l − ĉl i k = t̂k i l . It is well known that this implies

2 �̂kli − {ĉl i k + ĉk l i − ĉi k l} = t̂l i k + t̂k l i − t̂i k l .

The same relations hold with t̂l i k = 0 if �̂l i k is replaced by γ̂l i k . This gives

2 (�̂kli − γ̂kli ) = t̂l i k + t̂k l i − t̂i k l ,

which implies the desired result.
The connection ∇̂ defined by êk and �̂i

j
k is metric compatible but at this stage not

known to be torsion free. As pointed out in Sect. 2, the Bianchi identities for the torsion
tensor t̂i j

k and the curvature tensor r̂ i
jkl then take the form

∑

cycl(i jl)

∇̂i t̂ j
k

l =
∑

cycl(i jl)

(r̂ k
i jl − t̂i

m
j t̂ m

k
l), (8.11)

∑

cycl(i jl)

∇̂i r̂ h
k jl =

∑

cycl(i jl)

t̂ j
m

i r̂ h
kml . (8.12)

By the symmetries and reality conditions of the fields defining R̂k
i jl the arguments which

led to (3.8) imply
∑

cycl(i jl) R̂k
i jl = 0 near p. Equation (8.11) can thus be written

∑

cycl(i jl)

∇̂i t̂ j
k

l =
∑

cycl(i jl)

(r̂ k
i jl − R̂k

i jl − t̂i
m

j t̂ m
k

l).

Transvecting this equation with Xi , observing (7.1) and the anti-symmetry of the torsion
tensor gives

Xi ∇̂i t̂ j
k

l + t̂ j
k

i ∇̂l X i + ∇̂ j X i t̂ i
k

l = xi (r̂ k
i jl − R̂k

i jl).

Similarly, transvecting the rewrite

∑

cycl(i jl)

∇̂i (r̂
h

k jl − R̂h
k jl) =

∑

cycl(i jl)

t̂ j
m

i r̂ h
kml −

∑

cycl(i jl)

∇̂i R̂h
k jl ,
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of (8.12) with Xi gives

Xi ∇̂i (r̂
h

k jl − R̂h
k jl) + (r̂ h

k ji − R̂h
k ji ) ∇̂l X i + ∇̂ j X i (r̂ h

kil − R̂h
kil)

= t̂l
m

j r̂ h
kmi Xi − Xi

⎛

⎝
∑

cycl(i jl)

∇̂i R̂h
k jl

⎞

⎠ .

The result follows now with (4.9) by taking derivatives and evaluating at xμ = 0. ��
Assume that there exists a smooth solution to the field equations in the given gauge

which induces the prescribed null data at p. By the arguments given above the ∞-jet of
the solution at p must then coincide with the expressions on the right hand sides of (8.2),
(8.3), (8.4). It is not obvious, however, that it must also coincide with the ∞-jets of the
functions êμ k , �̂i

j
k , �̂, �̂, �̂AB A′ B′ , ψ̂ABC D at p. The reason is, that, following (5.1),

these functions have been defined so that their Taylor coefficients at xμ = 0 coincide with
the symmetrized derivatives ∇(k) �(0), ∇(k) �(0), ∇(k)�AB A′ B′(0), ∇(k)ψABC D(0) and
it is not clear how much of the information encoded in the unsymmetrized derivatives
is transported by the symmetrized derivatives. In particular, while the Bianchi identities
are by (3.9), (3.10) part of the conformal field equations and the coefficients on the right
hand sides of (8.2), (8.3), (8.4) have been determined so as to satisfy these identities, it
is not obvious at this stage that relation (8.10) should be satisfied for integers N > 1.

Proof of Proposition 8.1. The induction argument to be given below will make use of
the following general considerations. Let TA1...A j B′

1...B
′
k

denote a smooth spinor field

and ∇ a metric compatible connection with curvature tensor r i
jkl and torsion tensor

ti j
k . To begin with assume that ti j

k = 0. If the derivatives on the right hand side of
the symmetrization formula

∇(i1 . . .∇in)TA1...A j B′
1...B

′
k

= 1

n!
∑

π∈Sn

∇iπ(1) . . .∇iπ(n)TA1...A j B′
1...B

′
k

are then commuted to bring them into their natural order, one obtains an equation of the
form

∇n TA1...A j B′
1...B

′
k

= ∇(n) TA1...A j B′
1...B

′
k

+ C∗
n A1...A j B′

1...B
′
k
,

where the spinor field C∗ is a sum of terms which depend on the covariant derivatives
of T and r i

jkl of order ≤ |n| − 2. Using these formulas to substitute successively in
the formulas for n = 3, 4, . . . the covariant derivatives of T of lower order by their
symmetric parts one obtains formulas

∇n TA1...A j B′
1...B

′
k

= ∇(n) TA1...A j B′
1...B

′
k

+ Cn A1...A j B′
1...B

′
k
, |n| ≥ 0, (8.13)

with spinor valued functions

Cn = Cn(∇(p)T,∇q r) where |p|, |q| ≤ |n| − 2,

which satisfy C(n) = 0. These formulas show how the covariant derivatives of T at the
point x = 0 are determined from the Taylor coefficients in (5.1) and the derivatives of
the curvature tensor at x = 0.
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Formulas (8.13) represent universal relations. The functions Cn depend on the con-
nection ∇ only via the derivatives ∇q r of its curvature tensor. (We ignore the fact that
the explicit dependence of Cn on the ∇q r may be written in different forms by using
the symmetries and the differential identities satisfied by the curvature tensor). The full
index notation of (8.13) emphasizes that the explicit structure of the functions Cn does
depend on the index type of the spinor field T and in following equations we shall write
out the appropriate indices.

With the notation of Sect. 6 the unknowns in the field equations must have represen-
tations of the form

∇n � = ∇(n) � + Cn(∇(p) �,∇q R), (8.14)

∇n � = ∇(n) � + Cn(∇(p) �,∇q R), (8.15)

∇n �AB A′ B′ = ∇(n) �AB A′ B′ + Cn AB A′ B′(∇(p) �,∇q R), (8.16)

∇n ψABC D = ∇(n) ψABC D + Cn ABC D(∇(p) ψ,∇q R), (8.17)

with |p|, |q| ≤ |n| − 2 and quantities ∇q R which are understood as derivatives of
the curvature defined by ∇. Using these as a starting point we can impose equations
(6.1) to (6.5) and proceed, as in Sect. 6, to derive for all multi-indices k expressions
for the quantities ∇k �(0), ∇k �(0), ∇k�AB A′ B′(0), ∇kψABC D(0), and thus also for
∇k Ri

jkl(0) in terms of the null data, which are given by the totally symmetric part of
∇̂n ψ̂ABC D(0). These expressions could be inserted into the equations above but for the
sake of comparison it will be better not to do this here.

Formulas (8.13) do not immediately apply to the functions �̂, �̂, �̂AB A′ B′ , ψ̂ABC D

with the connection ∇̂ and the curvature tensor r̂ i
jkl . They can be generalized, however,

to the case where the connection∇ is not torsion free by observing (2.1). The functions Cn
will then depend on the symmetrized derivatives ∇(k)TA1...A j B′

1...B
′
k

of order |k| ≤ |n|−1
and on the derivatives of the torsion as well as on those of the curvature tensor.

Consider now the point p with xμ(p) = 0 and assume that ti j
k(xμ) = O(|x |N ′

)

with some integer N ′ ≥ 1 as xμ → 0. It follows then with (2.1) that the restriction of
(8.13) to the point xμ = 0 is valid as it stands if |n| ≤ N ′ + 1. At that point we thus get
for |n| ≤ N ′ + 1 the relations

∇̂n �̂ = ∇̂(n) �̂ + Cn(∇̂(p) �̂, ∇̂q r̂), (8.18)

∇̂n �̂ = ∇̂(n) �̂ + Cn(∇̂(p) �̂, ∇̂q r̂), (8.19)

∇̂n �̂AB A′ B′ = ∇̂(n) �̂AB A′ B′ + Cn AB A′ B′(∇̂(p) �̂,∇q r̂), (8.20)

∇̂n ψ̂ABC D = ∇̂(n) ψ̂ABC D + Cn ABC D(∇̂(p) ψ̂, ∇̂q r̂), (8.21)

with |p|, |q| ≤ |n| − 2 and functions Cn which are identical with those appearing in the
corresponding equation in (8.14) to (8.17).

To compare these two sets of equations we observe that only the properties (4.7)
and (4.10) of the frame and the connection coefficients have been used to derive the
normal expansion (5.1). Because these are satisfied by Lemma 7.1 also by the coef-
ficients êμ k and �̂i

j
k , the normal expansions of the fields �̂, ŝ, �̂AB A′ B′ , ψ̂ABC D

can thus be expressed in terms of the derivatives with respect to the connection ∇̂.
This implies ∇̂(k)�̂ = ∇(k)�, ∇̂(k)�̂ = ∇(k)�, ∇̂(k)�̂AB A′ B′ = ∇(k)�AB A′ B′ ,
∇̂(k)ψ̂ABC D = ∇(k)ψABC D for all multi-indices k (here and in the following all spinors
are thought to be taken at the point xμ = 0). It follows that the right hand sides of the
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two sets of equations are distinguished now only by the occurrence of the spinors ∇q R
in the first set and the spinors ∇̂q r̂ in the second set.

Consider now as an induction hypothesis the relations (8.2), (8.3) (8.4) with multi-
indices k such that |k| ≤ N ′. Because the formal derivatives of the tensor Ri

jkl have
been determined such that the Bianchi identities are satisfied at all orders, relations
(8.4) imply that (8.10) holds with N = N ′. It follows then from Lemma 8.3 that the
assumption above on the torsion tensor is satisfied and (8.4) implies with the Lemma that
∇̂qr̂ h

k jl = ∇̂q R̂h
k jl = ∇q Rh

k jl with |q| ≤ N ′. Comparing the two sets of equations
above we can obtain relations (8.2), (8.3) (8.4) with multi-indices k such that |k| = N ′+1.

With the properties noted in the beginning of this section this implies that (8.2), (8.3)
(8.4) hold true for multi-indices k of all orders. It follows that the order relations (8.1)
and (8.5) to (8.9) are true for all integers n ∈ N. ��

9. Transport Equations and Inner Constraints

We have prescribed the radiation field, read off the null data at the vertex p, and con-
structed sequences of expansion coefficients at p which can be realized as ∞-jets at
p of smooth fields which satisfy the (conformal) field equations at all orders at p. We
want to discuss now which information can be derived from the radiation field in some
neighbourhood of p on Np.

By definition, the characteristics of any hyperbolic system of first order are those
hypersurfaces on which the system induces inner equations on (combinations of) the
dependent variables. On the other hand, the (conformal) Einstein equations induce as
a consequence of their gauge freedom constraints on their Cauchy data on any hyper-
surface. On null hypersurfaces, which represent the characteristics of the (conformal)
Einstein equations, these facts combine and result in a particular set of inner equations.
This set splits into two subsets. There are equations which involve in particular deriv-
atives in the direction of the null generators of the null hypersurface. These will be
referred to as transport equations. The remaining equations only involve derivatives
in directions which are still tangent to the null hypersurface but transverse to the null
generators. These will be referred to as inner constraints.

At most points of Np none of the frame vectors ek in the normal gauge is tangent
to Np. To derive from the complete set of equations subsystems which only contain
derivatives in directions tangent to Np, one thus needs to take (point dependent) linear
combinations of the equations and the dependent variables. Whatever one does to obtain
the maximal number of transport equations will amount in the end to expressing the
equations in terms of a new frame field on Np\{p} which is such that three of the new
frame vectors will be tangent to Np\{p}.

We shall describe the procedure and the resulting equations and derive the informa-
tion which will be needed to construct the desired fields on Np near p. The following
discussion, which works out some of the considerations at the end of Sect. 5 in a sys-
tematic way, makes use of the analysis in [5], to which we refer for more details. Let
{κa}a=0,1 denote the new spin frame field. If it is chosen such that the null vector κ0κ̄0′
is tangent to the null generators on Np\{p}, the vectors κ0κ̄1′ and κ1κ̄0′ will be tangent
to Np\{p} as well. Because such a frame field cannot have a direction independent limit
at p, particular care has to be taken to construct this frame so near p that the result-
ing equations will still admit a convenient analysis near p. It will be required that the
frame assumes regular limits at the point p if p is approached along the null generators
of Np\{p}. Let κa denote such a limit frame at p. It can be expanded in terms of the
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normal spin frame ιA underlying our earlier analysis in the form κa = κ A
a ιA. It will be

convenient and implies no restriction to assume the spinors κ A
a , a = 0, 1 or, in other

words, the frame transformation matrix (κ A
a)A,a=0,1 to be normalized such that

κ A
a εAB κ

B
b = εab, κ A

a τAB′ κ̄B′
b′ = τab′ . (9.1)

Here τAB′ = √
2α0

AA′ = εA
0 εA′ 0′

+ εA
1 εA′ 1′

, the quantities εab, τab′ and αμ aa′
referring to the new frame take the same numerical values as εAB , τAB′ and αμ AA′ , and
the small letter indices are treated in the same way as the large letter indices.

Because we did not specify the null generator along which the limit was taken, the
conditions above characterize in fact a family of frames at p. To describe them in detail,
denote by SU (2) the Lie group given by the set of complex 2 × 2-matrices (sa

b)a,b=0,1
satisfying the conditions

sa
c εab sb

d = εbd , sa
c τab′ s̄b′

d ′ = τcd ′ . (9.2)

Any s ∈ SU (2) can be written in the form

s =
(
α −β̄
β ᾱ

)
, α, β ∈ C, |α|2 + |β|2 = 1, (9.3)

and a basis of its Lie-algebra is given by the matrices

h = 1

2

(
i 0
0 −i

)
, u1 = 1

2

(
0 i
i 0

)
, u2 = 1

2

(
0 −1
1 0

)
. (9.4)

The subgroup of SU (2) consisting of the matrices

exp(φ h) = 1

2

(
ei φ2 0

0 e−i φ2

)
, φ ∈ R, (9.5)

will be denoted by U (1). Comparing (9.1) with (9.2) shows that a complete parame-
trization of the transformation matrices κ A

a is obtained by setting κ A
a(s) = δA

b sb
a

with s ∈ SU (2). The corresponding frame spinors will be denote by κa(s).
We shall make use of the left invariant vector fields Zu1 , Zu2 , Zh generated by u1,

u2, h and define the operators

Z+ = −(Zu2 + i Zu1), Z− = −(Zu2 − i Zu1),

which satisfy the commutation relation [Z+, Z−] = 2 i Zh . It should be noted that SU (2)
is a real but not a complex analytic Lie group and Zu1 , Zu2 must be considered as real
vector fields while Z+ and Z− take values in the complexifications of the tangent spaces
of SU (2) and are complex conjugate to each other. If f is a complex-valued function on
SU (2) with complex conjugate f̄ it holds thus Z± f̄ = Z∓ f . In particular, if the κ A

a
are considered as complex-valued functions on SU (2) as indicated above we get

Z+ κ
A

0 = 0, Z+ κ
A

1 = κ A
0, Z− κ A

0 = −κa
1, Z− κ A

1 = 0, (9.6)

and if κ̄ A′
a′ is its spinor complex conjugate we find with the rule above

Z+ κ̄
A′

0′ = −κ̄ A′
1′, Z+ κ̄

A′
1′ = 0, Z− κ̄ A′

0′ = 0, Z− κ̄ A′
1′ = κ̄ A′

0′ .

(9.7)
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Let cμ aa′(s) = eμ AA′ κ A
a(s) κ̄ A′

a′(s) be the frame field associated with κa at p and
denote by S2 the sphere {xμ ∈ Tp M/xμ xμ = 0,

√
2 x0 = 1} in the tangent space of p.

It holds

xμ∗ (s) ≡ cμ 00′(s) = α
μ

aa′ sa
0 s̄a′

0′

= 1√
2
(δμ 0 + 2 Re(α β̄) δμ 1 + 2 I m(α β̄) δμ 2 + (|α|2 − |β|2) δμ 3), (9.8)

and xμ∗ (s · t) = xμ∗ (s) for all t ∈ U (1). The Hopf map

S3 ∼ SU (2) � s → xμ∗ (s) ∈ S2,

thus associates with the left cosets s · U (1), s ∈ SU (2) the null directions xμ∗ (s). It
will be assumed that the frame κa(s) (resp. caa′(s)) is parallelly propagated along the
null geodesic τ → τ xμ∗ (s), τ ≥ 0, of Np. Because ιA (resp. eAA′ ) is a p-centered
normal frame, it is related to the frame κa (resp. caa′(s)) along this curve by the τ -inde-
pendent transformation κ A

a(s) (resp. κ A
a κ̄

A′
a′(s), which corresponds to a rotation

in SO(3,R) ∼ SU (2))/{1,−1} that leaves the direction e0 invariant). While the null
directions xμ∗ (s) are invariant under the action of U (1) the frames ιa resp. caa′ are not
and our prescription defines in fact a smooth bundle of frames ιa(τ, s) (resp. caa′(τ, s))
over Np\{p} with projection π : ιa(τ, s) → τ xμ∗ (s) (resp. caa′(τ, s) → τ xμ∗ (s)) and
structure group U (1) (resp. U (1)/{1,−1}). For simplicity we will concentrate in the
following on the bundle of spin frames, the discussion of the bundle of vector frames
being very similar. The parallel transport of the frames defines lifts of the null geodesics
τ → τ xμ∗ (s) to this bundle (‘horizontal curves’). The tangent vector field defined by the
lifts will be denoted by ∂τ and τ will be considered as a coordinate on Ñp. In the limit as
τ → 0 everything extends smoothly with the limits of the fibers corresponding to the left
cosets of SU (2) (in this sense the limit is even preserving the bundle structure). However,
while the projection π has rank three over points of Np\{p}, its rank drops to one in the
limit to π−1(p). In the new setting this fact will be reflected by the singular behaviour
at π−1(p) of the frame and the connection coefficients defined below. We denote the
bundle in the following by Ñp and consider it as a four dimensional smooth manifold
with boundary π−1(p), the set of frames caa′(s) at p, diffeomorphic to R

+
0 × SU (2).

To discuss the field equations one could choose a local section of the Hopf fibration
at p and push it forward with the flow of ∂τ to generate a section of Ñp. Because the
restriction of the projection π will then be a 1 : 1 map away from π−1(p), it will then
be obvious how to lift the frame field. However, apart from a subtlety which will be dis-
cussed in the proof of the second part of Proposition 9.1, it will in fact be more convenient
to formulate the transport equations as equations on Ñp, as has been done in [5].

A suitable lift of the frame field can conveniently be discussed by introducing on Ñp

besides ∂τ vector fields X± and S. Because the set π−1(p) is parametrized by SU (2),
the field Z± transfer naturally to this set. We set

X± = Z±, S = −2 i Zh on π−1(p),

and extend these fields to Ñp by Lie transport so that

[∂τ , X±] = 0, [∂τ , S] = 0.
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It follows then that S is tangent to the fibers of Ñp and

X± τ = 0, [X+, X−] = −S.

In fact, the first result follows from 0 = [∂τ , X±] τ = ∂τ (X± τ)− X± 1 = ∂τ (X± τ) and
the observation that limτ→0 X± τ = 0 because the fields X± become in this limit tangent
to the set π−1(p) on which τ vanishes. The second result follows because it is satisfied
in the limit as τ → 0 and because the definitions imply that [∂τ , [X+, X−] + S] = 0 on
Ñp. Because the images of the fields Z± under the Hopf map are linearly independent,
the images of the fields X± under the projection π will be linearly independent for τ > 0
(and sufficiently small that no caustic points will be met).

The scalar fields� and s lift from Np to Ñp by simple pull-back under the projection
map. The fields ψABC D and �AB A′ B′ are in addition subject to a frame transformation
so that they are related to the lifted fields by ψabcd(τ, s) = ψABC D(τ xμ∗ (s)) κ A

a(s)
. . . κD

d(s) and �aba′b′(τ, s) = ψAB A′ B′(τ xμ∗ (s)) κ A
a(s) . . . κ̄B′

b′(s).
Only the fields caa′ = eAA′ κ A

a κ
A′

a′ with aa′ 
= 11′ are tangent to Np at the points
τ xμ∗ (s) with τ > 0. Lifts of these tangent vector fields on Np to points of Ñp are not
immediately well defined because the kernel of the projection π is one-dimensional.
For τ > 0 there exist, however, unique lifts c̃aa′ for aa′ 
= 11′, i.e. fields satisfying
Tπ(c̃aa′) = caa′ , that can be expanded in terms of the vector fields ∂τ , X+, X−. Because
c00′ is tangent to the null geodesics of Np, it follows then immediately that c̃aa′ = ∂τ . To
analyse the precise behaviour of c̃aa′ as τ → 0, we observe that by our earlier discussions
eμ AA′ = αμ AA′ +O(|x |) as xμ → 0, which gives cμ aa′ = αμ AA′ κ A

a κ
A′

a′ +O(|τ |) in
this limit. For any smooth function f = f (xμ)we find thus with xμ = τ xμ∗ (s) and (9.3)

f,μ cμ aa′ = f,μ α
μ

AA′ κ A
a κ

A′
a′ + O(|τ |) for aa′ 
= 11′.

To see how this is related to the action of the vector field X+ on the lift of this function
to Ñp, we observe that the vector fields X± inherit properties of the fields Z± such as
(9.6), (9.7) and find with (9.8)

X+ f = τ f,μ X+(α
μ

AA′ κ A
0 κ̄

A′
0′) = −τ f,μ α

μ
AA′ κ A

0 κ̄
A′

1′ ,

and similarly

X− f = −τ f,μ α
μ

AA′ κ A
1 κ̄

A′
0′ ,

so that we can write

f,μ cμ 01′ = − 1

τ
X+ f + O(|τ |), f,μ cμ 10′ = − 1

τ
X− f + O(|τ |).

It follows that the lifted fields with aa′ 
= 11′ must have expansions of the form

c̃aa′ = εa
0 εa′ 0′

∂τ − 1

τ
(εa

0 εa′ 1′
X+ + εa

1 εa′ 0′
X−) + c∗

aa′, (9.9)

with

c∗
aa′ = baa′ X+ + b̄aa′ X− + raa′ ∂τ , (9.10)

and complex fields baa′ and raa′ satisfying

r̄aa′ = raa′, b00′ = 0, r00′ = 0, baa′ = O(|τ |), raa′ = O(|τ |). (9.11)
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Because there has not been specified a rule how to extend the new coordinates and the
fields c̃aa′ off Ñp, there cannot be given an explicit coordinate expression for the field
c̃11′ . It should be noted, however, that the field c̃11′ is determined on Ñp once the fields
c̃aa′ , aa′ 
= 11′, are known there.

If it is assumed that the relation caa′ = eAA′ κ A
a κ

A′
a′ holds in a full neighbour-

hood of the point p with an xμ-dependent transformation matrix κ A
a and it is used that

κa
A ≡ εab κB

b εB A satisfies κ A
a κ

a
B = −εB

A, the well known transformation law
which relates the connection coefficients �̃aa′bc with respect to the frame caa′ to the
connection coefficients �AA′ BC with respect to the frame eAA′ is obtained in the form

�̃aa′bc = −κB
b εBC κ

C
c,μ cμ aa′ + �AA′ BC κ

A
a κ

A′
a′κB

b κ
C

c.

Under our assumptions the derivatives κC
c,μ cμ aa′ are defined on Ñp only for aa′ 
= 11′

so that the formula above can only be used under this restriction. With (9.6) and (9.9) it
follows then that

�̃aa′bc =− 1

τ
(εa

0 εa′ 1′
εb

1 εc
1 + εa

1 εa′ 0′
εb

0 εc
0) + �aa′bc for aa′ 
= 11′, (9.12)

with a complex-valued field �aa′bc that satisfies

�00′bc = 0, �aa′bc = O(|τ |), (9.13)

so that

�̃00′bc = 0.

In this form the coefficients lift to Ñp. As discussed in [5], the coefficients �̃aa′bc
are in fact obtained by contracting the connection form on the bundle of frames with the
frame field c̃aa′ .

On Ñp the covariant derivative in the direction of c̃aa′ , aa′ 
= 11′, which will be
denoted by ∇̃aa′ , is now given with (9.9), (9.12) by the same rule as known on the base
space so that e.g.

∇̃d
0′ ψabcd = εde (c̃e0′(ψabcd)− �̃e0′ f

(a ψbcd) f ).

It will be convenient to introduce �AA′ = ∇AA′� as an additional unknown tensor
field. Because no rule has been specified to extend the new coordinates and the fields c̃aa′
away from Ñp, there cannot be given an explicit coordinate expression for the derivative
of � in the direction of c̃11′ . Because the field c̃11′ is determined on Ñp once the fields
c̃aa′ , aa′ 
= 11′, are known there, the field �aa′(τ, s) = �AA′ κ A

a κ̄
B′

a′ can still be
discussed as a tensor field on Ñp.

We are in a position now to obtain the expressions for the transport equations induced
on Ñp in the new gauge and to prove the following result.

Proposition 9.1. In the conformal gauge (4.3), (4.4) the transport equations induced on
Ñp by the conformal field equations and the structural equations uniquely determine
the fields �, �, �aba′b′ and ψabcd on Ñp once the radiation field

ψ0(τ, s) = κ A
0 κ

B
0 κ

C
0 κ

D
0 ψABC D|xμ=τ αμ

E E ′ κE
0 κ̄E ′

0′ , (9.14)

is prescribed there.
The fields so obtained also satisfy the inner constraint equations on Ñp.
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Remark 9.2. A similar result can be obtained in the vacuum case� = 1. The discussion
of that case is more complicated than the one below because then the conformal Weyl
tensor does not necessarily vanish on Ñp. We do not work out the details here.

Proof. The gauge conditions (4.3), (4.4) read in the present setting

� = 0, �aa′ = 0, � = �∗ ≡ 2 η00 on π−1(p), (9.15)

�000′0′ = 0, � = 0 on Ñp. (9.16)

The transport equations induced by (6.1), i.e. the equations which involve the directional
derivative c̃00′ imply in particular

∂τ � = �00′, ∂τ �00′ = 0,

and thus � = 0, �00′ = 0 on Ñp. With this it follows further

∂τ �01′ = 0, ∂τ �10′ = 0,

whence�01′ = 0,�10′ = 0 on Ñp. The transport equations induced by (6.1), (6.2) then
finally imply

∂τ �11′ = �, ∂τ � = 0,

and thus �11′ = τ �∗, � = �∗ on Ñp. Collecting results we find

� = 0, �aa′ = τ �∗ εa
1 εa′ 1′

, � = �∗ on Ñp. (9.17)

The transport equations induced by the torsion free conditions are given by

0 = t̃bb′ aa′ = [c̃bb′, c̃aa′ ] − (�̃bb′ ee′
aa′ − �̃aa′ ee′

bb′) c̃ee′,

with bb′ = 00′ and aa′ 
= 11′. Inserting here expressions (9.9), (9.12) and setting the
factors of ∂τ , X+, X− in the resulting equation separately equal to zero shows that the
content of this equation is equivalent to the conditions

∂τbaa′ +
1

τ
baa′ +

1

τ
�̄aa′0′0′ = �aa′00 b10′ + �̄aa′0′0′ b01′ , (9.18)

∂τ raa′ +
1

τ
raa′ = �aa′00 r10′ + �̄aa′0′0′ r01′ − �aa′01 − �̄aa′0′1′ , (9.19)

(which are satisfied identically for aa′ = 00′).
The Ricci identity is given for cc′, dd ′ 
= 11′ on Ñp by

c̃cc′(�̃dd ′ab)− c̃dd ′(�̃cc′ab) + �̃cc′a f �̃dd ′ f
b − �̃dd ′a f �̃cc′ f

b

−(�̃cc′ f f ′
dd ′ − �̃dd ′ f f ′

cc′) �̃ f f ′ab = �ψabcdεc′d ′ +�abc′d ′ εcd .

With (9.17), �̃00′ab = 0 and c̃00′ = ∂τ it follows

∂τ �̃10′ab − �̃10′00 �̃10′ab − ¯̃
�10′0′0′ �̃01′ab = �ab0′0′ ,

∂τ �̃01′ab − �̃01′00 �̃10′ab − ¯̃
�01′0′0′ �̃01′ab = 0,
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and thus with (9.9), (9.12)

∂τ�10′ab +
1

τ

{
�10′ab − �10′00 εa

0 εb
0 + �̄10′0′0′ εa

1 εb
1
}

= �10′00 �10′ab + �̄10′0′0′ �01′ab +�ab0′0′ , (9.20)

∂τ�01′ab +
1

τ

{
�01′ab + �01′00 εa

0 εb
0 + �̄01′0′0′ εa

1 εb
1
}

= �01′00 �10′ab + �̄01′0′0′ �01′ab. (9.21)

The transport equations induced by (6.3) are ∇̃0
c′
�bcb′c′ = ψbcd0�

d
b′ or, more explic-

itly,

∂τ�bcb′1′ +
1

τ

{
X+�bcb′0′ − 2 ε(b

1�c)0b′0′ + εb′ 0′
�bc1′0′ +�bcb′1′

}
− c∗

01′(�bcb′0′)

= −2�01′ f
(b �c) f b′0′ − �̄01′ f ′

b′ �bc f ′0′ − �̄01′ f ′
0′ �bcb′ f ′ − τ �∗ ψbc00 εb′ 1′

,

(9.22)

while the transport equations induced by (6.4) are ∇̃d
0′ ψabcd = 0, or, more explicitly,

∂τ ψabc1 +
1

τ

{
X−ψabc0 + 3 ε(a

0 ψbc)01 + ψabc1

}
− c∗

10′(ψabc0)

= −3�10′ f
(a ψbc) f 0 − �10′ f

0 ψabc f . (9.23)

While the initial data at τ = 0 are given for baa′ , raa′ , �aa′bc by (9.11) and (9.13),
they still have to be specified for�aba′b′ ,ψabcd . In principle they can be read off from the
formal expansions determined earlier but we give a different argument because it sheds
some light on the content of the equations. It is convenient here to use the ‘essential com-
ponents’ψk = κ A

(a κ
B

b κ
C

c κ
D

d)k ψABC D(0))which are obtained by setting k of the
lower indices in brackets equal to 1 and the remaining ones equal to 0. Because the vector
fields X± approach in the limit τ → 0 the vector fields Z±, it follows with (9.6) and (9.14)

lim
τ→0

X−ψ0 = Z−(κ A
0 κ

B
0 κ

C
0 κ

D
0) ψABC D(0) = −4 lim

τ→0
ψ1,

and, more generally,

lim
τ→0

X−ψk = −(4 − k) lim
τ→0

ψk+1, k = 0, . . . , 4.

In the notation of (9.23) this is precisely the relation

lim
τ→0

(X−ψabc0 + 3 ε(a
0 ψbc)01 + ψabc1) = 0.

It allows one to determine the initial data ψabcd(0) from the radiation field and at the
same time ensures that the formally singular term in (9.23) admits a limit as τ → 0
along any given given null generator of Ñp. Similarly one can determine by X+ and X−
operations the values of limτ→0�aba′b′ from �000′0′ with the result that

lim
τ→0

(X+�bcb′0′ − 2 ε(b
1�c)0b′0′ + εb′ 0′

�bc1′0′ +�bcb′1′) = 0,
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so that the formally singular term in (9.22) admits a limit along a fixed null generator.
However, because �000′0′ = 0 on Ñp by (9.16), it follows that

lim
τ→0

�aba′b′ = 0.

The gauge condition (9.16) and the vanishing of the Weyl tensor on Ñp lead to simpli-
fications. With this (9.22) implies

∂τ�000′1′ +
2

τ
�000′1′ = 2�01′00�010′0′ + 2 �̄01′0′0′ �000′1′ .

Because �010′0′ is by assumption the complex conjugate of �000′1′ it follows that

�000′1′ = 0, �010′0′ = 0 on Ñp. (9.24)

Equation (9.21) implies the coupled system

∂τ�01′00 +
2

τ
�01′00 = (�10′00 + �̄01′0′0′) �01′00,

∂τ�01′01 +
1

τ
�01′01 = �10′01 �01′00 + �̄01′0′0′ �01′01,

for �01′00 and �01′01 whence

�01′00 = 0, �01′01 = 0 on Ñp. (9.25)

With (9.16), (9.24), (9.25) equation (9.20) implies

∂τ�10′00 = �10′00 �10′00,

∂τ�10′01 +
1

τ
�10′01 = �10′00 �10′01,

from which we conclude that

�10′00 = 0, �10′01 = 0 on Ñp. (9.26)

With this the remaining equations of (9.21) and (9.20) read

∂τ�01′11 +
1

τ
�01′11 = 0,

∂τ�10′11 +
1

τ
�10′11 = �110′0′ ,

(9.27)

which give

�01′11 = 0, �10′11 = 1

τ

∫ τ

0
τ ′�110′0′ dτ ′ on Ñp. (9.28)

With these results it follows from (9.18), (9.19) that

baa′ = 0, raa′ = 0, c∗
aa′ = 0 on Ñp for aa′ 
= 11′. (9.29)



The Taylor Expansion at Past Time-like Infinity 295

With the resulting simplifications equations (9.22) read

∂τ�010′1′ +
2

τ
�010′1′ = 0,

∂τ�001′1′ +
1

τ
�001′1′ = −τ �∗ ψ0000,

∂τ�011′1′ +
1

τ
{X+�010′1′ +�011′1′ } = −τ �∗ ψ0001,

∂τ�110′1′ +
1

τ
{X+�110′0′ + 2�110′1′ } = 0,

∂τ�111′1′ +
1

τ
{X+�110′1′ +�111′1′ }=−2�01′11�010′1′ −�̄01′1′1′ �110′0′ −τ �∗ ψ1100.

The first three of these equations imply

�010′1′ = 0, �001′1′ = −�∗
τ

∫ τ

0
τ ′2 ψ0000 dτ ′,

�011′1′ = −�∗
τ

∫ τ

0
τ ′2 ψ0001 dτ ′ on Ñp. (9.30)

Explicit expressions can also be obtained for the solutions of the remaining equations.
In particular, imposing the reality conditions, using in the forth equation the expression
for�001′1′ given by (9.30), and observing that X±τ = 0 gives for�011′1′ the alternative
expression

�011′1′ = �∗
τ 2

∫ τ

0

(∫ τ ′

0
τ ′′2 X−ψ0000 dτ ′′

)
dτ ′. (9.31)

Comparing this with the expression in (9.30), it is seen that consistency requires

∂τψ0001 +
1

τ
{X− ψ0000 + 4ψ0001} = 0,

which is in fact the first of the equations which follow.
With the results obtained so far the transport equations (9.23) read

∂τ ψ0001 +
1

τ
{X−ψ0000 + 4ψ0001} = 0, (9.32)

∂τ ψ0011 +
1

τ
{X−ψ0010 + 3ψ0011} = −�10′11 ψ0000, (9.33)

∂τ ψ0111 +
1

τ
{X−ψ0011 + 2ψ0111} = −2�10′11 ψ0001, (9.34)

∂τ ψ1111 +
1

τ
{X−ψ0111 + ψ1111} = −3�10′11 ψ0011. (9.35)

Equation (9.32) has the regular solution

ψ0001 = − 1

τ 4

∫ τ

0
τ ′3 X−ψ0000 dτ ′.
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With (9.28), (9.30) one obtains

�10′11 = −�∗
τ

∫ τ

0

(∫ τ ′

0
τ ′′2 ψ̄0′0′0′0′ dτ ′′

)
dτ ′, (9.36)

which allows one to obtain successively integral expressions for the remaining compo-
nents of ψabcd on Ñp. This completes the proof of the first part of the Proposition.

Equations (6.1) and (6.2) imply the inner constraints

0 = c̃01′(�bb′)− �̃01′ f
b� f b′ − ¯̃

�01′ f ′
b′�b f ′ +��0b1′b′ −�ε0b ε1′b′,

0 = c̃01′(�) +�bb′
�0b1′b′,

and their complex conjugates. A direct calculation using (9.17), (9.25), (9.26) shows
that they are indeed satisfied on Ñp.

There do not arise inner constraints from (6.3), (6.4). Those which have not been
discussed yet contain the operator c̃11′ and thus differentiations in directions transverse
to Np.

Inner constraints are implied by the torsion-free condition and the Ricci identity.
Formula (2.2) suggests that the torsion free condition should read on Ñp

0 =
{
[c̃01′ , c̃10′ ] − (�̃01′ ee′

10′ − �̃10′ ee′
01′) c̃ee′

}
(9.37)

There arises, however, a subtlety because the commutator of the fields c̃01′ and c̃10′
contributes a component which is tangential to the fibers of Ñp. One way to deal this
problem is to follow the torsion-free condition in the form (2.4) and test whether the
operator above applied to a function f vanishes if this function is the lift of a scalar func-
tion on Np, whence constant on the fibres. For reasons which become clear when we
discuss the Ricci identity, we prefer a different procedure. If the operator (2.2) is lifted
according to our rules, it should not contain a vertical part and therefore the formula
above should be corrected by subtracting the vertical part supplied by the commutator.
By (9.29) the commutator is, however, totally vertical,

[c̃01′ , c̃10′ ] = 1

τ 2 [X+, X−] = − 1

τ 2 S,

and thus drops out after the correction altogether (as it does if applied to the lift of
a scalar function). A second subtlety arises because the relation above appears to in-
volve the operator c̃11′ which suggests that it is not an inner condition on Ñp. With
(9.25), (9.26) and with (9.28), which states that �01′11 as well as its complex conjugate
�̄10′1′1′ vanishes, it follows, however that not only the factor of c̃11′ vanishes but that
(�̃01′ ee′

10′ − �̃10′ ee′
01′) = 0 for arbitrary indices ee′. The inner constraint induced by

the torsion free conditions is thus indeed satisfied on Ñp.
The problem arising from the commutator of c̃01′ and c̃10′ also affects the discus-

sion of the inner constraints induced by the Ricci identity. If one calculates the spinor
analogue of (2.1), which reads for the components of interest here

(∇̃01′ ∇̃10′ − ∇̃10′ ∇̃01′)λa = ra
b01′10′ λb − t01′ ee′

10′ ∇ee′λa,

one finds that the second term on the right hand side contains a term of the form

[c̃01′, c̃10′ ](λa)− (�̃01′ ee′
10′ − �̃10′ ee′

01′) c̃ee′(λa).
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Performing here the replacement [c̃01′, c̃10′ ] → [c̃01′, c̃10′ ](λa) + 1
τ 2 S(λa) and then

ignoring the torsion term as suggested above, has to be compensated by the replacement

ra
b01′10′ λb → ra

b01′10′ λb − 1

τ 2 S λa,

of the curvature term. To show that the inner constraint induced by the Ricci identity
vanishes, we have to take into account the corrected curvature term.

Under the action of the group U (1) the frame κa transforms as κa → κb (exp(φ h))b a
and the components of a spinor field λ = λa κa transform thus as λa →
(exp(−φ h))a b λ

b. This implies that

S λa = −2 i
d

dφ
((exp(−φ h)a b λ

b)|φ=0 = 2 i ha
bλ

b,

with (ha
b)a,b=0,1 denoting the matrix h in (9.4). The equation which should be checked

thus reads

0 = c̃01′(�̃10′ab)− c̃10′(�̃01′ab) + �̃01′a f �̃10′ f
b − �̃10′a f �̃01′ f

b

−(�̃01′ f f ′
10′ − �̃10′ f f ′

01′) �̃ f f ′ab − 2 i

τ 2 hab −�ψab01ε1′0′ −�ab1′0′ ε01,

where we set hab = hc
b εca . In the cases ab = 00 and ab = 01 a direct calculation using

the results obtained above shows that this condition is indeed satisfied on Ñp. The case
ab = 11 is slightly more difficult. With the given results it readily reduces to the condition

0 = − 1

τ
X+�̃10′11 −�1101′ .

Observing (9.36), taking the complex conjugate, and using (9.31) shows that the condi-
tion is indeed satisfied. This proves the second assertion of the Proposition. ��

9.1. The fields on Np in the normal gauge. In the first part of this section, 4 has been
shown that there is associated with the radiation field (5.4), which reads in the present
notation

ψ0(τ, s) = κ A
0 κ

B
0 κ

C
0 κ

D
0 ψ

∗
ABC D(τ α

μ

E E ′ κE
0 κ̄

E ′
0′),

a unique set of fields

�, �aa′, �, �aba′b′ , ψabcd , and c̃aa′ , �̃aa′bc, aa′ 
= 11′, (9.38)

on Ñp which satisfy the transport equations and the inner constraints induced by the con-
formal field equations so that the 0000 components of ψabcd coincides with ψ0(τ, s).
Apart from the explicitly described singular terms of c̃aa′ and �̃aa′bc these fields are
smooth functions of τ and s ∈ SU (2). On the other hand, it has been shown in Sects. 6
to 8 that with the null data derived from ψ0 at p can be associated fields

�̂, �̂AA′ , �̂, �̂AB A′ B′ , ψ̂ABC D, êμ AA′ , �̂AA′ BC , (9.39)

which are defined and smooth on a neighbourhood of p, satisfy at p the conformal field
equations at all orders, and which have ∞-jets at p which are uniquely determined by



298 H. Friedrich

this property and the requirement that null data derived from ψ0 at p coincide with null
data at p derived from

ψ̂0(τ, s) = κ A
0 κ

B
0 κ

C
0 κ

D
0 ψ̂ABC D(τ α

μ

E E ′ κE
0 κ̄

E ′
0′).

While the Taylor expansions of these functions at p are fixed uniquely, they are fairly
arbitrary away from p.

To understand the relations between these two sets of fields, we consider the fields
(9.39) at the points xμ = τ α

μ

E E ′ κE
0 κ̄

E ′
0′ of Np and use the τ -independent frame

transformation κ A
a employed in Sect. 9 to express the fields (9.39) in terms of the

adapted frame to obtain on R
+
0 × SU (2) ∼ Ñp the fields

�̂(τ, s) = �̂(τ α
μ

E E ′ κE
0 κ̄

E ′
0′), �̂(τ, s) = �̂(τ α

μ

E E ′ κE
0 κ̄

E ′
0′), (9.40)

�̂aa′(τ, s) = �̂AA′(τ αμE E ′ κE
0 κ̄

E ′
0′) κ A

a κ̄
A′

a′ , (9.41)

�̂aba′b′(τ, s) = �̂AB A′ B′(τ αμE E ′ κE
0 κ̄

E ′
0′) κ A

a κ
B

b κ̄
A′

a′ κ̄B′
b′ , (9.42)

ψ̂abcd(τ, s) = ψ̂ABC D(τ α
μ

E E ′ κE
0 κ̄

E ′
0′) κ A

a κ
B

b κ
C

c κ
D

d . (9.43)

Further, we use the considerations of Sect. 9 to derive fields ĉ aa′ , �̂aa′bc, aa′ 
= 11′, on
R

+
0 × SU (2) from êμ AA′ , �̂AA′ BC which have the meaning and the singularity/regularity

structure described in (9.9), (9.12).
Because the fields (9.39) satisfy the field equations at all orders at p and have only

been subject to a coordinate and frame transformation, the new fields (9.40)–(9.43) must
satisfy, together with the transformed frame and connection coefficients, the transport
equations and inner constraints induced on Ñp at all orders at p. The uniqueness property
stated in Proposition 9.1 thus implies that the Taylor expansion of the fields (9.40)–(9.43)
in terms of τ at τ = 0 must coincide with the corresponding Taylor expansion of the
fields (9.38) at τ = 0.

This fact can be expressed in the following way. If the curvature fields given by (9.38)
are transformed into the normal gauge of Sect. 4 by setting

�AB A′ B′ = �aba′b′ κa
A κ

b
B κ̄

a′
A′ κ̄b′

B′ , ψABC D = ψabcd κ
a

A κ
b

B κ
c

C κ
d

D,

(9.44)

on Np, then

�AB A′ B′ =
N∑

n=0

1

n! τ
nκE1

0 κ̄
E ′

1 0′ . . . κEn
0 κ̄

E ′
n 0′ ∇E1 E ′

1
. . . ∇En E ′

n
�AB A′ B′(0) + O(|τ |N+1),

ψABC D =
N∑

n=0

1

n! τ
nκE1

0 κ̄
E ′

1 0′ . . . κEn
0 κ̄

E ′
n 0′ ∇E1 E ′

1
. . . ∇En E ′

n
ψABC D(0) + O(|τ |N+1),

for given N ∈ N, where the coefficients on the right hand sides are the expansion coef-
ficients associated with the null data derived from φ0 at p as described in Sects. 5 and 6.

One can also transform the frame vector fields and the connection coefficients given
by (9.38) into the normal gauge but more complete information is obtained by using the
curvature spinor

RABCC ′ DD′ = �ψABC D εC ′ D′ +�ABC ′ D′ εC D,
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supplied on Np by (9.44) to integrate the analogues of equations (7.5) and (7.6) on Np

along the curves τ → xμ(τ) = τ xμ∗ , where xμ∗ = αμ AA′ κ A
0 κ̄

A′
0′ is constant along

these curves. Let eμ k and�i
A

B denote the frame and connection coefficients which con-
stitute in the normal gauge together with the fields �, ��ABC ′ D′ , ψABC D supplied by
(9.38) initial data on Np for the conformal vacuum equations and set cμ k = eμ k −δμ k .
The restriction of equations (7.5) and (7.6) to the curves xμ(τ) can then be written in
the form

τ
d

dτ
cμ k + cμ k + cμ l δ

l
ν cν k + �k

i
l τ Xl∗ (cμ i + δμ i ) = 0, (9.45)

τ
d

dτ
�k

A
B + �k

A
B + �l

A
B δ

l
μ cμ k + �k

i
l τ Xl∗ �i

A
B − R A

B ik τ Xi∗ = 0, (9.46)

with Xl∗ = δl
μ xμ∗ . We are interested here in the solutions which are C1 in τ and satisfy

cμ k |τ=0 = 0, �k
A

B |τ=0 = 0.

If the left hand sides of the equations are contracted with Xl∗, the curvature term drops out
and one gets for cμ ≡ cμ k Xk∗ and �A

B ≡ Xk∗ �k
A

B equations which can be written

τ
d

dτ
(τ cμ) + (τ−1 cμ l) δ

l
ν (τ cν) + (τ �i

l) Xl∗ (cμ i + δμ i ) = 0,

τ
d

dτ
(τ �A

B) + (τ−1 �l
A

B) δ
l
μ (τ cμ) + (τ �i

l) Xl∗ �i
A

B = 0.

Because of the smoothness assumption and the initial conditions we can assume that
τ−1 cμ l and τ−1 �l

A
B extend as continuous functions to τ = 0. This allows us to

conclude that

(eμ k − δμ k) δ
k
μ xμ = 0, δk

μ xμ �k
A

B = 0 along xμ(τ).

By contracting (9.45) with xν∗ ηνμ and observing that �k
i

l Xl∗ δμ i xν∗ ηνμ =
�k i l X i∗ Xl∗ = 0, one gets for ck = xν∗ ηνμ cμ k the equation

d

dτ
(τ ck) + (τ cl) δ

l
ν (τ

−1 cν k) + �k
i

l Xl∗ (τ ci ) = 0,

which implies

xν ηνμ (e
μ

k − δμ k) = 0 along xμ(τ).

This shows that the gauge conditions (4.7), (4.8), (4.11) will be satisfied on Np by any
C1 solution to (9.45), (9.46).

We know from the explicit calculations above that �AD A′ D′κ A
a κ

D
0 κ̄

A′
0 κ̄

D′
d ′ =

�a0 0′d ′ = 0 on Np. This implies that

R A
B CC ′ DD′ κB

0 XCC ′
∗ = �A

B C ′ D′ κB
0 κ̄

C ′
0 κD 0 = 0 along xμ(τ).

The contraction of (9.46) with κB
0 thus gives

d

dτ
(τ �k

A
B κ

B
0) + (τ �l

A
B κ

B
0) δ

l
μ (τ

−1 cμ k) + �k
i

l Xl∗ (τ �i
A

B κ
B

0) = 0,
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whence

�k
A

B κ
B

0 = 0 along xμ(τ).

Consequently, �k
CC ′

DD′ X DD′
∗ = �k

C
D κ

D
0 κ̄

C ′
0′ + �̄k

C ′
D′ κC

0 κ̄
D′

0′ = 0 along
xμ(τ) and equation (9.45) reduces to

τ
d

dτ
cμ k + cμ k + cμ l δ

l
ν cν k + �k

i
l Xl∗ τ cμ i = 0

The only C1 solution vanishing at τ = 0 is given by cμ k = 0 and thus

eμ k = δμ k whence gμν = ημν along xμ(τ).
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