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a b s t r a c t

Using kinetic contours derived from everyday objects, we investigated how motion affects object identi-
fication. In order not to be distinguishable when static, kinetic contours were made from random dot dis-
plays consisting of two regions, inside and outside the object contour. In Experiment 1, the dots were
moving in only one of two regions. The objects were identified nearly equally well as soon as the dots
either in the figure or in the background started to move. RTs decreased with increasing motion coher-
ence levels and were shorter for complex, less compact objects than for simple, more compact objects.
In Experiment 2, objects could be identified when the dots were moving both in the figure and in the
background with speed and direction differences between the two. A linear increase in either the speed
difference or the direction difference caused a linear decrease in RT for correct identification. In addition,
the combination of speed and motion differences appeared to be super-additive.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We perceive the world around us as an organised whole of sur-
faces and objects. This requires our visual system to structure the
bits and pieces that reach our receptors into larger chunks that be-
long together as parts of meaningful objects and events. When ele-
ments are similar to one another with respect to features such as
luminance, colour, orientation, primitive shape, etc., they are
grouped. Likewise, when certain regions within the visual field
are different from one another regarding these properties, the re-
gions can become segregated from one another. In this respect,
perceptual grouping and figure–ground segregation are two sides
of the same coin (e.g., Palmer, 2003; Peterson, 2003). In the case
of clearly segregated surfaces (defined by luminance or colour dif-
ferences) or outlines, figural cues such as area, convexity and sym-
metry, usually determine which of the surfaces are seen as figures
and which as ground. The edge is then taken to belong to the figure
and the background is seen to continue behind it. In this respect,
edge assignment and figure–ground segregation go hand in hand
too (e.g., Von der Heydt, Zhou, & Friedman, 2003). When the differ-
ent grouping and segregation cues tend to balance each other out,
there is perceptual multistability in the sense that two organisa-
tions can be seen. One organisation usually dominates at one point
in time but it can then switch to the other organisation. Because
the edge belongs to the figure only, the two figure–ground solu-
tions cannot be seen simultaneously.
ll rights reserved.

(J. Wagemans).
Static objects that are similar to their background with respect
to colour, luminance and texture cannot be segregated from their
background. However, it is well-known that motion is a powerful
cue to break this kind of camouflage (e.g., Regan, 2000): as soon
as the object itself is set in motion or when the texture within
the object is moving, the object is segregated from its background
and a clear shape is seen (e.g., Uttal, Spillmann, Stürzel, & Sekuler,
2000). Gestalt psychologists coined a special term for this type of
grouping by similarity, namely grouping by common fate (e.g.,
Wertheimer, 1924/1938). Kinetic shapes or kinetic boundaries—
shapes or boundaries that are defined by motion—are a useful tool
to study motion as a figure–ground cue. They can be generated in
several ways, depending on the type of motion difference between
two neighbouring areas: absence versus presence of motion,
coherent versus incoherent motion, differences in coherence levels,
motion direction, speed, etc. Numerous experiments have investi-
gated a whole range of properties of kinetic boundaries and looked
at the effect of manipulations like motion contrast, dot lifetime,
motion direction, presentation duration, etc. (e.g., Nakayama,
1985; Sekuler, Watamaniuk, & Blake, 2002). These experiments
all investigated the detection or discrimination of stimuli that are
relatively simplistic in nature, such as lines, bars and simple geo-
metric shapes. Lorenceau and Boucart (1995) used natural objects
defined by moving contours in the presence or absence of a static
textured background. They showed that performance on an orien-
tation discrimination task was affected (impaired or facilitated) by
spatial parameters (like texture density and orientation or contrast
of background texture elements). Grill-Spector, Kushnir, Edelman,
Itzchak, & Malach (1998) used natural objects defined by differ-
ences in contrast, texture, or motion, but they did not register
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behavioural responses and they in fact reported that all objects
were equally well recognized. Hence, as far as we know, there have
been no psychophysical studies that have looked into the identifi-
cation of kinetic contours of familiar real-world objects and the
variables that affect it.

The goal of the present study is to develop stimuli with kinetic
contours derived from real-world objects and to test some
straightforward aspects of their perception. The first experiment
will examine the effect of motion coherence of figural and back-
ground dots on the identification of everyday objects derived from
kinetic contours. The second experiment will examine the effect of
linear increases in the direction and speed differences between
moving dots in figure and background. Moreover, this experiment
will investigate whether the speed and direction differences are
combined additively in the identification of everyday objects de-
rived from kinetic contours. In both experiments, we will measure
the time it takes to be able to identify the stimuli as the dependent
variable of interest. This measure taps into identification as the
output level of preceding processing levels like grouping, figure–
ground segregation, edge assignment, etc. We assume that these
processes are required to establish some shape percept that can
then be interpreted as a known object but we do not want to dis-
tinguish between all the different processes leading up to an iden-
tification response in this study. Hence, compared to previous
work on the role of motion as a figure–ground cue, which has
investigated the effects of low-level motion cues on detection or
discrimination, this study will examine identifiability of kinetic
contours defined by the same motion cues. It will be interesting
to find out whether the motion perception principles discovered
in the earlier psychophysical work will generalize to this more
high-level task. However, it is not our ambition in the present
study to disentangle the influences of the different variables on
the different processes that are involved.

2. General methods and materials

2.1. Subjects

Subjects were undergraduate students from the University of
Leuven between 20 and 23 years old. They had normal or cor-
rected-to-normal vision and signed an informed consent form.
They were all naïve regarding the purpose and the details of the
experiments.

2.2. Apparatus

The stimuli were generated on a Macintosh Z1-9.1 computer
with Matlab Version 5.2 and were presented on a Sony CRT screen
with 1024 � 768 pixel resolution and a refresh rate of 85 Hz. Sub-
jects sat in a darkened room with their head in a chin rest at 57 cm
from the screen. They were looking at the stimuli through an aper-
ture with a diameter of 30 cm.

2.3. Stimuli

The stimuli are derived from a subset of the line drawings
provided by Snodgrass and Vanderwart (1980) which have been
converted into silhouettes and outlines by Wagemans et al.
(2008) (see also De Winter & Wagemans, 2004). The object out-
lines used to make the stimuli in this study are depicted in Fig. 1.
These objects differ from each other on a number of factors that
may influence perception. One of these factors is the complexity
of the shape, which we measured as the inverse of compactness.
Compactness is calculated by dividing the area of the object by
the area of a circle with the same contour length as the object.
Thus, the most compact object is a circle, with a compactness va-
lue of 1, while an infinitely complex object has a compactness
value that asymptotically reaches 0. The compactness values of
the 20 objects (ranging between .66 and .16) are included in
Appendix A.

Using moving dot patterns, kinetic contours were derived from
these object outlines. Random dot displays consisted of two re-
gions, inside and outside the object contour. When the dots started
to move, either inside or outside the contour or in both regions but
with a difference between the regions in the speed and/or the
direction of motion, the contour could be seen and the object could
be identified. The outline of the object served as an edge for the
appearance and disappearance of the moving dots, previously
called ‘‘accretion” and ‘‘deletion” of surface elements (Gibson, Kap-
lan, Reynolds, & Wheeler, 1969; Kaplan, 1969). The two regions of
the random dot display could not be distinguished when the dots
were static, which is the reason why this is called a dynamic occlu-
sion cue. (Readers can verify this by looking at some example mov-
ies on our website:

http://ppw.kuleuven.be/labexppsy/newSite/groepen/index.php?
group=1&sublink=topics#5).

The proportion of dots moving in the same direction, the so-
called motion coherence level, could be made to vary between 0
(all random) and 1 (all coherent). The dots had a size of 3 pixels
and a limited lifetime expressed in stimulus frames. We have
tested different lifetimes in our pilot experiments and we have var-
ied it in this study during the training phase of Experiment 1 and
between Experiments 1 and 2 (see below), to adjust it at comfort-
able levels for our identification task. However, we have not
manipulated it systematically, which could be done if one were
interested in the temporal integration window needed for identifi-
cation. The stimuli (object and background) spanned 14� by 14� of
visual angle, while the objects spanned 6–12� in horizontal and
vertical direction. To necessitate a wide distribution of attention,
objects were presented away from fixation. More specifically, the
center of the object did not coincide with the screen center, but
was placed on a randomly chosen point on the circumference of
a circle with 5� of visual angle. A fixation cross in the center of
the screen preceded the presentation of each stimulus.

2.4. Procedure

The specific procedures that differ between the two experi-
ments will be explained in the respective method sections, while
the general aspects are described here. Both experiments used an
identification task. In the instructions both speed and accuracy of
identification were emphasized. Subjects were asked to press a
key as soon as they identified the object, which made the stimulus
disappear from the screen. RT from the onset of the stimulus until
button press was recorded. Then a response window appeared on
the screen and subjects were required to type the name of the ob-
ject they believed to have identified so that the correctness of their
response could be assessed. Stimuli were presented for a maxi-
mum of 5200 ms, so if subjects’ RTs were slower, no RT was re-
corded. These trials were not taken into account for the analysis
nor were trials in which the identification was incorrect.

3. Experiment 1

The first experiment examined the effect of motion coherence
of figural and background dots on the identification of everyday
objects derived from kinetic contours. The kinetic shapes were de-
fined by placing a region with motion next to a static region (i.e., if
the dots were moving in the figure, then the background dots were
static and vice versa).

http://ppw.kuleuven.be/labexppsy/newSite/groepen/index.php?group=1&amp;sublink=topics#5
http://ppw.kuleuven.be/labexppsy/newSite/groepen/index.php?group=1&amp;sublink=topics#5


Fig. 1. The 20 objects used to create kinetic contours to be used as experimental stimuli, from left to right, and from top to bottom, in alphabetical order of their basic-level
name (see Appendix A).
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3.1. Introduction

An important dynamic factor that determines perceptual orga-
nisation is the well-known Gestalt principle of ‘‘common fate”,
which states that elements moving coherently in the same direc-
tion and at the same speed have a strong tendency to be grouped
together (Uttal et al., 2000; Wertheimer, 1924/1938). These group-
ing processes are typically studied by means of the motion coher-
ence paradigm. In this paradigm random dot kinematograms are
used, in which a number of dots (called ‘‘signal dots”) move coher-
ently together, while the other dots (called ‘‘noise dots”) move ran-
domly. Since each dot in the kinematogram can be controlled
independently, it is possible to manipulate the coherence levels
of the display by adding randomly moving dots and then to exam-
ine how well the participants perform a discrimination task under
different noise levels. Performance in a motion perception task
with such a stimulus (e.g., discriminating between two opposite
motion directions) is then related to the so-called ‘‘coherence
threshold”, expressed as the percentage of dots moving in the same
direction at the same speed (e.g., Grzywacz, Watamaniuk, &
McKee, 1995; Watamaniuk, McKee, & Grzywacz, 1995; Wat-
amaniuk & Sekuler, 1992). The effect of motion coherence on mo-
tion perception has been studied frequently, also in the context of
perception–action coupling (Bleumers et al., 2006; Ceux et al.,
2005, 2006).

Depending on the speed and on the duration of the coherent
motion, and on the area and visual field of the visual stimulus,
the coherence thresholds for human and non-human primate
observers have been found to be within the range of 2% and 30%
(e.g., Britten, Shadlen, Newsome, & Movshon, 1992; Croner & Alb-
right, 1997). Because we used an identification paradigm, the
coherence level was made to vary between .3 (well above thresh-
old) and .9 (close to maximum coherence). There are several ways
in which noise can be added to moving dot patterns: random-posi-
tion noise, random-walk noise or random-direction noise (Scase,
Braddick, & Raymond, 1996). Scase and colleagues compared the
coherence threshold for directional judgements of the three meth-
ods of adding noise and found that the results were not signifi-
cantly affected by the choice of noise. In our experiment we
added random-direction noise. Although it is now well-established
that figure–ground segregation can be based entirely on temporal
information (e.g., Blake & Lee, 2005; Kandil & Fahle, 2004), we were
not interested in providing pure motion cues. We thus measured
the incremental effect of motion coherence over the effect of areal
dynamics and dynamic borders that are present at all coherence
levels. In line with the extensive psychophysical literature on mo-
tion detection and discrimination in noise, we predict that the
identification of objects based on kinetic contours is also still pos-
sible when noise is added but that the identification will be sub-
stantially more difficult with low coherence levels than with high
coherence levels.

In theory, figure–ground segregation can be region-based or
edge-based, i.e., based on the similarities and continuities within
a region, or based on the dissimilarities and discontinuities at the
edge between figure and background. While Gestalt psychologists
have emphasized the role of similarities, psychophysical studies
have shown that both mechanisms are important (Møller & Hurl-
bert, 1996), although segregation can still occur when one of both
mechanisms is rendered impossible to be used (Smith & Curran,
2000). In our experiment, one region was always static while the
other one contained motion albeit with variable coherence levels.
Because the contrast between a static and a moving region is al-
ways present at all coherence levels, the edge defined by this con-
trast will always be visible. Because the grouping within the region
with the moving dots will become more difficult with lower coher-
ence levels, the strength of region-based figure–ground segrega-
tion will vary with the coherence level. In other words, the
decreasing function of identification times with increasing coher-
ence will reflect the role of region-based grouping more than
edge-based segregation.

The effect of the second variable that was manipulated in this
experiment, whether the region where the dots are moving is the
figure or the background, is difficult to predict. Poom and Börjesson
(2004) compared bar-motion (motion in the figure) with flank-mo-
tion (motion in the background) in a path detection task. They
found a similar preference for bar-motion and flank-motion,
although detection was slightly easier with bar-motion. Based on
this finding, one could predict that the identification for objects de-
fined by figural motion and objects defined by background motion
are equally easy or difficult. However, findings based on detection
tasks with this type of simple stimuli are not necessarily applicable
to identification tasks with everyday objects as stimuli. In general,
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if one assumes that more attention is directed to the figure than to
the background when looking at the world around us, one could ar-
gue that identification will be faster with motion in the figure and a
static background. However, since motion within a figure is quite
infrequent while a static figure on a moving background is typi-
cally present at the retinal level whenever tracking a moving ob-
ject, one could also argue that the identification will be faster
with a static figure and motion in the background.

In addition to the effect of coherence level and the location of
the moving elements (in the figure or in the background), it will
be interesting to compare different objects. We used contours de-
rived from 20 different everyday objects, which varied regarding
properties like complexity (e.g., degree of curvature variation along
the contour). Previous experiments with a detection task have
looked at the effect of curvature. In a path detection task with path
elements consisting of moving dots, Bex, Simmers, and Dakin
(2003) showed that the visibility of the moving paths decreased
at high curvature. Also in path detection tasks with oriented Ga-
bors, it was found that performance deteriorated as the path curva-
ture increased (Field, Hayes, & Hess, 1993; Ledgeway, Hess, &
Geisler, 2005). These experiments are not ideal to infer predictions
about the effect of object complexity. The first reason is that these
experiments use a detection task. Another, more important reason
is that the effect of curvature of a line fragment likely is very differ-
ent from the effect of curvature along the contour of an object. In
our previous studies on identification (and segmentation) of sil-
houette or outline versions of line drawings of everyday objects
(e.g., De Winter & Wagemans, 2004; De Winter & Wagemans,
2006; Wagemans et al., 2008), and even in fragmented versions
of them (Panis, De Winter, Vandekerckhove, & Wagemans, 2008;
Panis & Wagemans, in press), complexity was measured as the in-
verse of compactness and it always turned out to play an important
role. These studies have found evidence for a negative relationship
between compactness and performance in identification and seg-
mentation tasks. More simple and compact shapes have a higher
structural similarity, which is an advantage during grouping but
a disadvantage during object recognition (Gerlach, Law, & Paulson,
2006; Panis & Wagemans, in press). Based on these results, we pre-
dict that identification will be easier for objects with low compact-
ness values than for objects with high compactness values (i.e.,
more circle-like objects).

Summing up, the first experiment investigates the effect of mo-
tion coherence, the effect of the region where the dots are moving
(i.e., figure versus background), and the effect of object compact-
ness on the RT for correct identification of everyday objects that
are derived from kinetic contours.

3.2. Methods

3.2.1. Subjects
Twenty subjects (10 male, 10 female) volunteered to partici-

pate. All were undergraduate students from a variety of different
faculties (10 from humanities and behavioural sciences, 10 from
natural and biomedical sciences).

3.2.2. Stimuli
The dots were moving either inside or outside the contour with

an average speed of 3.9� of visual angle per second. They moved
horizontally with a limited lifetime from left to right or from right
to left and changed direction every 1300 ms (max. 4 cycles for the
max. stimulus duration). The objects used to make the kinetic con-
tours are the 20 objects depicted in Fig. 1 (i.e., airplane, apple, ar-
row, baby carriage, banana, bear, bicycle, bottle, butterfly, duck,
flag, guitar, heart, lamp, pants, pear, star, tree, watering can, and
wine glass). These objects were selected because they were easy
to identify based on their silhouette and outline versions (see
Wagemans et al., 2008) and they contained enough variation in ob-
ject category (e.g., animals versus artefacts) and in compactness
(see Appendix A).

3.2.3. Procedure
Prior to the start of the experiment subjects received some

preparation and training in the task. First, the 20 objects were
presented to the subjects one after another accompanied by the
name of the object. The coherence level was fixed at .9 and the
lifetime of the dots was 10 stimulus frames, an optimal condition
for the subjects to be confronted with these objects for the first
time. All 20 objects were presented in this way twice, once with
moving dots in the figure and once with moving dots in the back-
ground. The presentation order was random. Second, a training
phase followed in which the same 20 objects were presented
again—this time without the name of the object accompanying
them. The task during this training phase was as described above:
to identify the object as quickly as possible. The stimuli were pre-
sented both in the condition with dots moving in the figure and
in the condition with dots moving in the background, with a mo-
tion coherence level of .9 and dots having a lifetime of five stim-
ulus frames. The presentation order was random. The training
phase ended when each object was identified correctly twice in
each condition, so the training lasted for a minimum of 80 trials.
The purpose of this training was to familiarize subjects with the
task and the stimuli. After this preparation and training, the ac-
tual experiment started, again using the same task. All of the
20 objects were presented in eight conditions, consisting of a fac-
torial combination of two variables: motion coherence was varied
at four levels (i.e., .3, .5, .7 and .9) and the location where the dots
are moving was varied at two levels (i.e., figure or background).
These 160 stimuli were presented to each subject twice, so there
were 320 experimental trials which were presented in a random
order. The lifetime of the dots was five stimulus frames. The en-
tire experiment lasted approximately 1 h.

3.3. Results

3.3.1. Preliminary analyses
The average number of missed and error trials across the 20

subjects was 33 on 320 experimental trials (SD = 26.25). Three sub-
jects of the 20 were considered outliers with regards to the number
of missed and error trials (67, 72 and 111 trials). They admitted to
being too tired to concentrate and to press too quickly and to guess
to shorten the duration of the experiment. The data of these three
subjects were excluded from further analyses.

The subjects whose data were subjected to further analysis had
an average of 24 missed and error trials on 320 experimental trials
(SD = 13.15). There were slightly more missed and error trials in
the conditions with background motion (3.86% of the experimental
trials) than in the conditions with figural motion (3.64% of the
experimental trials) but an ANOVA with the number of missed
and error trials as the dependent measure showed this difference
to be not significant (F1,159 < 1). The number of missed and error
trials was mainly determined by the coherence level
(F3,159 = 13.73, p < .0001, R2

coherence.partial = .23) and the compact-
ness of the objects (F17,159 = 8.95, p < .0001, R2

comp.partial = .53).
The higher the coherence level, the fewer missed and error trials
(2.87%, 2.06%, 1.67% and .90% for the experimental trials with a
coherence level of .3, .5, .7 and .9, respectively). The number of
missed and error trials was also not divided evenly across the ob-
jects. Some objects were clearly more difficult to identify than oth-
ers (on 5440 experimental trials there were 47 missed and error
trials with the apple, 45 with the pear and 45 with the duck), while
there were almost no missed and error trials with other objects
(one with the guitar, three with the arrow and three with the bicy-
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cle). The correlation of the number of missed and error trials with
the compactness of the objects was .21 (p = .3650).

3.3.2. Analyses
A repeated-measures analysis of variance (ANOVA) was per-

formed with location of motion, coherence level of motion and ob-
ject compactness as within subject-factors and subjects as a
random factor, and with the logarithm of RT of the correct re-
sponses as the dependent measure. Where necessary due to devi-
ations from sphericity, the Greenhouse–Geisser correction was
applied. Significant predictors of the RT for correct identification
were the motion coherence level (F3,4878 = 186.86, p < .0001,
x̂2 ¼ :6442) and the compactness of the objects (F1,4878 = 55.65,
p < .0001, x̂2 ¼ :3822). The identification was significantly faster
for higher coherence levels than for lower coherence levels and
identification was also faster for more complex, less compact ob-
jects (e.g., plane and bicycle) than for simpler, more compact ob-
jects (e.g., apple and pear), with a correlation of .1539 between
RT and compactness of the object (p < .0001).

The RTs tended to be somewhat shorter when motion was lo-
cated in figure (1623 ms with SD = .86) compared to when motion
was located in the background (1644 ms with SD = .78) but this ef-
fect was not significant (F1,4878 = 1.24, p = .2828, x̂2 ¼ :0045). Loca-
tion of motion interacted significantly with motion coherence level
(F1,4878 = 14.82, p < .0001, x̂2 ¼ :0985). At the highest coherence le-
Fig. 2. The effect of motion coherence and motion location (figure or background)
on the RTs (s) for correct identification, with the 95% confidence intervals calculated
between subjects. (A) For 17 subjects. (B) For a subgroup of 11 subjects who
performed better with figural motion. (C) For a subgroup of five subjects who
performed better with background motion.
vel of .9 identification was faster when the dots were moving in the
figure compared to the background, while at the lower coherence
levels the effect was smaller and even turns around at .3 (see
Fig. 2a). Contrast tests using the error variance at each coherence
level (Scheffé) showed that only at a coherence level of .9 there
was a significant effect of the location where the dots were moving
(F1,16 = 12.59, p = .0027). The effect was not significant at a coher-
ence level of .7 (F1,16 = 1.44, p = .2471), .5 (F1,16 = 1.85, p = .1928)
and .3 (F1,16 = 2.80, p = .1139).

3.3.3. Additional analyses
Taking a closer look at the effect of figural versus background

motion, two remarks need to be made. The first remark concerns
interindividual differences in the response to figural motion versus
background motion and the second remark concerns the distribu-
tion of the RTs for figural motion versus background motion.

3.3.3.1. Interindividual differences in response to figural versus
background motion. Interestingly, subjects appear to differ in the
effect of the location where the dots were moving, figure or back-
ground. We divided the subjects into two groups, based on
whether they identify the objects faster with figural motion or
with background motion. One of the subjects identified the objects
in both conditions with the same average RT and thus could not be
categorized in one of these two groups.

Eleven subjects identified the object faster with motion in the
figure and a static background. An ANOVA within each subject
shows that for six of them this difference was significant. A re-
peated-measures ANOVA on the data of this subgroup of eleven
subjects showed that there were four significant predictors of the
RT: the location of motion (F1,3141 = 28.90, p = .0003, x̂2 ¼ :2698),
the motion coherence level (F3,3141 = 121.80, p < .0001,
x̂2 ¼ :6848), the object compactness (F1,3141 = 31.12, p = .0002,
x̂2 ¼ :3889) and the interaction between the location of motion
and the motion coherence level (F1,3141 = 7.09, p = .001,
x̂2 ¼ :0920; see Fig. 2b). The correlation between RT and compact-
ness of the object within this subgroup of subjects was .1418
(p < .0001).

Five subjects identified the objects faster with motion in the
background and a static figure. An ANOVA within each subject
found that for three of them this difference was significant. A re-
peated-measures ANOVA on the data of this subgroup of five sub-
jects showed that again there were four significant predictors of
the RT: the location of motion (F1,1447 = 1.30, p = .0326,
x̂2 ¼ :3923), the motion coherence level (F3,1447 = 44.17,
p < .0001, x̂2 ¼ :8630), the object compactness (F1,1447 = 14.39,
p = .0192, x̂2 ¼ :7220) and the interaction between the location
of motion and the motion coherence level (F1,1447 = 17.85,
p < .0001, x̂2 ¼ :5261; see Fig. 2c). The correlation between RT
and compactness of the object within this subgroup of subjects
was .1678 (p < .0001).

The subjects who identified the objects faster with motion in
the figure were on average significantly faster than the subjects
who identified the objects faster with motion in the background
(1551 ms (SD = .77) versus 1733 ms (SD = .87) t4730 = �5.21,
p < .0001, two sample t-test). In Fig. 2b and c it can be seen that this
differential effect is due to the RTs in conditions with figural mo-
tion only. The RTs for conditions with background motion do not
differ between the two groups. The comparison between these
two panels also suggests that the interaction between location of
motion (figure versus background) and coherence level differs be-
tween the two subgroups: for subjects who identified objects fas-
ter with figural motion (Fig. 2b), the difference with background
motion increases with higher coherence, while it increases with
lower coherence for subjects who identified objects faster with
background motion (Fig. 2c).
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3.3.3.2. Differences in the distribution of RTs to figural versus
background motion. Fig. 3 shows the distribution of RTs in the
conditions with figural motion versus background motion and this
figure shows an interesting pattern. A two-sample Kolmogorov–
Smirnov test showed that the two distributions differ significantly
(p < .0001). For the faster RTs (i.e., RTs until approximately 2.5 s)
the RTs to figural motion were faster than the RTs to background
motion. For the slower RTs (i.e., RTs slower than approximately
2.5 s) the pattern changes and the RTs to background motion were
faster than the RTs to figural motion. However, 75% of all observa-
tions fall below 2 s. Analyzing only this subset of observations, not
only coherence (F3,3665 = 52.66, p < .0001) compactness
(F1,3665 = 33.30, p < .0001) and the interaction between coherence
and motion location (F3,3665 = 9.38, p < .0001) were significant fac-
tors, but also location of motion was a significant determinant
(F1,3665 = 11.60, p < .0001). As noted before and indicated by the
leftward shift in the mean RT for figural versus background motion,
for this subgroup of faster RTs it is the case that the RTs for figural
motion are faster than to background motion.

3.4. Discussion

In the first experiment we found that the RTs for correct identi-
fication of kinetic shapes decrease for higher motion coherence
(i.e., a higher proportion of dots moving in the same direction).
Also, the RTs were faster for more complex, less compact objects
(e.g., plane and bicycle) than for simpler, more compact objects
(e.g., apple and pear). In accordance with this, the number of iden-
tification mistakes decreases for higher motion coherence and for
more complex, less compact objects. The objects were identified
nearly equally well as soon as the dots either in the figure or in
the background started to move. This pattern of results implies
that identification is easier for kinetic shapes with more coherent
motion and for kinetic shapes with a higher complexity, irrespec-
tive of where the motion is (in the figure or in the background).
However, there were interindividual differences in the response
to figural versus background motion: several subjects were clearly
faster to identify objects defined by figural motion, while others
were faster to identify objects when the background was moving.
Also, there were differences in the distribution of the RTs for figural
versus background motion. The distribution of the RTs for figural
motion was shifted leftwards compared to that for background
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Fig. 3. The distribution of RTs (s) in the conditions with figural motion (blue line)
and background motion (red line).
motion, and for the 75% fastest RTs, identification of kinetic con-
tours with figural motion was faster than with background motion.

3.4.1. Motion coherence determines the performance in low-level as
well as high-level tasks

In the psychophysical literature it has been established that the
detection and discrimination of motion-defined boundaries and
shapes becomes easier as the proportion of signal dots to noise
dots becomes larger. This is because grouping by common fate
(or region-based grouping) becomes stronger with higher coher-
ence levels. In the present experiment we manipulated the motion
coherence level, using random-direction noise, between .3 and .9.
In line with the extensive evidence from experiments using low-le-
vel tasks like detection and discrimination, the present experiment
using a more high-level task shows that the RTs decrease with
higher motion coherence. Our results strongly indicate that motion
is a powerful cue for identification, even in the presence of motion
noise.

3.4.2. Figural motion versus background motion
In the present experiment, it was found that for figural motion

the RTs tend to be somewhat slower than for background motion.
This seems to be in line with the results of Poom and Börjesson
(2004) who found detection was slightly easier with bar-motion
than with flank-motion. In their experiment as well as in the pres-
ent experiment the overall difference was not statistically signifi-
cant. However, when focusing on the fastest 75% of the
identification responses, it was the case that the RTs for the kinetic
contours defined by figural motion were faster than the RTs for the
kinetic contours defined by background motion. Asymmetries in
figure–ground processing (e.g., Likova & Tyler, 2008) may be quite
relevant in understanding the center–surround interactions at the
neural level (see Section 5).

Interestingly, there were individual differences in the effect of
figural versus background motion. A subgroup of subjects per-
formed better with figural motion, while another subgroup per-
formed better with background motion. This led us to
hypothesize that differences in field-independence could have
influenced the individual differences observed in our experiment.
Subjects who identified the objects faster with figural motion could
be field-independent and subjects who identified the objects faster
with background motion could be field-dependent. Field-depen-
dence versus field-independence was introduced as a cognitive
style by Witkin, Dyk, Faterson, Goodenough, and Karp (1962). It re-
fers to the extent to which someone’s perceptual organisation of
the visual field depends on the context. People who are field-inde-
pendent are good at identifying objects in a surrounding that
makes the identification difficult or hides the objects. On the other
hand, people who are field-dependent are very much influenced by
the context and the background. Several authors have argued more
recently that field-independence is not to be seen as a broad cog-
nitive style but matches spatial ability (MacLeod & Jackson,
2002; Zhang, 2004).

Field-independence occurs more in men than in women and
more in students in natural and biomedical sciences than in
humanities and behavioural sciences. A first indication of the role
of field-independence could therefore be provided by an unequal
division of gender and study program (which were divided equally
in the whole sample) in the different subgroups. This was not the
case. In addition to this crude indication at the group level, we also
tried to test cognitive style differences at the individual level. To
this end, we asked all of our 20 subjects to return to the lab and
to complete Witkin’s (1971) Group Embedded Figures Test). In this
test, subjects have to localize a simple figure in the context of a lar-
ger and more complex figure that is designed to conceal the simple
figure. The simple figure has always been seen before without the
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context of the more complex figure. The available norms date back
to 1971 and are based on American male and female students. In
general, our subjects scored very high on the Group Embedded Fig-
ures Test. Sixteen out of the 20 subjects scored in the highest quar-
tile and thus were considered field-independent. The fact that this
test differentiated so little between the subjects in this study indi-
cates that it might be recommendable to provide and use new
norm data. In any case, it can be stated that the differences in
the effect of the location of motion are unlikely to be grounded
in differences in field-independence, since the correlation of the
each subject’s score on the test with the signed difference in aver-
age RT between the condition with figural motion and the condi-
tion with background motion, was virtually zero (r = .0020,
p = .9940). To investigate the factors underlying the interindividual
differences between participants who are faster at identifying ob-
jects with figural motion than with background motion, requires
a separate study with a larger sample and a larger test-battery spe-
cifically tailored to addressing perceptual and cognitive abilities.

3.4.3. The role of object properties like compactness
Our previous identification and segmentation studies have

found evidence for the influence of factors indexing global outline
complexity (De Winter & Wagemans, 2004, 2006; Panis et al.,
2008; Panis & Wagemans, in press). The results of the present
study are in line with the previous results. The identification is fas-
ter for more complex, less compact objects (e.g., plane and bicycle)
than for simpler, more compact and thus more circle-like objects
(e.g., apple and pear). The influence of curvature of an object con-
tour in identification tasks is thus not the same as the influence of
curvature of a path in detection tasks (Bex et al., 2003; Field et al.,
1993; Ledgeway et al., 2005). For objects it is the case that when
they have low compactness and high part saliency, the global
shape information is informative and diagnostic for identification.
For objects with low part saliency and high compactness, there are
many other candidate objects that look like it, so identification is
more difficult (see Panis & Wagemans, in press, for a more detailed
study of this effect).
4. Experiment 2

In the second experiment both the figural dots and the back-
ground dots were moving. The speed differences and direction dif-
ferences between figure and background were each manipulated in
a linear manner to investigate whether this has a linear effect on
the RT for correct identification. This experiment also investigates
whether speed and direction cues are combined in an additive
manner.

4.1. Introduction

In perceiving the external environment, the brain generally
benefits from combining and integrating multiple cues of informa-
tion. Combining multiple reliable and consistent cues leads to an
increase of the information that is available for perception and
usually to a better and more reliable performance of the visual sys-
tem. A striking example is depth perception, which is the result of
combining multiple cues like occlusion, relative size, disparity, tex-
ture gradient and shading (e.g., Ernst & Bülthoff, 2004; Todd, 2004).
Cue combination has been investigated both within a modality
(e.g., texture and motion, Rosas et al., 2004, 2007) and between
modalities (e.g., vision and haptics, Rosas et al., 2005). Also for
identification of kinetic shape stimuli, multiple cues can be used
and combined. When there is motion both in the figure and in
the background, they can be segregated if there is a variation of
the dot velocity between the dots of the figure and the dots of
the background. This variation can occur across time as well as
space. Thus, speed differences as well as direction differences can
be used as cues for object identification.

The results of several path detection studies are informative on
this issue. First, Field et al. (1993) looked into orientation or good
continuity as path detection cue and they found that path detect-
ability was higher when the orientation of the local elements
matched the orientation of the global path than when the orienta-
tion was orthogonal to the axis of the global path. Later, Ledgeway
et al. (2005) showed that path detectability was higher when the
orientation was orthogonal than when the elements were oriented
obliquely. Hence, the relationship between relative orientation of
the elements and path detection is U-shaped. In line with the work
on linking by orientation and the concept of a local association field
that integrates local orientation information proposed by Field
et al. (1993), more recent studies have investigated linking based
on direction (Ledgeway & Hess, 2002) and speed (Hess & Ledge-
way, 2003). Ledgeway and Hess (2002) found evidence for a direc-
tion-based association field and showed that contours with
moderate curvature defined by motion with a direction along the
curvature (good continuity) are more detectable than contours de-
fined by motion of any common direction (common fate). Hess and
Ledgeway (2003) found evidence for a speed-based association
field, thus again linking based on common fate but now over time
instead of over space.

It is important to note that the speed-based association field is
much weaker than the direction-based association field, which is
in turn stronger than the orientation-based association field. Bex,
Simmers, and Dakin (2001) found speed-insensitivity for orienta-
tion-defined contours and Hess and Ledgeway (2003) found similar
speed-insensitivity for direction-defined contours. Ledgeway et al.
(2005) showed that detection based on orientation and direction is
stronger than detection for static oriented elements. Moreover,
Hess and Ledgeway (2003) and Ledgeway et al. (2005) showed that
detection based on good continuity and common speed is more
effective than detection based on common speed alone. This en-
hanced performance argues for the existence of two separate visual
processes: one mechanism is a specialized contour extraction
mechanism that integrates local direction signals that are aligned
along the contour regardless of speed, and the other mechanism
is a more generalized segmentation process utilizing shared com-
mon speed.

In our experiment, kinetic contours are defined by a double cue.
Both speed and direction can be used as cues for object identifica-
tion. There is a shared common speed and a shared common direc-
tion within the figure and within the background, while there is a
difference in speed and direction between figure and background.
Our experiment investigates whether a linear decrease in the
direction difference and a linear decrease in the speed difference
lead to a linear increase in the time to identify everyday objects
based on kinetic contours. In addition, our experiment investigates
if speed and direction are combined additively in object
identification.

4.2. Methods

4.2.1. Subjects
Five subjects (two male, three female) participated in exchange

for a monetary reward. All were undergraduate students (three
from humanities and behavioural sciences, two from natural and
biomedical sciences).

4.2.2. Stimuli
Both the dots in the background and in the figure were moving.

The speed and motion differences between figure and background
were manipulated. The speed difference was varied at three levels
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(i.e., 35�, 55� and 75�), as was the direction difference (i.e., .8, 1.6,
2.4 pixels per stimulus frame), and these were fully crossed leading
to nine conditions for each object. We did not include conditions in
which only speed or only direction varied because extensive pilot
experiments showed that these conditions produced kinetic con-
tours that were not clear enough to be identified. The dots in the
figure were moving with a direction of 221� while the dots in the
background were moving with a direction of 186�, 166� or 146�,
all expressed as clockwise angles from horizontal with 0� on the
right. The dots in the background were moving with a speed of
1.5 pixels per stimulus frame while the dots in the background
were moving with a speed of 2.3, 3.1 or 3.9 pixels per stimulus
frame. These nine conditions were fully crossed with 10 objects,
which are a subset of the objects depicted in Fig. 1 (i.e., airplane,
apple, arrow, bear, bicycle, butterfly, heart, pear, star and tree).
The subset of objects used in Experiment 2 has a similar variation
in compactness and object category as the objects used in Experi-
ment 1, containing both objects that in Experiment 1 evoked few
missers and mistakes as well as objects that evoked a lot of missers
and mistakes. The 90 stimuli were presented 10 times in a random
order, making a total of 900 experimental trials presented to each
subject. The coherence level was fixed at .9 and the lifetime of the
dots was 20 stimulus frames.

4.2.3. Procedure
The experiment consisted of three sessions each lasting approx-

imately 1 h and 45 min. Like in the first study, there was a prepa-
ration and training phase before the actual experiment started.
There was a preparation phase in each of the three sessions during
which the subjects saw the 10 objects accompanied by their name
in the easiest condition, i.e. with a speed difference of 2.4 pixels per
stimulus frame and a direction difference of 75�. Only in the first
session of the study there was a training phase during which the
subjects had to correctly identify each of the 10 objects in each
of four conditions (i.e., the combination of minimal and maximal
speed and direction differences). So, in this training phase there
were at least 80 trials that were presented in a random order. After
this, the experimental trials followed. In the first session there
were 180 experimental trials, in the second and the third session
there were 360 trials, making a total of 900 experimental trials.

4.3. Results

4.3.1. Preliminary analyses
The performance of the five subjects was very high. On average

only 21.6 (SD = 12.42) mistakes were made on 900 experimental
trials. 48.15% of all mistakes were made in the most difficult con-
dition with a speed difference of .8 pixels per stimulus frame and
a direction difference of 35�. The higher performance in this exper-
iment compared to the first experiment could be due to many fac-
tors (longer lifetime of the dots, longer training phase, many more
experimental trials).

4.3.2. Analyses
There were three significant predictors of the logarithm of RTs for

correct identification: the speed differences (F2,4382 = 346.18,
p < .0001, R2

speed:partial ¼ :04), the direction differences (F2,4382 =
95.42, p < .0001, R2

dir:partial ¼ :14) and the interaction between those
two factors (F4,4382 = 8.51, p < .0001, R2

speedxdir:partial ¼ :01). In contrast
to the first experiment, object compactness was no longer significant
(F1,4382 < 1).

As was shown in a test of all pairwise differences and as can be
seen in Fig. 4, both within the conditions with a speed difference of
1.6 pixels per stimulus frame and within the conditions with a
speed difference of 2.4 pixels per stimulus frame, there was no sig-
nificant difference between the condition with a direction differ-
ence of 55� and the condition with a direction difference of 75�.
This could indicate a ceiling effect.

4.3.2.1. Linearity of single cues. As noted, our first research question
was whether a linear decrease of (1) the difference along the
dimension of direction and (2) the difference along the dimension
of speed would lead to a linear increase in the RT for correct
identification.

Three interaction contrasts, one within each level of the factor
speed difference with the middle direction difference and the mid-
dle speed difference as reference group, could answer the first part
of the question. The three contrasts were significant (for speed dif-
ference .8 pixels per stimulus frame: F1,4383 = 144.15, p < .0001, for
speed difference 1.6 pixels per stimulus frame: F1,4383 = 35.25,
p < .0001, for speed difference 2.4 pixels per stimulus frame:
F1,4383 = 26.81, p < .0001; compared to a = .05/3, Bonferroni correc-
tion). This means that within each of the three speed differences
tested, there was a significant linear relation between the direction
differences and the RTs.

Three other interaction contrasts, one within each level of the
factor direction difference with the middle speed difference and
the middle direction difference as reference group, could answer
the second part of the question. The three contrasts were signifi-
cant (for direction difference 35�: F1,4383 = 315.77, p < .0001, for
direction difference 55�: F1,4383 = 279.62, p < .0001, for direction
difference 75�: F1,4383 = 120.85, p < .0001; compared to a = .05/3,
Bonferroni correction). This means that within each of the three
direction differences tested, there was a significant linear relation
between the speed differences and the RTs.

4.3.2.2. Cue combination. The second question we addressed was
whether speed and direction differences were combined additively
in object identification. The method of analysis used to answer this
question, is based in part on the method used by Meinhardt, Persi-
ke, Mesenholl, and Hagemann (2006) and by Persike and Mein-
hardt (2008) in studies on cue combination of contrast in spatial
frequency and orientation.

As a start, we assumed that speed differences and direction dif-
ferences are two orthogonal linear dimensions in a vector space.
The assumption of the speed and direction cue being two separate
dimensions is supported by empirical work using low-level tasks
by Hess and Ledgeway (2003) and Durant and Zanker (2008). We
have shown empirically in Section 4.3.2.1 that the dimensions
are linear: linear steps in increasing direction or speed differences
were found to have linear effects on the RT for identification. In this
part of the analysis we addressed the question whether these two
cues or dimensions combine in a linear additive fashion or a non-
linear super-additive or sub-additive fashion. Under the above
mentioned assumptions, the predicted RT in case of independent
additive cues could be predicted in each condition. Comparing
the predicted RT with the observed RTs made it possible to assess
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whether the combination of the speed and direction cue was addi-
tive, super-additive or sub-additive. If the average observed RT
does not differ significantly from the predicted RT, this would indi-
cate additive cues. If the average observed RT is faster than the pre-
dicted RT, this would be an indication of super-additive cues. If the
average observed RT is slower than the predicted RT, this would
indicate sub-additive cues.

In each condition of interest the RT was predicted in the case of
independent additive cues using the following formula:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0directionÞ

2 þ ðd0speedÞ
2

q
. With this formula the vector distance be-

tween the observed RTs in a baseline condition and the predicted
RT in the condition of interest could be calculated. In this formula
d0direction represents the vector distance between the observed RTs in
the baseline condition and the observed RTs in the condition with
the same speed difference as the one in the baseline condition but
the same direction difference as the one in the condition of inter-
est. Likewise, d0speed represents the vector distance between the ob-
served RTs in the baseline condition and the observed RTs in the
condition with the same direction difference as the one in the
baseline condition but the same speed difference as the one in
the condition of interest. The predicted RT in the condition of inter-
est resulted from adding the vector distance calculated with the
above mentioned formula to the observed RTs in the baseline con-
dition. The predicted RT could then be compared to the observed
RTs and this difference could be tested for significance with a
one-sample t-test.

Using different baseline conditions and conditions of interest,
five comparisons could be tested. For each of these, the calculations
and analyses are listed in Table 1. The results for the first three con-
ditions of interest showed that the observed RTs in these condi-
tions were significantly shorter than the predicted RT. This
indicates super-additivity of the speed and direction cue in these
conditions. In the last two conditions of interest (marked by � in
Table 1) there was no evidence for a significant difference between
the observed RTs and the predicted RT, providing no evidence for
super-additivity but instead for additivity. In the discussion we
will argue that these two cases are due to a ceiling effect in the
manipulation of the direction differences.

4.4. Discussion

In the second experiment a difference between speed and direc-
tion between figural and background motion defined the kinetic
contours. In this experiment we found a linear relation between
an increase in speed or direction differences and the resulting de-
crease in RTs for identification. In addition, in some conditions
there is evidence that speed and direction differences were com-
bined in a super-additive way in object identification: in those con-
ditions, there was a relative advantage of presenting a double cue
Table 1
For each of five calculations and conditions of interest, the baseline condition and the pred
time in the baseline condition and the predicted reaction time. Also listed are the observed
time and the predicted reaction time.

Condition of interest Baseline condition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd’directionÞ2 þ ðd’sp

q

1 75� 35� 0.4977
2.4 pix/sf .8 pix/sf

2 55� 35� 0.2903
1.6 pix/sf .8 pix/sf

3 55� 35� 0.2009
2.4 pix/sf .8 pix/sf

4* 75� 35� 0.2589
1.6 pix/sf .8 pix/sf

5* 75� 55� 0.1564
2.4 pix/sf 1.6 pix/sf
compared to what could be predicted under assumption of two
independent cues. However, not in all the conditions evidence for
super-additivity was found.

4.4.1. Super-additive combination of the speed and direction cue
In the condition with a speed difference of 2.4 pixels per stim-

ulus frame and a direction difference of 75� there was evidence for
super-additivity taking one baseline (comparison 1), but taking a
different baseline (comparison 5) no evidence for additivity was
found. In the condition with a speed difference of 1.6 pixels per
stimulus frame and a direction difference of 55� (comparison 2)
as well as in the condition with a speed difference of 2.4 pixels
per stimulus frame and a direction difference of 55� (comparison
3), evidence for super-additivity was found. No evidence for
super-additivity was found in the condition with a speed differ-
ence of 1.6 pixels per stimulus frame and a direction difference
of 75� (comparison 4). The two cases where no super-additivity
was found are cases with a direction difference of 75� that take a
baseline with a direction difference of 55� and thus can most prob-
ably be explained by a ceiling effect in the manipulation of the
direction differences. As revealed by a test of all pairwise differ-
ences and as noted earlier, within the conditions with the two
highest speed differences, there was no difference in the RTs be-
tween a direction difference of 55� and 75�. Thus, our second
experiment demonstrates that there is super-additivity of the
speed and direction cue unless a ceiling effect in one of both cues
is reached. This super-additivity means that when there are motion
differences between background and figure, combining both the
speed and the direction differences yields a kinetic contour that
can be identified faster than the simple additive combination of
those cues.

4.4.2. Edge-based and region-based object identification
In our first experiment there was motion in either the figure or

the background and the coherence of this motion varied across
conditions. As noted earlier, areal dynamics and/or dynamic bor-
ders are present at all coherence levels. Although it is not a clean
case of region-based grouping, the strength of region-based identi-
fication will certainly vary with the coherence level because group-
ing of the elements within the motion region will become more
difficult with lower coherence levels. In other words, the finding
that identification becomes more difficult with decreasing coher-
ence reflects the role of region-based grouping more than edge-
based segregation. In our second experiment on the other hand,
the effects on the RTs for identification tap into edge-based group-
ing more than into region-based grouping. Within the figure and
within the background, there is a shared common speed and a
shared common direction, while between figure and background
there is a difference in speed and direction. It is not a clean case
of edge-based grouping because areal dynamics are present in all
icted reaction time are listed together with the vector distance between the reaction
reaction time and the results of a one-sample t-test comparing the observed reaction

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eedÞ2 Predicted RT (ms) Observed RT (ms) One-sample t-test

7385 7161 t497 = 2.38
p = .0179

9087 8395 t494 = 4.62
p < .0001

7738 7184 t497 = 6.25
p < .0001

8095 8272 t492 = 1.48
p = .1408

7179 7161 t497 = .20
p = .8393
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conditions, but the strength of the edge-based grouping will cer-
tainly vary across the conditions of the second experiment. Taking
the results of the two experiments together, we can say that re-
gion-based grouping as well as edge-based grouping influences
the identification of motion-defined objects.

4.4.3. The role of object properties like compactness
In our second experiment the RTs for object identification were

determined by the speed difference, direction difference and their
interaction, but not by the object compactness. In our first experi-
ment on the other hand, object compactness did influence the RTs:
identification was faster for more complex, less compact objects
than for simpler, more compact and thus more circle-like objects.
A first possible reason why object properties play less of a role in
the second experiment could be that there is a longer training
phase and many more experimental trials with fewer objects (only
half of the objects used in Experiment 1 were used in Experiment
2). Another explanation could be based on the reasoning outlined
in Section 4.4.2 that in the second experiment edge-based group-
ing is probably more relevant than region-based grouping, while
in the first experiment region-based grouping was probably more
crucial. In cases where region-based grouping plays more of a role,
it could be that also global object properties like compactness play
more of a role.

4.4.4. Weighing of the speed and direction cue
As noted earlier, previous studies have demonstrated that the

direction association field is stronger than the speed association
field (Ledgeway & Hess, 2003). However, in this experiment, at first
sight the speed differences seem to be a stronger cue than the
direction differences. Taking the condition with a speed difference
of .8 pixels per stimulus frame and a direction difference of 35� as a
reference, the decrease in RT was 24.38% if the direction difference
increased with 40� and was 33.76% if the speed difference in-
creased with 1.6 pixels per stimulus frame. However, it is impossi-
ble to determine if this is caused by speed differences being a
stronger cue or by the gradual differences along the speed dimen-
sion possibly being perceptually bigger than the differences along
the direction dimension. In this design it is in fact not possible to
compare the strength of the differences along the speed dimension
with the strength of the differences along the direction dimension.
Future studies with a different design can possibly clarify this
issue.

5. General discussion

In nature, there are many examples that show the power of mo-
tion as a cue for object identification. A well-camouflaged animal,
for instance, can immediately be detected and recognized when
it moves. There is a large collection of psychophysical studies using
kinetic contours that have investigated the role of motion as a fig-
ure–ground cue. However, the role of motion as a cue for object
identification has been investigated to a lesser extent. We devel-
oped stimuli that are very suitable for this purpose. Using random
dot displays, we made kinetic contour derived from familiar real-
world objects. Thus, these stimuli can be used in a high-level iden-
tification task and at the same time they are defined by the same
motion cues that were used in previous literature. This way, we
could confirm that the motion perception principles discovered
in earlier psychophysical work are generalizable to a more high-le-
vel identification task.

The results of the first experiment suggested that motion coher-
ence determines the performance in a high-level identification task
like in does in low-level detection and discrimination tasks. There
was a tendency for faster identification with figural motion and the
RT distribution of figural motion clearly differed from that of back-
ground motion. Using kinetic contours from real-world objects in-
stead of simple geometric shapes, it is important to take into
account general object properties like compactness, since they also
have an influence on the RTs. This is likely especially the case when
identification depends more on region-based grouping than on
edge-based grouping. In the second experiment we found that
speed differences and direction differences were combined
super-additively in object identification, unless a ceiling effect is
reached in one of both cues.

Electrophysiological studies of single-cell responses to oriented
bars surrounded by a texture or by noise showed either suppres-
sion of the response of neurons when there was a stimulus in the
surround of its receptive field or facilitation when center and sur-
round stimuli moved in opposite direction (Allman, Miezin, &
McGuinness, 1985). These results were quite important because
they provided the first evidence that the direction and speed of
background movement outside the classical receptive field exert
an influence on the responses of MT neurons to stimuli presented
within the classical receptive field. This has been interpreted as
evidence that MT neurons are capable of integrating local stimulus
conditions within a global context. Psychophysical studies by
Lorenceau and colleagues (Castet, Lorenceau, Shiffrar, & Bonnet,
1993; Lorenceau & Boucart, 1995; Lorenceau & Shifrrar, 1992) sub-
sequently suggested that the effect of background texture on mo-
tion integration of the elements composing the figure reflects
lateral interactions that modulate the response of two types of
units (motion-sensitive units and end-stopped dot-responsive
units).

If one wants to connect the psychophysical literature more clo-
sely to the literature on the neural mechanisms, neuroimaging is a
viable tool because the same species and tasks can be used. In this
respect, an additional and important advantage of our stimuli (ki-
netic contours derived from everyday objects) and task (object
identification) is that they would be highly suitable to be used in
future neuroimaging studies investigating the relative role of the
kinetic occipital region and the lateral occipital complex. Both
areas are likely candidates for interactions between shape process-
ing and motion processing to take place. The lateral occipital com-
plex (LOC) is involved in object recognition. LOC responds stronger
to intact objects than to their scrambled versions and the object
recognition performance modulates the strength of the signal
(Grill-Spector, Kourtzi, & Kanwisher, 2001). Moreover, studies have
shown that LOC is involved in processing interactions between dif-
ferent figure–ground segregation cues. Altmann, Deubelius, and
Kourtzi (2004) showed the activation in LOC to be modulated by
figure–ground segregation and form salience. Contextual informa-
tion was coded by LOC when this information was relevant to per-
ceiving the target shapes (i.e., when the background elements were
presented in the same plane as, and interfered with the target ele-
ments). However, there were no contextual effects in LOC when
the target form salience was increased by bottom–up information
(a disparity or motion cue) or top–down information (i.e., priming
the target shapes). Ferber, Humphrey, and Vilis (2003, 2005) used
shape-from-motion displays and showed that, although this phe-
nomenon is dependent on motion analysis, it is not the motion
selective MT but the LOC that shows persistent activation after
the motion stops and that is involved in retention of the percept.

Another possible area in which the interaction between shape
and motion processing may take place is the kinetic occipital re-
gion (KO). This region is specialized for the processing of motion-
defined objects and contours and it is anatomically distinct from
LOC, MT, V3 and V3A (Dupont et al., 1997; Orban et al., 1995;
Van Oostende, Sunaert, & Van Hecke, 1997). There has been some
disagreement in the literature if this area is uniquely specialized
for the processing of motion-defined contours. Zeki, Perry, and Bar-
tels (2003) argued it is specialized in the processing of contours in



Table 2
The object number, object name and the compactness value as determined by
Snodgrass and Vanderwart (1980) of the objects used in Experiment 1 and/or
Experiment 2.

Object number Object name Compactness value

002 Airplane .16
006 Apple .46
008 Arrow .45
013 Baby carriage .18
016 Banana .34
021 Bear .35
027 Bicycle .19
032 Bottle .48
040 Butterfly .31
081 Duck .23
090 Flag .24
111 Guitar .31
119 Heart .66
132 Lamp .42
162 Pants .25
166 Pear .62
217 Star .29
241 Tree .32
251 Watering can .43
258 Wine glass .35

K. Segaert et al. / Vision Research 49 (2009) 417–428 427
general, while and Tyler, Likova, Kontsevich, and Wade (2006) ar-
gued that KO is specialized in the processing of depth structure,
although it should be noted that the region of interests in both
studies did not coincide. However, even if KO is important for pro-
cessing other cues than motion only, this area is an obvious candi-
date for the processing of the interaction between shape and
motion.

A recent fMRI study by Likova and Tyler (2008), using dynamic
noise stimuli, compared activations for an experimental condition
with a clear figure–ground organisation (a single geometric figure
surrounded by a larger region) with a control condition without a
clear figure–ground organisation (a noise field segmented into
multiple parallel stripes). They showed that the figure–ground
configuration generated suppression of the ground representation
(limited to early retinotopic visual cortex, V1 and V2) and strong
activation in the motion complex hMT+/V5+. Conversely, both re-
sponses were abolished when the figure–ground organisation
was eliminated, suggesting that figure–ground processing is med-
iated by top–down suppression of the ground representation in the
earliest visual areas V1/V2 through a signal arising in the motion
complex. This finding may be related to the center–surround inter-
actions revealed in the single-cell studies discussed above (e.g., All-
man et al., 1985). Our stimuli and task could also be quite
interesting to test related ideas in a context where top–down rep-
resentations of real objects come into play.

6. Conclusions

In our first experiment, we showed that the RTs for correct
identification decrease for higher motion coherence, in line with
results from detection and discrimination tasks. We also estab-
lished that there is a role for object properties like compactness
in identification tasks. The RTs are faster for more complex, less
compact objects than for simpler, more compact and thus more cir-
cle-like objects. For figural motion, the RTs tend to be somewhat
faster than for background motion. Although this is not a signifi-
cant difference over all coherence levels, the RTs clearly follow a
different distributions in the condition with figural motion and
the condition with background motion. Interestingly, we found
that there are individual differences in the effect of figural motion
and background motion. We looked into the possibility that these
individual differences relate to differences in field-independence
but this was not confirmed by our assessment of this cognitive
style. The factors underlying these individual differences can be
subject of future research with a larger sample and a larger test-
battery that is designed to address perceptual and cognitive
abilities.

In our second experiment, we demonstrated that there is a lin-
ear relation between an increase in speed or direction differences
between figure and background and the resulting decrease in
RTs. In addition, we found evidence that speed and direction differ-
ences were combined super-additively in object identification, un-
less a ceiling effect in one of both cues is reached. In this
experiment, object properties like compactness did not play the
same role as in the first experiment. Possibly, object properties like
compactness determine identification speed mainly when identifi-
cation depends more on region-based grouping than on edge-
based grouping. In our experiment, it was not possible to compare
the strength of direction differences and speed differences as iden-
tification cues. Future studies with a different design could try to
clarify this issue.
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