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We study the role of electronic structure (band gaps) and long-range van der Waals interac-
tions on the stability and mobility of point defects in silicon and heavier semiconductors. Density
functional theory calculations with hybrid functionals that contain part of Hartree-Fock exchange
energy are essential to achieve reasonable description of defect electronic levels, leading to accurate
defect formation energies. However, these functionals significantly overestimate the experimental
migration barriers. The inclusion of screened vdW interactions further improves the description of
defect formation energies, significantly changes the barrier geometries, and brings migration barrier
heights into close agreement with experimental values. These results suggest that hybrid functionals
with vdW interactions can be successfully used for predictions in broad range of materials where
the correct description of both the electronic structure and the long-range electron correlation is
essential.

Diffusion of defects in semiconductors is a fundamen-
tal process of matter transport. Defects are abundant in
essentially all real materials and often they significantly
modify the electronic, optical, and magnetic properties of
solids. For example, the electron spin of donors in Si and
vacancy defects in SiC have been investigated for their
possible use as components of quantum devices [1, 2].
Therefore, the study of defects is important from both
fundamental and technological points of view.

Here we focus on understanding the interplay between
eletronic structure and non-local correlation effects for
the fundamental benchmark case of intrinsic point de-
fects in bulk Si and heavier semiconductors. Two kinds
of native point defects in Si, self-interstitials and vacan-
cies, have been intensively investigated both experimen-
tally and theoretically. However, the understanding of
self-diffusion in Si remains incomplete, despite decades of
seminal work on the subject [3–23]. Using secondary ion
mass spectrometry (SIMS), two groups obtained iden-
tical conclusions that the vacancies mechanism is pre-
ferred over the interstitials mechanism in self-diffusion at
low temperature while the interstitials mechanism can be
dominant at high temperature [5, 6]. Correspondingly,
the diffusion activation energies (sum of the formation
energy and migration barrier HA = Hf + Hm) were HA,I

= 4.96 eV and HA,V = 4.42 eV proposed by Bracht et
al. based on B, As, and P diffusion experiments [6], and
HA,I = 4.95 eV (extracted from the analysis of Zn dif-
fusion in Si [8]) and HA,V = 3.6 eV proposed by Itoh
et al. [5]. In contrast, SIMS experiments by Ural et
al., where the activation energy HA of the interstitials
was extracted from P and Sb diffusion experiments [9],
found that both interstitials and vacancies have compara-
ble contribution to self-diffusion over a wide temperature
range (800-1100 ◦C). The corresponding measured acti-
vation energies were HA,I = 4.68 eV and HA,V = 4.86
eV [10]. Recent SIMS experiments by Vaidyanathan et
al. indicated that the interstitial mechanism is dominant

in the self-diffusion at the lower temperature range of
650-1000 ◦C [13].

First-principles calculations have been instrumental in
the understanding of point defects in Si [14–23]; however,
the computation of point defect properties is still fraught
with difficulties. Density functional theory (DFT) calcu-
lations with the local-density approximation (LDA) or
generalized gradient approximation (GGA) usually un-
derestimate defect formation energies due to the elec-
tron self-interaction error. Furthermore, both LDA and
GGA miss the long-range vdW interactions for non-
homogeneous electron densities. Nevertheless, it is re-
markable that GGAs often produce fairly good results
for migration barrier heights of point defects [24]. Hybrid
DFT functionals mitigate the electron self-interaction er-
ror, and yield defect formation energies in better agree-
ment with higher-level GW and quantum Monte Carlo
(QMC) calculations [17, 18, 21]. However, these func-
tionals still miss the long-range vdW interactions and of-
ten overestimate migration barriers of point defects [23].
In principle, accurate defect energetics could be deter-
mined by explicit many-electron methods (self-consistent
GW or QMC calculations) [16–18, 21]. Unfortunately,
the application of GW and QMC is limited to small
supercells due to their rather large computational cost.
Recently, Bruneval proposed a range-separation scheme
treating short-range correlation effects within LDA and
long-range with the random-phase approximation (RPA)
for the correlation energy (called rs-LDA-RPA in the fol-
lowing) [23]. While rs-LDA-RPA is a promising method,
it is still more expensive than DFT calculations, lacks
atomic forces at present, overestimates migration barri-
ers, and could be affected by the limitations of the non-
self-consistent RPA correlation energy [25].

In this Letter, we study the stability and diffusion of
point defects in bulk Si and heavier semiconductors using
hybrid DFT calculations including screened long-range
van der Waals (vdW) interactions. This approach can be
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efficiently applied to large supercells required for realistic
modeling of defects in semiconductors. Furthermore, the
hybrid DFT+vdW method allows us to accurately de-
scribe both the electronic properties and the structures
of semiconductors on equal footing [26, 27]. Specifically,
we use the Heyd-Scuseria-Ernzerhof functional [28], cou-
pled with the recently developed method for screened
long-range vdW interactions [29]. The inclusion of vdW
interactions has been shown to consistently improve the
lattice constants, cohesive energies, and bulk moduli for
ionic and semiconductor solids over standard DFT func-
tionals [27, 30]. The accurate treatment of electrody-
namic screening in the DFT+vdW approach is crucial
for both pristine and defect-containing semiconductors,
as it reduces the vdW C6 coefficients for “atoms” in semi-
conductors by a factor of 1.6 to 1.8 [29], and yields re-
sults in agreement with experiments and explicit time-
dependent DFT (TDDFT) calculations [27]. We find
that HSE+vdW solves the underestimation of PBE on
defect formation energies and the overestimation of HSE
on defect migration barriers, thereby yielding both ac-
curate formation energies and migration barriers. For
multi-atom vacancies in Si, and point defects in heavier
and more polarizable semiconductors (such as Ge, GaAs,
InP, and InAs), vdW interactions are shown to play an
increasingly larger role on their stabilities.

We mainly focus on neutral point defects in this Let-
ter: split-〈110〉 (X), hexagonal (H), tetrahedral (T), and
monovacancy (V), because the neutral defects are dom-
inant under intrinsic doping conditions [31, 32]. All to-
tal energy calculations were performed using the FHI-
aims all-electron code with “tight” computational set-
tings [33]. For hybrid functional calculations, we used
an efficient resolution-of-the-identity implementation for
the computation of four-center integrals [34]. For com-
parison purpose, the standard Perdew-Burke-Ernzerhof
(PBE) [35] and HSE functionals were employed, as well
as the PBE+vdW and HSE+vdW functionals [36]. Our
careful convergence tests demonstrate that the intersti-
tials (including vdW interactions) converge very well
with 64 atoms supercell, while vacancies require cells
with 216 atoms due to the presence of Jahn-Teller (JT)
distortion. This finding is in agreement with previous
work [23]. We adopt a k−point grid of 4×4×4 (2×2×2)
for 64 (216) atom supercells.

The results of our calculations for the formation energy
of four point defects in Si are shown in Table I, where
comparisons are made with other calculations in the lit-
erature and with experimental data. Due to the electron
self-interaction error, the PBE functional underestimates
the formation energy of interstitials by about 0.7 eV rel-
ative to the HSE functional. Both PBE and HSE func-
tionals predict that the X and H interstitials have simi-
lar stability and are 0.15–0.36 eV more stable than the
T interstitial. On the other hand, the tetrahedric con-
figuration of the vacancy is about 0.43 eV (0.15 eV) less

TABLE I. Formation energies of interstitials (X, H, T) and
vacancy (V) point defects with different theoretical methods
along with experimental estimates.

X H T V
PBE 3.69 3.75 3.90 3.58

PBE+vdW 3.75 3.73 3.75 3.65
HSE 4.43 4.49 4.74 4.19

HSE [23] 4.40 4.52
HSE+vdW 4.41 4.40 4.51 4.38

rs-LDA-RPA [23] 4.49 4.74 4.33
GW [21] 4.40 4.46 4.51
QMC [17] 4.94 5.05 5.13

Exp [3–5, 7–12] 4.2 − 4.7
2.1 −
4.0

stable than the X interstitials when using the HSE (PBE)
functional. Once the vacancy configuration is relaxed, it
experiences the JT distortion, and becomes more stable
than the X interstitial, having formation energy Hf,PBE

= 3.58 eV and Hf,HSE = 4.19 eV. The above results are
consistent with previous PBE, HSE, and rs-LDA-RPA
studies in the literature [16–18, 21, 23, 37].

In contrast to the well-known role of exact exchange,
the influence of long-range vdW interactions on defect
formation energies has not been assessed before. vdW
interactions are part of the long-range electron correla-
tion energy and they are missing from all semi-local and
hybrid functionals. The influence of vdW interactions on
binding energies of molecular systems has been studied
in much detail, but the role of vdW interactions on co-
hesion in semiconductor and metallic solids is still under
debate [38]. Even in covalently-bound semiconductors,
such as Si and Ge, the long-range vdW energy has been
found to contribute around 0.2 eV per atom [27]. Here we
study the effect of vdW interactions on the defect forma-
tion energy, focusing on the HSE and HSE+vdW results
in Table I. The vdW interactions only slightly change
the structures of interstitials and vacancies, increasing
the distance between the defect atom and the surround-
ing atoms by less than 0.02 Å. In the case of interstitials,
vdW interactions decrease the formation energy of X, H,
and T by 0.02, 0.09, and 0.23 eV, respectively. Con-
sequently, the energy difference between the X and T
defects is decreased from 0.31 eV (by HSE) to 0.10 eV
(by HSE+vdW). Thus, the three interstitials are likely to
coexist in Si due to the effect of vdW interactions. The
vdW interactions reduce the difference between T and V
defects from 0.55 eV to 0.13 eV, making the formation
of interstitials almost as likely as that of the vacancies.
As expected, the contribution of vdW interactions to the
formation energy is much smaller than covalent bonding;
nevertheless, vdW interactions are relevant in determin-
ing the relative stability of point defects. Overall, we note
that our HSE+vdW formation energies are in very good
agreement with GW calculations [21], the recent rs-LDA-
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FIG. 1. (Color online) The crystal structure of the X, H, T,
and V defects in Si. For V the most stable JT-distorted con-
figuration is shown. The size of the balls indicates the change
in the atomic vdW C6 coefficients [39]. The C6 coefficients in-
crease with increasing size of the balls (in the order blue-green
< blue < green < red).

TABLE II. Atomic vdW C6 coefficients [39] (in hartree·bohr6)
as a function of the atomic distance (L in Å) from the defect
center. Zi labels the i-th nearest neighbor (x = 0 corresponds
to the defect). For X, H, and T, a 64-atom cell was used. For
V, 216-atom cell was used. Calculations for X, H, and T
defects in a larger 216-atom supercell increase the C6 values
by less than 8 hartree·bohr6.

Z0 Z1 Z2 Z3 Z4 Z5

X C6 322 170 186 198 186 161
L 0 2.33 2.48 2.82 5.08 6.01

H C6 524 215 196 206 164 160
L 0 2.41 2.42 4.66 5.88 6.93

T C6 503 194 174 204 162 161
L 0 2.47 2.71 4.81 5.91 6.05

V C6 - 206 182 174 165 168
L 0 1.98 3.55 3.80 5.78 5.89

Bulk [27, 29] C6 168

RPA study [23], and experimental data for the intersti-
tials (4.2-4.7 eV). Both our results and the rs-LDA-RPA
values for the vacancy formation energy suggest a larger
value than most of the experimental estimates (2.1-4.0
eV) [3–5, 7–12]. QMC calculations yield formation ener-
gies of interstitials that are somewhat larger than those
found with HSE+vdW, GW , and rs-LDA-RPA methods.
However, QMC values are very sensitive to the employed
calculation parameters, and exhibit variations of up to
0.3 eV between different studies [16–18].

We then turn to the question of why the effect of vdW
interactions on the formation energy is strongly depen-
dent on the defect geometry. First, we reveal the sensitive
dependence of polarization on the nature of the defect.

FIG. 2. Relative energies and migration barriers for different
diffusion pathways of interstitials and vacancies in Si. The
insets show the geometry of the transition state along the
H-X pathway, determined with and without including vdW
interactions.

Figure 1 illustrates the changes in the vdW C6 coefficients
around defect sites for the four studied defects (X, H, T,
and V) upon including the electrodynamic screening [29].
Table II shows the screened atomic C6 coefficients [39]
as a function of the atom distance from the defect cen-
ter. In the case of interstitials, the C6 coefficients of the
atoms around the defect are significantly increased com-
pared to the pristine Si bulk (168 hartree·bohr6) [27, 29].
It is noteworthy that the screened C6 coefficients of the
pristine Si bulk are in excellent agreement with those ob-
tained using TDDFT. The polarization effects are rela-
tively far reaching, extending as far as 5 Å from the defect
center. In addition, the polarization strongly depends on
the nature of the defect, being roughly one-dimensional
for the X interstitial, two-dimensional for the H inter-
stitial, and three-dimensional for T and V defects. The
static polarizability follows the same trend as the C6 co-
efficients, indicating that the interstitials significantly in-
fluence the electrostatic screening in Si [40]. The depen-
dence of polarization on the nature of the defect suggests
an explanation for the observed trend in vdW interac-
tions. The low-dimensional effect of H and X interstitials
on the polarization leads to an almost negligible contri-
bution from vdW interactions for these two defects, while
a more pronounced vdW energy contribution for the T
interstitial stems from a larger “vdW sphere” that en-
closes the most polarizable Si atoms. The formation of
the vacancy is accompanied by a reduction in vdW in-
teractions, since the loss of an atom from the Si bulk is
not compensated by an appreciable gain in polarization
around the vacancy site (see Table II).

In addition to the formation energy, an important in-
gredient to understand defect mobility is the migration
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TABLE III. Migration barrier of interstitials (Si-I), vacancies
(Si-V), bond-centered hydrogen (H+

BC and HBC), and oxygen
in Si (Oi). All values are reported in eV.

PBE PBE+vdW HSE HSE+vdW Exp.
Si-I 0.40 0.25 0.47 0.29 0.20 [41]
Si-V 0.51 0.39 0.60 0.49 0.45 [42]

H+
BC 0.54 0.40 0.72 0.58

0.48 [43–
45]

HBC 0.42 0.28 0.52 0.39

Oi 2.23 2.03 2.92 2.73
2.44-

2.56 [46–
48]

barrier. Here the theoretical situation is much less cer-
tain when compared with the defect formation energies,
for which state-of-the-art first-principles methods are in
good agreement as shown in Table I. To the best of our
knowledge, direct calculations of migration barriers using
GW and QMC methods are not available. Figure 2 shows
the energy diagram of migration barriers for interstitials
and vacancies. In the case of interstitials, our HSE cal-
culations reveal that the H-H pathway is dominant with
the migration barrier Hm,H−H = 0.47 eV (Hm,H−X =
0.75 eV, Hm,H−T = 0.53 eV, and Hm,T−X = 0.67 eV).
In contrast to the defect formation energy, where HSE
exhibits a good agreement with higher-level calculations
and experimental values, there is a marked difference be-
tween HSE (0.47 eV – 0.75 eV) and experiment (0.20
eV [41]) for the migration barrier height. Upon includ-
ing the vdW interactions, all HSE migration barriers are
decreased when using the HSE+vdW approach. In par-
ticular, the barrier of H-X pathway is decreased from 0.75
eV to 0.29 eV. Notably, this value is in excellent agree-
ment with the experimental value of 0.20 eV measured
at cryogenic temperatures (-273 ∼ -150 ◦C) [41]. To fur-
ther elucidate the effect of vdW interactions on barrier
heights, we calculated the diffusion of bond-centered hy-
drogen (H+

BC and HBC) and oxygen in Si (Oi) (Table III).
We find that vdW interactions decrease the migration
barriers of these defects, which is analogous to the case
of interstitials and vacancies. Importantly, the migra-
tion barriers of H+

BC and Oi by HSE+vdW are also in
agreement with experimental values [43–48]. Therefore,
the decrease of defect migration barriers in semiconduc-
tors under the influence of vdW interactions seems to
be a rather general phenomenon. One can see from the
insets in Figure 2 that the transition state structure of H-
X pathway is substantially modified upon including the
vdW energy, while those of other pathways are almost
unchanged (not shown). The vdW interactions decrease
the lattice constant of Si bulk by 0.02 Å, changing the
configuration of the transition state (H-X pathway) by
decreasing the interatomic distance between the defect
atom and its nearest neighbors by as much as 0.2 Å. It
is noteworthy that the exact exchange and vdW interac-

TABLE IV. Formation energy (eV) of the vacancies for the
heavier semiconductors and Si (the monovacancy V in Ge,
the As vacancy VAs in GaAs and InAs, and the P vacancy VP

in InP; multi-atom vacancies in Si). The chemical potential µ
has two limits for each of GaAs, InP and InAs. ∆ indicates the
fraction of vdW energy contribution to the formation energy.

µ HSE HSE+vdW ∆
Ge-V 3.21 3.47 7.5%

GaAs-VAs As-rich 3.96 4.23 6.4%
Ga-rich 3.01 3.23 6.8%

InP-VP In-rich 3.12 3.33 6.3%
P-rich 2.28 2.49 8.4%

InAs-VAs In-rich 3.04 3.31 8.2%
As-rich 2.15 2.42 11.2%

Si-V2 6.08 6.56 7.3%
Si-V3 8.45 9.20 8.2%
Si-V4 8.07 9.18 12.1%
Si-V5 9.32 10.61 12.2%
Si-V6 10.28 11.77 12.7%

tions have an opposite effect on the migration barriers.
In the case of Si vacancy, HSE+vdW yields a migration
barrier Hm,V−V = 0.49 eV, which once again is in excel-
lent agreement with the experimental value of 0.45 eV at
cryogenic temperatures [42].

We can use the HSE+vdW method to calculate the
activation energy for defect diffusion in Si, which is just
the sum of the formation energy and the migration bar-
rier. We find that the interstitial diffusion mechanism
(HA,H−X = 4.69 eV) is slightly preferred over the va-
cancy mechanism (HA,V−V = 4.87 eV). These values are
in good agreement with the proposed values HA,I = 4.68
eV and HA,V = 4.86 eV [10] based on the diffusion of P
and Sb atoms in Si [9].

We also generalize our conclusions regarding the rele-
vance of vdW interactions for studying defects in heavier
semiconductors, including Ge, GaAs, InP, and InAs (Ta-
ble IV). In these cases, vdW interactions are found to
play an increasingly important role on the stability of
the vacancy, increasing the formation energy by as much
as 11.2% compared to 4.6% effect in Si. This is due to
the more polarizable nature of these semiconductors than
Si. We also find that vdW interactions play a larger role
for multi-atom vacancies and more complex defect struc-
tures in Si, increasing the formation energy by 12.7% for
hexavacancy V6 (EvdW = 1.49 eV). These results provide
an interesting avenue for future work.

In conclusion, the HSE+vdW method solves the un-
derestimation of PBE on defect formation energies and
the overestimation of HSE on defect migration barri-
ers, yielding novel insights into the stability and mo-
bility of point defects in semiconductors. Notably, our
calculations successfully explain a series of experimen-
tal observations for the diffusion of interstitials, vacan-
cies, and impurities in Si. These results suggest that
HSE+vdW method can be employed for predictions
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in materials where the correct description of electronic
structure (band gaps) and the long-range electron corre-
lation is essential.
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[47] U. Gösele and T. Y. Tan, Appl. Phys. A 28, 79 (1982).
[48] F. Shimura, Oxygen in Silicon (Academic, San Diego,

1994).

mailto:tkatchen@fhi-berlin.mpg.de

