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Polymorphs of molecular crystals are often very close
in energy, yet they may possess markedly different physi-
cal and chemical properties. The understanding of poly-
morphism is therefore of paramount importance for a va-
riety of applications, ranging from pharmaceutical de-
sign to non-linear optics and even hydrogen storage [1–
3]. While the crystal structure blind tests conducted by
the Cambridge Crystallographic Data Centre have shown
steady progress toward reliable structure prediction for
molecular crystals [4], several challenges still remain, in-
cluding molecular salts, hydrates, and flexible molecules
with several stable conformers. The ability to identify
and rank all of the relevant polymorphs of a given molec-
ular crystal hinges on an accurate description of their
relative energetic stability. Hence a first-principles quan-
tum mechanical method that can attain the required ac-
curacy of approximately 0.1–0.2 kcal/mol per molecule
would clearly be an indispensable tool for polymorph
prediction. In this work, we show that accounting for
the non-additive many-body dispersion (MBD) energy
beyond the standard pairwise approximation is crucial
for the correct qualitative and quantitative description
of polymorphism in molecular crystals. We demonstrate
this via three fundamental and stringent benchmark ex-
amples: glycine, oxalic acid, and tetrolic acid. These sys-
tems represent a broad class of molecular crystals, com-
prising hydrogen bonded networks of amino acids and
carboxylic acids, and were also chosen because the stan-
dard pairwise methods for dispersion interactions are un-
able to correctly account for the observed stability of the
different polymorphs in these molecular crystals [5, 6].

Among the first-principles methods available to date,
density-functional theory (DFT) is the most frequently
used approach in the study of polymorphism in molecular
crystals. However, the most commonly utilized exchange-
correlation functionals (including hybrid functionals) are
based on semi-local electron correlation, and thereby fail
to capture the contribution of dispersion interactions to
the stabilization of molecular crystals. These ubiquitous
non-covalent interactions are quantum mechanical in na-
ture and physically correspond to the multipole moments
that are induced in response to instantaneous fluctua-
tions in the electron density. To incorporate these long-
range electron correlation effects within the framework

of DFT, significant progress has been made by utilizing
the standard C6/R

6 pairwise additive expression for the
dispersion energy as derived from second-order pertur-
bation theory [7–9]. Indeed, DFT with pairwise disper-
sion corrections often yields accurate results when the
energy differences between molecular crystal polymorphs
are sufficiently large [10–12]. Most notably, Neumann
et al. have achieved the highest success rate in the last
two blind tests using such methods [4, 13]. However,
these pairwise dispersion energy approaches, even when
used in conjunction with state-of-the-art functionals, are
still unable to furnish the level of accuracy required to
describe polymorphism in many relevant molecular crys-
tals [14–17].

Recently, a novel and efficient method for describing
the many-body dispersion (MBD) energy has been devel-
oped [18], building upon the Tkatchenko-Scheffler (TS)
pairwise method [19]. Within the TS approach, the effec-
tive dispersion coefficients (C6), which are proportional
to the atomic polarizabilities, are calculated from the
DFT electron density, hence the effect of the local en-
vironment of an atom in a molecule is accurately ac-
counted for by construction. The MBD method presents
a two-fold improvement over the TS approach by includ-
ing: (i) the long-range electrodynamic screening via the
self-consistent solution of the dipole–dipole electric-field
coupling equations for the effective polarizability, and (ii)
the non-pairwise-additive many-body dispersion energy
to infinite order via diagonalization of the Hamiltonian
corresponding to a system of coupled fluctuating dipoles.
The inclusion of the MBD energy in DFT leads to a
significant improvement in the binding energies between
organic molecules, and for the cohesion of the benzene
molecular crystal [18]. The MBD energy, like the TS
energy, can be added to any DFT functional, requiring
only a once-per-functional adjustment of a single range-
separation parameter [18, 19].

We begin with a detailed analysis of the glycine (Gly)
molecular crystal, which has three experimentally ob-
served polymorphs: α-Gly, β-Gly, and γ-Gly, as illus-
trated in Figure 1. Figure 2 shows the performance of
different DFT methods for the calculation of the unit
cell volumes of these glycine polymorphs with respect
to low temperature experiments. A complete account



FIG. 1: Structures of the three polymorphs of glycine.
H-bonds are indicated by dashed lines. The

translation-related H-bonded chain along the c-axis,
common to all three polymorphs, is also shown.

of the computational details and of the cell parameters
obtained with these different methods is provided in the
supplementary material. As shown in Ref. [20], the local-
density approximation (LDA) [21] underestimates the
unit cell volumes by 7-10%, while the generalized gra-
dient approximation of Perdew, Burke, and Ernzerhof
(PBE) [22, 23] overestimates the unit cell volumes by
7-8% [20]. Adding the pairwise TS energy to the PBE
functional reduces the error in the unit cell volumes to
about 3%, which is already a significant improvement.
PBE+MBD yields a further noticeable improvement with
an accuracy of 0.3% for the unit cell volumes of β-Gly
and γ-Gly and 0.8% for α-Gly compared to experimental
values.

Both α-Gly and β-Gly consist of H-bonded sheets
of molecular glycine in the a–c plane. The strong H-
bonds within the glycine sheets (colored in magenta
in Fig. 1), are described reasonably well by PBE even
without accounting for dispersion interactions. This is
not the case for the weaker interactions between the
glycine sheets, along the b direction (colored in light
blue in Fig. 1). For β-Gly, in which the glycine sheets
are bound by bifurcated NH···O bonds, PBE overes-
timates b by 5%. PBE+TS reduces this overestima-
tion to 1% and PBE+MBD yields excellent agreement
with experiment. In α-Gly, the glycine sheets form
a H-bonded (NH···O) bilayer, via the centers of inver-
sion. The three-dimensional (3D) network is then com-
pleted by weaker CH···O interactions between the bilay-
ers. These interactions determine the direction of the
glide as well as the inter-bilayer distance along the b-
axis. The weak interactions along the b-direction are re-
flected by a significant temperature dependence of the b

FIG. 2: Absolute percent error in the calculated unit
cell volumes of the glycine polymorphs with respect to

low-temperature experiments (α-Gly: Refs. [24, 25],
β-Gly: Ref. [26], γ-Gly: Ref. [27]). The LDA and PBE

data were taken from Ref. [20]. As described in the
text, note that LDA underestimates the unit cell

volumes, while PBE overestimates them.

parameter of α-Gly [25, 28]. PBE grossly overestimates
b by 0.65 Å, which is significantly reduced to 0.16 Å at
the PBE+TS level of theory. In the case of the b parame-
ter, PBE+MBD does not yield further improvement over
PBE+TS because the potential energy surface is very
flat—the binding energy changing by only 0.01 eV per
unit cell for 11.75 Å < b < 12.15 Å.

The most stable γ-Gly polymorph has the same
translation-related H-bonded chain motif as α-Gly and
β-Gly along the c-axis. However, this is unique in the
sense that the H-bonded chains form helices, related by
three-fold screw symmetry, rather than sheets. The he-
lices are held together by lateral NH···O H-bonds, form-
ing a 3D network. The inter-helix H-bonds (colored in
light blue in Fig. 1) are longer than the intra-helix H-
bonds (colored in magenta in Fig. 1). The c parameter
is reproduced correctly even by PBE, which clearly is
able to successfully capture the strong intra-helix bonds.
The a and b parameters are significantly improved by ac-
counting for dispersion interactions. Figure 3 shows the
change of the potential-energy landscape in the a–b plane
of γ-Gly (with c fixed at 5.48 Å), resulting from including
the dispersion contributions at different levels of approxi-
mation. The TS pairwise dispersion method significantly
increases the binding energy and improves the position of
the minimum, as compared to standard PBE. However, it
is still insufficient for obtaining the correct experimental
geometry. Accounting for the MBD interactions correctly
captures the weak and complex inter-helix interactions,
leading to a slight decrease in the crystal binding energy
and yielding a minimum in excellent agreement with ex-
periment.

We now proceed to discuss the relative stability of the
glycine polymorphs. Experimentally, it has been deter-
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(a) PBE (b) PBE+TS (c) PBE+MBD

FIG. 3: Potential energy surfaces for the a–b plane of γ-Gly [29]. Experimental lattice parameters are marked by a
cross [20]. The experimental error bars are not visible on this scale.

FIG. 4: Computed relative stabilities of the polymorphs
of glycine (top panel), oxalic acid (middle panel), and
tetrolic acid (bottom panel). Experimental data are

shown as dashed lines.

mined that γ-Gly is the most stable polymorph [28], al-
though the energy difference between γ-Gly and α-Gly is
very small. It is also well established that β-Gly is less
stable than both γ-Gly and α-Gly [30]. The calculated
relative energies, including zero-point energy (ZPE), are
shown in Figure 4 and compared to the experimentally
determined relative enthalpies from Ref. [28, 31]. Tabu-
lated relative energies are given in the supplementary ma-
terial. The PBE+TS method leads to the wrong order of
stability: α > β > γ and the energy differences between
the polymorphs are overestimated. Similar overstabiliza-
tion of the α form has been reported for a different pair-
wise dispersion method [5]. Clearly, pairwise dispersion
corrections fall short when the energy differences between
polymorphs are small. Including the many-body disper-
sion effects via the PBE+MBD method significantly im-

FIG. 5: Structures of the polymorphs of oxalic acid and
tetrolic acid. α oxalic acid and β tetrolic acid comprise

catemers. β oxalic acid and α tetrolic acid comprise
cyclic dimers.

proves the agreement with experiment. In this case, the α
and γ forms are nearly degenerate with the β form some-
what less stable, and the energy differences are also much
closer to experiment. The PBE-based hybrid functional
(PBEh), which includes 25% of exact exchange, has been
shown to provide a more realible description of hydrogen
bonds [32] and short-range vdW interactions [33] than
PBE. Indeed, PBEh+MBD further improves upon the
relative stability of the three polymorphs of glycine as
shown in Figure 4, yielding the correct order of stability:
γ > α > β.

Our conclusions regarding the importance of MBD in-
teractions also hold firmly for the polymorphs of oxalic
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acid and tetrolic acid, as illustrated in Figure 5. Car-
boxylic acids have two modes of interlinking via OH···O
hydrogen bonds: a cyclic dimer, as in β oxalic acid and
α tetrolic acid, and a catemer, as in α oxalic acid and
β tetrolic acid [34]. In both cases, the catemer structure
is known to be more stable [35–37]. For oxalic acid, the
enthalpies of sublimation of both polymorphs have been
measured at room temperature [35, 36]. These measured
enthalpies may be converted to a lattice energy difference
of 0.05 kcal/mol (shown as dashed lines in Fig. 4) by us-
ing the PBE+TS vibrational quantities in the harmonic
approximation, as described in Ref. [38]. The computed
energy differences obtained using the PBE and PBEh
functionals combined with the TS and MBD dispersion
methods are shown in Fig. 4. Tabulated relative ener-
gies are given in the supplementary material. For both
oxalic acid and tetrolic acid, PBE+TS overstabilizes the
cyclic dimer with respect to the catemer and yields the
wrong order of stability of the polymorphs. Similar over-
stabilization of the beta polymorph of oxalic acid has
been reported for other pairwise dispersion methods [6].
The inclusion of exact exchange in the PBEh functional
and the inclusion of MBD interactions both contribute
to the stabilization of the catemer with respect to the
cyclic dimer. For oxalic acid, similarly to glycine, only
PBEh+MBD produces the correct energetic ordering of
the polymorphs with α being more stable than β. For
tetrolic acid, PBE+MBD already makes the catemer-
based β form slightly more stable than the cyclic dimer-
based α form and PBEh+MBD increases the energy dif-
ference between the two forms.

To summarize, we have demonstrated that an accurate
description of the non-additive many-body dispersion en-
ergy with the DFT+MBD method reproduces the ener-
getic ordering of polymorphs for three different molecu-
lar crystals, glycine, oxalic acid, and tetrolic acid, when
compared to reliable experimental results. The improve-
ment obtained with the MBD method as compared to
the simple pairwise dipersion model is attributed to the
sensitive dependence of the dispersion energy on the poly-
morph geometry and the dynamic internal electric fields
produced within molecular crystals. The DFT+MBD
method yields an unprecedented accuracy of 1% in the
description of the structures of molecular crystal poly-
morphs and of 0.2 kcal/mol in their relative energies.
Such accuracy is an essential ingredient for the reliable
modeling of polymorphism in molecular crystals.
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