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Supplementary Fig. 1
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Supplementary Figure 1: Evaluation of resolution threshold criteria. Simulations without multiple localizations per

emitter (i.e. Q ≪ 1) (b) for a Siemens star shaped object (a), for a density of localizations ρ = 2 × 103 µm−2 and a

localization uncertainty σ = 20 nm. A circle denotes where the arms of the star can just be distinguished according to

the resolution computed with the most common threshold criteria (Supplementary Note 5): 1/7 threshold (83±3 nm,

green), half-bit threshold (100± 5 nm, magenta), 1/2 threshold (130± 7 nm, yellow), and 3σ threshold (186± 9 nm,

cyan). White scalebar: 100 nm. For the correct threshold, the arms of the star should be distinguishable outside the

corresponding circle and not distinguishable inside the circle. (c-f) show the regions of b within the different circles

of the top right image. They are shown to illustrate the separability of the star arms in the absence of the visual aid

from the regions outside the circles. Clearly, the 1/7 threshold is most appropriate in these images.
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Supplementary Fig. 2
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Supplementary Figure 2: Qualitative validity of FRC resolution for crossing lines. Simulations with a

single localization per emitter of two crossing lines for different densities of localized labels ρ and localiza-

tion uncertainties σ (top) and with multiple localizations per emitter for different numbers of localizations

per emitter Q and localization uncertainties σ (bottom). Columns show constant ρ or Q and rows constant

σ. The resolution according to the Nyquist density is depicted as a red bar, the full width at half maximum

(FWHM) of the localization error distribution as a yellow bar, and the FRC resolution as a green bar. As

expected, the FRC resolution indicates the critical distance at which two crossing lines can just be separated.

Scale bar: 250 nm.
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Supplementary Fig. 3
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Supplementary Figure 3: Validation of Eq. (2) for the expected FRC curve Q = 0. The graphs show

FRC curves for simulations with a single localization per emitter (i.e. with Q ≪ 1) with the crossing lines

from Supplementary Fig. 16a. The figure shows the theoretically expected FRC from Eq. (2) (red) and

the mean FRC in 10 simulations for each of the 3 values of the localization precision σ and the density of

localized emitters on the lines ρ. The FRC curves fall between the errorbars (s.d., n = 10) in all graphs, thus

confirming the validity of Eq. (2).

Nature Methods: doi:10.1038/nmeth.2448



Supplementary Fig. 4
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Supplementary Figure 4: Validation of Eq. (2) for the expected FRC curve,Q≫ 1. The graphs show FRC

curves for simulations with multiple localizations per emitter with the crossing lines from Supplementary

Fig. 16a. The figure shows the theoretically expected FRC from Eq. (S.26) (red) and the mean FRC in 10

simulations (black) for each of the 3 values of the localization precision σ and the number of times each

emitter is localized Q. The density of localized emitters on the lines ρ = 4 × 104 µm−2. The FRC curves

fall between the errorbars (s.d., n = 10) in all graphs, thus confirming the validity of Eq. (2).
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Supplementary Fig. 5
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Supplementary Figure 5: Localization microscopy image of tubulin in a HeLa cell labeled with Alexa Fluor 647.

The image is obtained from 19,000 time frames with localization uncertainty (after grouping nearby localizations in

subsequent image frames) σ = 7.4 nm and a density of localizations ρ = 1.3 × 102/µm2 (a). Higher magnification

insets (b-d) show several regions with crossing lines. The calculated resolution for this image is 65 ± 2 nm, which

seems reasonable for this image.
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Supplementary Fig. 6
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Supplementary Figure 6: Localization microscopy image of actin filaments in a RB cell labeled with

Alexa Fluor 647. The image is obtained from 100,000 time frames with localization uncertainty (after

grouping nearby localizations in subsequent image frames) σ = 10.4 nm and a density of localizations

ρ = 1.1 × 103 µm−2 (a). Higher magnification insets (b-d) show several regions with crossing lines. the

colormaps were scaled differently in these images to guarantee sufficient contrast. The calculated resolution

for this image is R = 88± 2 nm. This seems acceptable for the sparser regions of the image (e.g. insets b-c)

but too optimistic for the parts with more dense labeling, such as in d. This may be caused by false positive

localizations due to simultaneous emissions of nearby emitters in those densely labeled regions, or because

sparse three dimensional structures appear as dense unstructured regions when imaged in 2D.

Nature Methods: doi:10.1038/nmeth.2448



Supplementary Fig. 7
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Supplementary Figure 7: Localization microscopy image of a PA-JEB cell in TIRF microscopy showing keratine

labeled with Alexa Fluor 532. The image is obtained from 8,871 time frames with localization uncertainty (after

grouping nearby localizations in subsequent image frames) σ = 9.4 nm and a density of localizations ρ = 3.4 ×
102 µm−2 (a). Higher magnification insets (b-d) show several regions with crossing lines. The calculated resolution

for this image is R = 102± 3 nm, which appears to be reasonable for this image.
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Supplementary Fig. 8
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Supplementary Figure 8: Simulation of the effect of Q and labeling density on spurious correlation

correction. The top graphs show the estimate for Q, the middle graphs show the theoretical resolution R
according to equation S.28 as well as the estimates with and without correction for spurious correlations.

The bottom graphs show the mean squared error in these estimates relative to the theoretical resolution. In

these simulations, (a) ρ = 2.0× 103 µm−2, σ = 10 nm and Q is varied, or (b) Q = 1, σ = 10 nm and ρ is

varied. The error in resolution estimation levels to a plateau for increasing Q > 1.
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Supplementary Fig. 9
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Supplementary Figure 9: Simulation of the effect of localization uncertainty on spurious correlation

correction. The top graphs show the estimate for Q, the middle graphs show the theoretical resolution R
according to Eq. (S.28) as well as the estimates with and without correction for spurious correlations. The

bottom graphs show the mean squared error in these estimates relative to the theoretical resolution. In these

simulations, σ is varied, ρ = 2.0 × 103 µm−2 and (a) Q = 0.1 or (b) Q = 1. The spurious correlation

parameter is underestimated for small σ, and overestimated for large σ, the latter at least for Q < 1. This is

caused by the noise floor on the numerator of the FRC which for large σ is reached before Q can become

dominant in the numerator.
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Supplementary Fig. 10
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Supplementary Figure 10: Control experiments for estimating the number of localizations per emitter. Localization

microscopy acquisitions were carried out on a glass surfaces of labeled antibodies that were distributed sparsely enough to

enable counting of localizations from different antibodies. Results for Alexa Fluor 647 are presented in a-c and for Alexa

Fluor 750 in d-f. (a,d) The counted number of localizations and the number estimated with the Q-parameter in clusters

with at least one localization, as well as the expectedQ-parameter based on Eq. S.20 and a fit of the counted localizations

per molecule with a model of the form A(1 − exp(−t/τ)). The bleaching time constant τ in these control experiments

was found to be 3.4× 103 frames for Alexa Fluor 647 and 1.7× 103 frames for Alexa Fluor 750. (b, e) The ratio of the

number of localizations per cluster that is estimated with the Q-parameter and the number of counted localizations per

cluster in a and d, respectively, showing a value close to one for small t (Poisson statistics regime) increasing to a value

between one and two for large t due to photobleaching, in agreement with expectations (Supplementary Note 1). (c,f)

The cumulative number of total localizations for the Alexa Fluor 647 and Alexa Fluor 750 data of Fig. 3, respectively, as

well as a fit with a model of the form A(1 − exp(−t/τ)). The bleaching time constant τ was estimated to be 1.8 × 105

frames for Alexa Fluor 647 and 3.6× 104 frames for Alexa Fluor 750. This leads to values t/τ = 0.78 (Alexa Fluor 647)

and t/τ = 0.83 (Alexa Fluor 750) at the end of the data acquisition, the ratio of Q and the mean number of localizations

per emitter from the control experiment follows as 1.5 and 1.7 respectively. The discontinuity in the number of Alexa

Fluor 750 localizations at the end of the acquisition is due to an increase in the activation laser power. Since this part of

the acquisition was relatively brief, it was ignored when τ was estimated.

11

Nature Methods: doi:10.1038/nmeth.2448



Supplementary Fig. 11
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Supplementary Figure 11: FLC for the data of Figure 2j. (a) Part of the dataset of Fig. 2j. (b) FLC of this dataset,

as well as the contour FLC = 1/7 ≈ 0.143. The FLC has been smoothed with a Gaussian filter with a kernel of two

pixels wide. As expected, the correlation and therefore also the resolution are lower in the direction of the filaments

than in the orthogonal direction.
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Supplementary Fig. 12
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Supplementary Figure 12: Local FRC resolution for the data of Figure 2a. The local FRC resolution R was

computed for square subregions of 128 × 128 superresolution pixels which were displaced by multiples of 84 pixels

horizontally or vertically with respect to each other, i.e. 25% of the pixels in each region overlap with 25% of the

pixels in each adjacent region. The resulting image was rescaled using spline interpolation and is shown here in false

color overlaying the image of the filaments.
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Supplementary Fig. 13
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Supplementary Figure 13: FRC curves and resolution values for widefield acquisitions. (a) Part of an image of 1024×1024
pixels of fluorescent beads of 200 nm diameter. (b) Diffraction limit and computed FRC resolution for different acquisition

settings and samples. For acquisition series ids 1-3 we used a 10x 0.25 NA lens resulting in slight undersampling. This

sampling damps the transfer at higher spatial frequencies as depicted by the red dashed line. The found FRC resolution

values are therefore ∼20% larger than the diffraction limit. For acquisition ids 4-11 we used a 60x 0.7 NA lens resulting in

two times oversampling avoiding any pixelation related damping effects. The acquisition ids 4-8 show an increase in FRC

resolution whereas the diffraction limit remains constant. This can be attributed to bleaching giving a decrease of SNR over

time. During the experiment we kept the ADU on the camera roughly constant while increasing the gain of the camera. From

Eq. (S.76) we expect a decrease in FRC resolution for increased influence of noise. For acquisition id 8 (shown in a) and id

9 we find resolution values at the diffraction limit as apparently the sample has sufficient transfer up to the OTF cut-off and

noise is not the limiting factor. For acquisition ids 10 and 11 only less than 20 beads are visible in the whole field-of-view,

which may have led to reduced high frequency contents of the sample but also directly influences the resolution according

to Eq. (S.76). (c) FRC curve for acquisition id 3 and backprojected pixel size of 645 nm (612 nm Nyquist sampling). The

red dashed line shows the transfer damping due to pixelation as Eq. (S.79). (d) FRC curve for image a, acquisition id 8.

Backprojected pixel size is 107.5 nm (219 nm Nyquist sampling), so pixelation is not relevant here.
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Supplementary Fig. 14
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Supplementary Figure 14: FRC resolution values in SEM acquisitions. (a-c) cumulative image of 128

SEM acquisitions of single electron counting images. Scale bar 100 nm. (d) FRC resolution as a function of

used time frames. As expected, the resolution improves over time due to the increase in SNR with acquisition

time. The resolution for c is slightly worse than for a and b, which seems to be qualitatively correct.
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Supplementary Fig. 15
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Supplementary Figure 15: Illustration of FLC principle. (a) Illustration of the summation in Eq. (10) for FLC or

FPC in Fourier space. All pixels on the orange lines perpendicular to ~q are used to compute the correlation averages

Gjl(~q). For discrete implementation the width of the line is chosen to be one pixel. (b-c) Simulated localization

microscopy dataset of a grating object without multiple localizations per fluorophore and the corresponding FLC as a

function of the 2D-spatial frequency.
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Supplementary Fig. 16

a b

Supplementary Figure 16: Test objects in simulations. Objects used for the simulation results in Figs. 1a and 1b-c

respectively. The dimensions of the images are (a) 180 × 180 and (b) 1024 × 1024 pixels, and the pixel sizes used

were (a) 5 nm and (b) 1 nm. The pixel value of the white lines in image a is equal to ρ, and the width of the lines is

17.5 nm (i.e. 3.5 pixels). The maxima of the sinusoidal lines in a are 100 pixels (i.e. 200 nm) apart.
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Supplementary Note 1: Average and variance of FRC

1.1 Imaging model

The object to be imaged, the ‘ground truth’ o (~r), is labeled with fluorescent probes. The distribution of fluorescent

labels is described by the labeling density function:

ψ (~r) =

K
∑

j=1

δ
(

~r − ~r em
j

)

, (S.1)

and depends on the set of positions
{

~remj |j = 1, . . . , K
}

of the K labels.

Label j is activated and localized Mj times giving a total number of:

N =
K
∑

j=1

Mj, (S.2)

localizations, at the set of positions {~rj | j = 1, . . . , N}. It is assumed that localizations of the same emitter in

subsequent image frames have been grouped into a single localization event such that there is only a single position

estimate of an emitter each time it is activated. The probability density for localization of an emitter at position ~r is

given by:

Ploc (~r) =
1

K

∫

dnr′ h (~r − ~r ′)ψ (~r ′) , (S.3)

where h (~r) is the localization Probability Distribution Function (PDF), which is taken to be a Gaussian:

h (~r) =
1

2πσ2
exp

(

− |~r|2 /2σ2
)

, (S.4)

where the width satisfies σ2 = σ2
0/nph in the absence of background. Here σ0 is a measure for the width of the PSF

of the optical system and nph is the number of photons per emitter.

The usual way to argue that the localization PDF must be a Gaussian with variance decreasing as 1/nph is that a

measurement with only one photon gives the PSF as localization PDF, with variance σ2
0 , so by repeating the measure-

ment nph times the localization PDF must be a Gaussian with variance given by σ2
0/nph. However, this argument does

not apply because the actual PSF has infinite variance as the integral
∫

dxdy PSF (x, y)
(

x2 + y2
)

diverges (the PSF

decays with the second power of the coordinates times an oscillating function). A different argument is related to the

asymptotic normality of the MLE-estimation of location. In case the number of signal photons is large the statistical er-

ror in the position estimation is small. Then we may approximate the log-likelihood with a parabolic function centered

on the optimum. This means that the likelihood function (which is equal to the localization PDF) may be approxi-

mated with a Gaussian. In case of a non-zero background the same conclusion may be drawn, albeit with a different

dependence of the localization uncertainty than the simple 1/
√
nph relation, and provided that the number of signal

photons is sufficiently large. We have used numerical analysis and the Kolmogorov-Smirnov (KS) test for finding out

the similarity between the actual localization PDF and the Gaussian distribution. We have performed numerical tests

using fully vectorial modeling of the PSF of a freely rotating dipole emitter with zero aberrations and zero background,

and 500 signal photons [49], and the MLE localization routine implemented on GPU for speed [24]. The KS-statistic

(maximum difference between the CDF and the Gaussian CDF) is typically 5−10×10−3 for 5,000 localizations. The

statistical significance of this residual deviation is characterized by the p-value, which takes values between 40% and

100% for the 5,000 sample runs. The validity of the scaling of the localization uncertainty with the inverse square root

of the photon count follows from the fact that the variance of the localization error for MLE-estimation follows the

CRLB for a Gaussian ground truth PSF over a wide range of photon counts [24]. It is noted that the Gaussian nature of

the localization PDF would imply an infinite spatial frequency content (no cut-off, as opposed to the PSF). However,

extrapolating to spatial frequencies corresponding to the sub-nm scale is not physically meaningful, but down to that

length scale the Gaussian provides an excellent description of the localization PDF, provided of course the emitter is

not too dim.
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Figure S.17: Localization PDF and standard normal distribution, for 5,000 MLE-localizations for a freely rotating

dipole, the simulated spots have on average 500 signal photons.

1.2 Average FRC

Each localization event is assigned to one of two groups with probability 1/2, leading to a split N = N1 +N2 that is

governed by the binomial distribution. TheMj localizations of emitter j are also split into two partsMj =M1j+M2j

according to the binomial distribution. The two sub-images are described by the image functions:

fm (~r) =

Nm
∑

j=1

δ (~r − ~rj) , (S.5)

for m = 1, 2. The statistical averages of the two sub-images are simply:

〈fm (~r)〉 = N

2
Ploc (~r) , (S.6)

In the Fourier domain these relations are:

〈

f̂m (~q)
〉

=
N

2K
ĥ (~q) ψ̂ (~q) , (S.7)

with:

ĥ (~q) = exp
(

−4π2σ2 |~q|2
)

. (S.8)

The definition for the FRC-curve in Eq. (1) was given by:

FRC (q) =

∑

~q∈ring

f̂1 (~q) f̂2 (~q)
∗

√

∑

~q∈ring

f̂1 (~q)
2
√

∑

~q∈ring

f̂2 (~q)
2
.

Consequently, to obtain the average FRC-curve we need to calculate the 2×2-correlation matrix elements:

〈

f̂m (~q) f̂∗

n (~q)
〉

=

〈

Nm
∑

j=1

Nn
∑

l=1

exp (−2πi~q · (~rj − ~rl))

〉

, (S.9)

for m,n = 1, 2. In order to evaluate these averages we must consider pairs of localization events rj and rl. The

N2
m pairs appearing in the diagonal correlation matrix elements can be divided in three distinct groups. These are

the Nm pairs of identical localization events, the
∑K

j=1Mm,j (Mm,j − 1) pairs of different localization events of

the same emitter, and the Nm (Nm − 1) −
∑K

j=1Mm,j (Mm,j − 1) pairs of different localization events of different

emitters. A similar division can be made for the NmNn pairs in the off-diagonal correlation matrix elements. The

NmNn pairs are necessarily all from different localization events, namely
∑K

j=1Mm,jMn,j from the same emitter
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and NmNn −∑K
j=1Mm,jMn,j from different emitters. The probability density for two localizations of the same

emitter is:

Ploc,S (~r1, ~r2) =
1

K

∫

d2r h (~r1 − ~r)h (~r2 − ~r)ψ (~r) , (S.10)

and the probability density for localizations from different emitters is:

Ploc,D (~r1, ~r2) =
1

K2

∫

d2rd2r′ h (~r1 − ~r)h (~r2 − ~r)ψ (~r)ψ (~r ′) , (S.11)

The Fourier transforms of these probability distributions are needed further on, and are given by:

P̂loc,S (~q1, ~q2) =

∫

d2r1d
2r2 Ploc,S (~r1, ~r2) exp (−2πi~q · (~r1 − ~r2))

=
1

K
ĥ (~q1) ĥ (~q2)

∗ ψ̂ (~q1 − ~q2) , (S.12)

P̂loc,D (~q1, ~q2) =

∫

d2r1d
2r2 Ploc,D (~r1, ~r2) exp (−2πi~q · (~r1 − ~r2))

=
1

K2
ĥ (~q1) ĥ (~q2)

∗
ψ̂ (~q1) ψ̂ (~q2)

∗
. (S.13)

Combining all these ingredients gives:

〈

∣

∣

∣
f̂m (~q)

∣

∣

∣

2
〉

= 〈Nm〉+
〈

K
∑

j=1

Mm,j (Mm,j − 1)

〉

P̂loc,S (~q, ~q)

+

〈

Nm (Nm − 1)−
K
∑

j=1

Mm,j (Mm,j − 1)

〉

P̂loc,D (~q, ~q) , (S.14)

〈

f̂m (~q) f̂∗

n (~q)
〉

=

〈

K
∑

j=1

Mm,jMn,j

〉

P̂loc,S (~q, ~q)

+

〈

NmNn −
K
∑

j=1

Mm,jMn,j

〉

P̂loc,D (~q, ~q) . (S.15)

Evaluating the averages over the binomial distribution of the localizations over the two sub-images gives:

〈

f̂m (~q) f̂∗

n (~q)
〉

=
N

2
δmn +

1

4

〈

K
∑

j=1

Mj (Mj − 1)

〉

P̂loc,S (~q, ~q)

+
1

4



N(N − 1)−
〈

K
∑

j=1

Mj (Mj − 1)

〉



 P̂loc,D (~q, ~q) . (S.16)

In case each emitter is localized only once it holds that:

K
∑

j=1

Mj (Mj − 1) = 0, (S.17)

and as a result this term drops from the correlation averages. When emitters can be localized more than once this

term will be non-zero. This term represents the spurious correlations between the two image halves, since having

localizations from the same emitters in both halves violates the assumption that they are independent.

In order to find an expression for the ensemble average of Mj (Mj − 1) a statistical model for on-off switching is

needed. It appears that the number of activation cycles Mj for each emitter j is a Poisson distributed variable in case
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the on-off switching statistics is described by a first order process and provided the ratio of the transition rates between

the on and off-states is very different from one. This can be proven in the framework of the so-called asymmetric

Random Telegraph Signal (RTS) model [50]. Also in a STORM acquisition where activator-reporter dye pairs are

switched on with the same probability over many switching cycles, Mj would be Poisson distributed. In practice, the

switching kinetics are much more subtle and the approximation as a Poisson process is merely a working assumption.

Suppose now that there is a reservoir ofKr emitters and the average number of activation cycles is given byQ. Then a

total ofK = (1− exp (−Q))Kr emitters is localized at least once and a total ofN = QKr localizations is generated.

The average number of localizations per emitter for the group of emitters that has been localized at least once is:

Qloc =
N

K
=

Q

1− exp (−Q)
. (S.18)

Clearly, if the Poisson-rateQ goes to zero then the average number of localizations per emitter (restricted to the group

of emitters that has been localized at least once) goes to one. It now follows that:

〈

K
∑

j=1

Mj (Mj − 1)

〉

= KrQ
2 = NQ. (S.19)

For a more general distribution of Mj , this is modified to:

〈

K
∑

j=1

Mj (Mj − 1)

〉

= N

(

〈Mj〉+
V ar(Mj)

〈Mj〉
− 1

)

(S.20)

Consequently, Mj may be overestimated or underestimated if V ar(Mj) 6= 〈Mj〉. For example, if almost all emitters

have been localized and the dominant cause of variation of Mj is photobleaching, then Mj becomes geometrically

distributed which implies that Q ≈ 2 〈Mj〉 − 2. This means that 〈Mj〉 would be underestimated for 〈Mj〉 < 2. For

〈Mj〉 > 2, 〈Mj〉 is overestimated up to 100%. In general, photobleaching will lead to a distribution of Mj that is in

between the Poisson distribution and the geometrical distribution and will therefore also lead to an overestimation of

up to 100%.

We may now further develop the expressions for the correlation averages using thatN ≫ 1 andK ≫ 1 and filling

in the expressions for the localization pair distribution functions:

〈

f̂m (~q) f̂∗

n (~q)
〉

=
N

2
δmn +

N

4

[

Q+
N

K2

∣

∣

∣
ψ̂ (~q)

∣

∣

∣

2
]

∣

∣

∣
ĥ (~q)

∣

∣

∣

2

. (S.21)

These statistical averages must next be integrated over Fourier space with the Fourier ring weight function:

∫

d2q′ D (|~q ′| − q)
〈

f̂m (~q ′) f̂∗

n (~q ′)
〉

=
N

2
δmn +

N

4
[Q+NS (q)] exp

(

−4π2σ2q2
)

, (S.22)

with:

S (q) =
1

K2

∫

d2q′ D (|~q ′| − q)
∣

∣

∣
ψ̂ (~q ′)

∣

∣

∣

2

, (S.23)

and where the isotropy and explicit form of the Gaussian localization PDF is used. The Fourier ring weight function

may be expressed as:

D (|~q ′| − q) =
δ (|~q ′| − q)

2πq
, (S.24)

Recalling the definition of the FRC in this notation as:

〈FRC〉 =
∫

d2q′ D (|~q ′| − q)
〈

f̂1 (~q
′) f̂∗

2 (~q ′)
〉

(

∫

d2q′ D (|~q ′| − q)
〈

f̂1 (~q ′) f̂∗

1 (~q ′)
〉)1/2 (

∫

d2q′ D (|~q ′| − q)
〈

f̂2 (~q ′) f̂∗

2 (~q ′)
〉)1/2

(S.25)
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This results in the final expression for the statistical average of the FRC:

〈FRC〉 = (Q+NS (q)) exp
(

−4π2σ2q2
)

2 + (Q+NS (q)) exp (−4π2σ2q2)
, (S.26)

The ratio of the terms in the FRC nominator representing the genuine intrinsic image correlations and the spurious

correlations at the resolution threshold is NS (qres) /Q = KS (qres). It follows that the spurious correlations may be

neglected provided the number of emitters K is sufficiently high and the sample has spectral signal content at qres.
Solving the resolution threshold 〈FRC〉 = 1/7 then gives an apparent resolution:

R =
2πσ

√

log (3Q)
. (S.27)

Clearly, the apparent resolution is simply a linear factor times the localization uncertainty.

A possible way to correct for the spurious correlations and come to a more realistic image resolution follows from

a hypothetical division of the entire group of localization events such that all localizations of an emitter appear in either

the first or the second data halve, but not mixed. Such a procedure results in a modified average FRC:

〈FRC′〉 = NS (q) exp
(

−4π2σ2q2
)

2 + (2Q+NS (q)) exp (−4π2σ2q2)
. (S.28)

This modified FRC can also be produced if the average residual correlation ∼ Q exp
(

−4π2σ2q2
)

is estimated from

the data and then subtracted from the FRC nominator and added to the FRC denominator. This procedure for estimating

the spurious correlation parameter Q is outlined in the Online Methods. Note that an effect of the parameter Q is still

present in Eq. (S.28), but now represents the trade-off between the number of localizations per emitter and the total

number of localized emitters at constant total number of localization events. In this trade-off it is more favorable to

localize more emitters a fewer number of times.

The current model may be expanded by taking a distribution of localization uncertainties into account instead of a

unimodal value. The correlation averages 〈f̂m (~q) f̂∗

n (~q)〉 for a single value of the localization uncertainty must then

be convolved with the distribution function of the localization uncertainty. Taking that distribution to be Gaussian with

mean σm and width ∆σ we must replace the localization PDF factor H(q) = exp
(

−4π2σ2q2
)

by:

H (q) =

∫

dσ
1√

2π∆σ
exp

(

− (σ − σm)
2

2∆σ2

)

exp
(

−4π2σ2q2
)

=
1

√

1 + 8π2∆σ2q2
exp

(

− 4π2σ2
mq

2

1 + 8π2∆σ2q2

)

, (S.29)

in all expressions for the expectation value of the FRC.

1.3 Variance of the FRC

The variance of the FRC curve can be computed by using the following formula for the variance of the correlation

coefficient C = ~v1 · ~v2/
√

|~v1|2 |~v2|2 between two random vectors ~v1 and ~v2 with the same mean [51]:

V ar (C) =

(

2α2 + 1
) (

α2 + 1
)2 − α4

(

2α2 + 3
)

n (α2 + 1)
4

. (S.30)

Here n is the dimension of the vectors and α2 is defined as:

α2 ≡
∑n

i=1 〈v1,i〉2
∑n

i=1 V ar (v1,i)
=

∑n
i=1 〈v2,i〉2

∑n
i=1 V ar (v2,i)

. (S.31)
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This equation holds under the conditions that n is large and that the components of ~v1 and ~v2 are independent. If ~v1
and ~v2 are associated with the real and imaginary parts of the frequency components f̂1 (~q) and f̂2 (~q) in the Fourier

rings, then it appears that:

〈FRC〉 =

〈

∑

~q∈ring

f̂1 (~q) f̂2 (~q)
∗

√

∑

~q∈ring

f̂1 (~q)
2
√

∑

~q∈ring

f̂2 (~q)
2

〉

≈

∑

~q∈ring

∣

∣

∣

〈

f̂1 (~q)
〉∣

∣

∣

2

∑

~q∈ring

∣

∣

∣
f̂1 (~q)

∣

∣

∣

2

=
α2

1 + α2
, (S.32)

so that:

α2 =
〈FRC〉

1− 〈FRC〉 . (S.33)

The quantity α2 can be interpreted here as the signal-to-noise ratio of a half data image in the Fourier ring, (i.e. half

the SNR of the total dataset). Substituting this into Eq. (S.30) then gives:

V ar (FRC) =
1

n
(1− 〈FRC〉)2

(

1 + 2〈FRC〉 − 〈FRC〉2
)

, (S.34)

where n is the number of pixels in a Fourier ring. Since the width of a Fourier pixel is 1/L, where L is the linear size

of the field of view, n = 2πqL and therefore one gets finally:

V ar (FRC) =
1

2πqL
(1− 〈FRC〉)2

(

1 + 2〈FRC〉 − 〈FRC〉2
)

. (S.35)

The careful reader may notice that this equation suggests that increasingL through zero padding of the superresolution

images would decrease the variance. However, because neighboring Fourier pixels are actually slightly correlated,

increasing L through zero padding will increase the sampling in Fourier space but also leads to stronger correlations

among neighboring pixels. Therefore, the effective number of independent pixels in a Fourier ring remains the same

and the variance is not affected by zero padding.
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Supplementary Note 2: FRC resolution for periodic object models

In this section we will work out explicit expressions for the FRC resolution for periodic structures (gratings) with

different cross-sections. In all cases we assume that the Q-parameter is small, so Q≪ 1. Under this condition, setting

the right-hand side of Eq. (S.26) equal to the 1/7 threshold criterion leads to the following equality:

NS (qres) exp
(

−4π2σ2q2res
)

=
1

3
. (S.36)

This expression now needs to be solved to obtain an explicit expression for the FRC resolution.

2.1 Grating with a cosine cross-section

Consider a periodic structure consisting of M ≥ 1 periods with period d and length L, and with an average density of

localized labels ρ. The total number of localized labels is thenK =MρdL. The labeling density function is given by:

ψ (~r) =

{

ρ [1− cos (2πx/d)] if |x| < Md/2 and |y| < L/2

0 otherwise
(S.37)

Fourier transforming results in:

ψ̂ (~q) = K

[

sinc (πMqxd) +
1

2
sinc (πMd (qx − 1/d))

+
1

2
sinc (πMd (qx + 1/d))

]

sinc (πqyL) . (S.38)

If L is sufficiently large, this gives the following expression for S (q) at q = 1/d:

S (q) =
1

2πK2

∫ 2π

0

dϕk

∣

∣

∣
ψ̂em (~q)

∣

∣

∣

2

≈ d

πK2

∫ +∞

−∞

dqy

∣

∣

∣
ψ̂em (~q)

∣

∣

∣

2

, (S.39)

where the last integral is evaluated at qx = q = 1/d, and so:

S (q) ≈ d

4π

∫ +∞

−∞

dqy sinc
2 (πqyL) =

d

4πL
. (S.40)

The resolution R = 1/qres follows from solving the threshold criterion Eq. (S.36). If the grating can just be resolved,

then R = d. It follows that an expression may be derived for the required density of localized labels ρ for achieving a

resolution R = d, given the localization uncertainty σ:

ρ =
4π

3MR2
exp

(

4π2σ2/R2
)

. (S.41)

The dependence on the ratio σ/R is rather steep. For example, when σ/R = 1 the exponential factor is already on

the order 1017! Realistic minimum labeling densities arise when σ/R is less than approximately 1/4. So, even though

the resolution is not determined solely by the localization uncertainty, the necessity of having practically achievable

labeling densities does imply that the minimum resolution is of the order of the localization uncertainty. Eq. (S.41)

can also be solved for the resolutionR as a function of the density of localized labels and the localization uncertainty:

R =
2πσ

√

W (3πMρσ2)
, (S.42)

where W (·) is the Lambert W-function [52], which is the inverse of y = x exp(x). A useful analytical approximation

for the Lambert W-function is W (y) ≈ ln (2y)− ln (ln (1 + 2y)) [21].

It appears that an increase in M leads to a better resolution. This implies that adding grating lines to the global

image improves the ability to distinguish neighboring lines. The underlying reason for this is that a grating is a

perfectly periodic structure. Therefore, if M increases then the contributions of the different lines add up in Fourier

space and the SNR increases.
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2.2 Grating with a square cross-section

In a similar way as above, it is also possible to derive the resolution for a grating object consisting of M ≥ 1 lines

of width a, length L and separation d > a. The density of localised labels is ρ and the total number of labels is

K =MρaL. For such an object, the Fourier transform of the labeling density function ψ (~r) reads:

ψ̂ (~q) = ρaL
sin (πMqxd)

sin (πqxd)
sinc (πqxa) sinc (πqyL) . (S.43)

The ring average of the spectral density is found for sufficiently large line length L as:

S (q) =
1

2πK2

∫ 2π

0

dψ
∣

∣

∣
ψ̂ (~q)

∣

∣

∣

2

≈ 1

πqK2

∫ +∞

−∞

dqy

∣

∣

∣
ψ̂ (~q)

∣

∣

∣

2

, (S.44)

where the last integral is evaluated at qx = q, and so:

S (q) ≈ sinc2 (πqa)

πq

[

sin (πMqd)

M sin (πqd)

]2 ∫ +∞

−∞

dqy sinc
2 (πqyL) =

sinc2 (πqa)

πqL

[

sin (πMqd)

M sin (πqd)

]2

. (S.45)

The equation for solving the resolution is:

3Mρa

πqres
sinc2 (πqresa)

[

sin (πMqresd)

M sin (πqresd)

]2

exp
(

−4π2σ2q2res
)

= 1. (S.46)

The grating can just be resolved (qres = 1/d) if the density of localized labels satisfies:

ρ =
π

3MaR

exp
(

4π2σ2/R2
)

sinc2 (πa/R)
. (S.47)

In the limit of thin lines (a≪ d) this may be inverted to give a resolution:

R = 2πσ

√

2

W (72M2ρ2linσ
2)
, (S.48)

where ρlin = ρa. For a single line (M = 1) the equation for solving the resolution simplifies to:

3ρa

πqres
sinc2 (πqresa) exp

(

−4π2σ2q2res
)

= 1. (S.49)

In the limit of large density of localized labels (ρa2 ≫ 1) and small localization uncertainty (σ ≪ a) this equation

may be solved to give R = a, i.e. the resolution is equal to the line width. This may seem counter-intuitive, but it

reflects the fact that no details smaller than the line width are present in the object itself. The predicted resolution from

M grating lines might be tested if super-resolution data is obtained for a sample with a very sophisticatedly engineered

ground truth [53].

2.3 Effect of spurious correlations

The preceding analysis provides some quantitative insights into the relevance of the spurious correlations between the

two sub-images for techniques with multiple localizations per emitter. The equation for the resolution for a grating

with the cosine cross-section for a non-zeroQ-parameter is:

[

Q+
MρlocR

2

4π

]

= exp
(

4π2σ2/R2
)

, (S.50)

where ρloc = ρQ/ (1− exp(−Q)) is the density of localizations, proportional to the labeling density and the average

number of localizations per emitter (Supplementary Note 1). The effects of spurious correlations on resolution may be
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neglected provided the ratio of the second and first term on the l.h.s. of Eq. (S.50) is sufficiently large. This happens

when ρloc satisfies:

ρloc ≫
πQ

M

(

2

R

)2

. (S.51)

This regime is typically found when the resolution is much worse than the Nyquist resolution following from the

density of localized labels ρ, i.e. R ≫ 2/
√
ρ. Eq. (S.51) can be used as a self-consistency test for the need to correct

for spurious correlations. The resolution found without Q-correction and the estimated value of Q can be confronted

given the experimentally found density of localizations. If the inequality is satisfied for, say M = 2, then there is

probably no need to recompute the resolution with Q-correction, as the magnitude of the correction does not outweigh

the added uncertainties of the additional processing steps.

2.4 Relation to Nyquist sampling

Consider Eq. (S.42) in the limit where σ → 0. The resolution becomes:

R =

√

4π

3Mρ
, (S.52)

which is nearly equal to the Nyquist resolution RNyquist = 2/
√
ρ:

R =

√

π

3M
RNyquist ≈ RNyquist for M = 1, (S.53)

The FRC resolution is not exactly equal to the Nyquist resolution in this limit, because it is conceptually different:

it describes for which spatial frequency q there is a sufficiently high signal-to-noise ratio rather than an absence of

aliasing due to undersampling. However, the Nyquist sampling theorem does not strictly apply since localizations do

not constitute samples of a bandwidth limited function. Therefore it is not surprising that these two concepts give

slightly different values for the resolution.

26

Nature Methods: doi:10.1038/nmeth.2448



Supplementary Note 3: Labeling-localization trade-off

3.1 Trade-off for a periodic object model

The expression in Eq. (S.42) can be used to analyze the impact of improvement in the density of localized labels ρ and

the localization uncertainty σ on the resolution. Clearly obtaining infinitely many localizations yieldsR = 0, whereas

perfect localization at σ = 0 was shown in the preceding section to result in a finite resolution value. This is the

consequence of the imaging model, in which structures can have infinitely many labels attached to them. Localizing

all these labels yields a blurry image without counting noise due to finite localization densities, which implies that the

signal-to-noise ratio is infinite for all spatial frequencies.

Alternatively one could ask whether marginal improvements in ρ or σ yield greater improvements in resolution.

The trade-off point in which both improvements are equivalent is found by requiring that the relative change in reso-

lution for a given relative change in Nyquist area ∼ 1/ρ is equal to a relative change in resolution for a given relative

change in localization uncertainty area σ2, i.e. if we change either quantity with a given percentage, the resulting

percentile change in resolution must be the same:

σ2

R

∂R

∂σ2
= − ρ

R

∂R

∂ρ
. (S.54)

Evaluating the derivatives results in:

σ2

R

∂R

∂σ2
=

W
(

3πMρσ2
)

2 (1 +W (3πMρσ2))
, (S.55)

ρ

R

∂R

∂ρ
= − 1

2 (1 +W (3πMρσ2))
. (S.56)

It follows that:

W
(

3πMρσ2
)

= 1, (S.57)

implying that the resolution must be:

R = 2πσ, (S.58)

and that the optimum trade-off occurs for:

ρσ2 =
e

3πM
. (S.59)

For a two-line object (M = 2) this corresponds to ρσ2 = e/6π ≈ 0.144. ForM parallel lines we obtain a lower value,

from which it may be inferred that for any intricate but irregular object structure the trade-off occurs for a value smaller

than 0.144. For that reason the value sρσ2 = e/6π ≈ 0.144 should be considered in practice only as a rule-of-thumb.

3.2 Trade-off in general

The preceding analysis of marginal improvements in ρ and σ can be generalized by not assuming a specific object

model. For this analysis it is useful to revisit Eq. (S.28). At q = qres, the expected FRC curve drops below the

threshold, which means that at this point qres = 1/R is an increasing function of:

A (qres) = N exp
(

−4π2σ2q2res
)

. (S.60)

Therefore R has its minimum whenever A (q) has its maximum. Consider now the relative changes in A due to

changes in N and nph:

N

A

dA

dN
= 1, (S.61)

nph

A

dA

dnph

= −4π2nphq
2
res

dσ2

dnph

. (S.62)
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If σ2 ∝ 1/nph then these expressions are equal if 2πσqres = 1 so that R = 2πσ. This is therefore the point where

obtaining 1% more localizations has about the same effect on A (and R) as obtaining 1% higher photon counts per

localization. Hence R = 2πσ marks the boundary between the regime R > 2πσ where the resolution is limited by

the number of localizations (labeling density) and the regimeR < 2πσ where the resolution is limited by localization

uncertainty.

If a limited amount of time is available, then R = 2πσ also marks the value of σ for which R is optimal. The

localization uncertainty can be improved by increasing nph. However, when this is accomplished by increasing the

on-time of the fluorophores, this also reduces the total number of labels that can be localized in a given acquisition

time. This is implied by the requirement of having a sufficiently large distance between individual activated emitters

at any point in time [22]. The decrease of σ thus has a positive effect on resolution, whereas the decrease of N has

a negative effect on resolution, implying that an optimum can be found by balancing the two effects. This trade-off

was already identified in the first publication on localization microscopy [3], where it was noted that ‘Including fewer,

but brighter, molecules results in higher localization and crisper images, but at a reduced molecular density giving less

complete information about the spatial distribution of the target protein’.

This argument can be made quantitative by setting N ∝ τ−1
on and nph ∝ τon and subsequently considering the

following equation:

τon
A

dA

dτon
=

τon
A

dA

dnph

dnph

dτon
+
τon
A

dA

dN

dN

dτon

=
nph

A

dA

dnph

− N

A

dA

dN
. (S.63)

This derivative is equal to zero when R = 2πσ, which means that this expression marks the point where the best

resolution has been obtained for the given amount of time available. Since the resolution is assumed to always increase

as more time becomes available, this also implies that R = 2πσ marks when the resolution R was obtained in the

shortest possible amount of time.

The tuning of the switching kinetics of emitters outlined above is typically not a very important issue yet for

localization microscopy experiments. Often the choice of fluorescent labels is constrained by the biological context,

and under these constraints it is possible that some labels provide more photons in a shorter on-time than other labels.

Moreover, imaging does not always take place at the optimal density of simultaneously active emitters, which means

that increasing the on-time does not require that fewer emitters are simultaneously active. However, with the rapid

developments of new fluorescent dyes and proteins, this trade-off described above will become more important in

the future. Tuning may then be done by the choice of the fluorescent label or buffer composition. Tuning of emitter

switching kinetics independent of brightness was demonstrated for example for oxazine dyes using the concentrations

of the reducing and oxidizing agents in the imaging buffer [54]. Alternatively, if PALM imaging is combined with

a triplet state relaxation scheme [55], the bleaching rate could be decoupled from the excitation intensity, giving the

bleaching rate as tuning parameter. Then, in a fixed total time fewer but brighter single emitter events yield more

accurate localizations but at the expense of a lower recorded emitter density [3].

3.3 Minimal time to resolution

The rule R = 2πσ indicates for which σ the resolution R is obtained as quickly as possible. This is the conjugate of

the result of Fig. 1c where it is shown that R = 2πσ indicates when the highest possible resolution is obtained for a

fixed total measurement time. To support this insight, the simulations results from 1c were taken, but this time lines of

constant resolution R were calculated by taking the contour lines in the σTtotal-plane where FRC (q = 1/R) = 1/7.

The resulting graph is shown in Fig. S.18. As in Fig. 1, c, the lines from the simulated data show good agreement with

the theoretically predicted lines. Moreover, Fig. S.18 shows that the red curve corresponding to R = 2πσ does indeed

seem to go through the points where the measurement time Ttotal is minimal for each resolution in the simulations.
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Figure S.18: Solid lines indicate constant resolution as a function of the total measurement time Ttotal and localization

precision σ as predicted by Eq. (3) for two lines. The circles represent simulations averaged over 100 realizations.

The red separation line R = 2πσ goes through the shortest measurement time for each resolution in theoretical and

simulated data. Left of the separation not enough emitters are collected, whereas to the right the emitters have not

been localized precisely enough.
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Supplementary Note 4: Application of FRC resolution to other imaging modal-

ities

The FRC resolution concept can be applied to imaging modalities for which the image formation theory may be

centered around the conventional concept of the Point Spread Function (PSF). This applies to both diffraction-limited

modalities such as confocal or widefield fluorescence imaging, as well as to diffraction-unlimited modalities such as

STED. There the resolving power of the imaging system is given by a modification of Abbe’s formula[36]

d =
λ

2NA
√

1 + ISTED/I0
, (S.64)

where the crucial parameter is now the ratio of the intensity of the STED beam ISTED to the saturation intensity I0.

This measure characterizes optics, properties of the fluorophore and imaging conditions, but does not take the sample

structure into account. We demonstrate here that the FRC resolution depends on the Optical Transfer Function (OTF),

the spatial frequency content of the sample and the noise level. The resolution is always inferior to the spatial cut-

off frequency for which the optical transfer goes to zero. This maximum resolution is only reached in the limit of

high signal-to-noise ratio (SNR). So, for diffraction-limited modalities the FRC resolution coincides with the Abbe-

resolution in the limited of high SNR. For the STED case it coincides with the formula of Eq. (S.64) in the limit of

dense spatial frequency content of the sample.

Starting point of the proof is the labeling density function for an object consisting of fluorescent labels located at

positions ~remj for j = 1, 2, . . .K:

ψ (~r) =

K
∑

j=1

δ
(

~r − ~remj
)

. (S.65)

We assume that the on average nph photons are detected per emitter. Then the signal part of the image is given by:

s (~r) = nph

∫

d2r′ h (~r − ~r ′)ψ (~r) , (S.66)

with h (~r) the PSF, which is normalized such that:

∫

d2r h (~r) = 1. (S.67)

In the Fourier domain the relation between the signal and the labeling density function is:

ŝ (~q) = nphĥ (~q) ψ̂ (~q) . (S.68)

The FRC requires two measured images:

fj (~r) = s (~r) + nj (~r) , (S.69)

for j = 1, 2 where nj (~r) is the noise. In order to simplify the analysis we assume that the only noise source is shot

noise from photon statistics. In that case the correlation function for the two images is:

〈fj (~r) fl (~r ′)〉 = s (~r) s (~r ′) + s (~r) δ (~r − ~r ′) δjl, (S.70)

which gives after Fourier transformation:

〈f̂j (~q) f̂l (~q ′)
∗〉 = ŝ (~q) ŝ (~q ′)

∗
+ ŝ (~q − ~q ′) δjl. (S.71)

If ~q = ~q ′ then:

〈f̂j (~q) f̂l (~q)∗〉 = |ŝ (~q)|2 + ŝ (0) δjl

= n2
ph

∣

∣

∣
ĥ (~q)

∣

∣

∣

2 ∣
∣

∣
ψ̂ (~q)

∣

∣

∣

2

+Knphδjl. (S.72)
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Taking the average over rings in Fourier space, using the assumption that the OTF is rotationally symmetric, and

defining (identical to the case of localization microscopy, Eq. (S.23)):

S (q) =
1

K2

∫

d2q′ D (|~q ′| − q)
∣

∣

∣
ψ̂ (~q ′)

∣

∣

∣

2

, (S.73)

with

D (|~q ′| − q) =
δ (|~q ′| − q)

2πq
, (S.74)

the Fourier ring weight function, we obtain an expression for the expected value of the FRC:

〈FRC〉 =
K2n2

ph

∣

∣

∣
ĥ (~q)

∣

∣

∣

2

S (q)

K2n2
ph

∣

∣

∣
ĥ (~q)

∣

∣

∣

2

S (q) +Knph

. (S.75)

Clearly, the FRC decays to zero for large ~q as the OTF ĥ (q) also goes to zero for large ~q and is zero for |~q| ≥ qcut.
The FRC resolution for the sum image is obtained by setting the FRC equal to the threshold value of 1/7. This results

in the implicit equation for qres:

6Knph

∣

∣

∣
ĥ (qres)

∣

∣

∣

2

S (qres) = 1. (S.76)

So, in general, the FRC resolution depends on the OTF Ĥ(q), the spatial frequency content of the object S(q), and the

level of noise (photon count). In the limit of infinite SNR the resolution resulting from this analysis is given by:

ĥ (qres) = 0, (S.77)

which corresponds to the Abbe-resolution for diffraction-limited imaging systems. It is stressed that the conclusions

described here are not altered by obvious generalizations of the model, e.g. effects of finite pixel size and additional

noise sources such as readout noise.

The analysis for diffraction-limited systems can be readily extended to diffraction-unlimited methods such as

STED, taking the effective transfer at a given ISTED for the OTF-function in Eq. (S.76). Interestingly, previous

theoretical analyses of STED[36] have shown before that the sample structure ultimately influences the resolution in

the case of finite intensities. For STED as well as for fluorescence nanoscopy techniques it should be noted that this

conclusion is contingent on the assumption made here that the labels on the sample are the relevant signal source. If

the labeled structure rather than the labels themselves is considered to be the signal source, then the labeling process

becomes a source of noise as well. Repeating the above analysis with the labeling process included as a noise source

then results in an extra term 2Kn2
ph

∣

∣

∣
ĥ (~q)

∣

∣

∣

2

in the denominator of Eq. (S.75). From this it can be concluded that

the labeling density, rather than the OTF, may become the limiting factor to resolution for high photon counts in e.g.

STED.
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Supplementary Note 5: Computation of FRC and FRC resolution

5.1 Data splitting

For this work, half data sets were obtained by splitting the timeseries into blocks of 500 frames and assigning an equal

number of blocks randomly to each half set. Alternatively, localizations could also have been assigned randomly to

the half sets or the timeseries could have been split into two parts to obtain two sets with half the localizations. Both

these methods have some issues though. Random assignment may cause spurious correlations due to localizations of

a single emitter activation event being assigned to both half sets. This will also happen if the block size for splitting

the data is too short compared with the on-time τon of the emitters.

Splitting the timeseries in two parts may cause the half sets to be overly dissimilar due to systematic differences

between the halves of the timeseries. Next to drift, for example, photobleaching may occur and then the localizations

in the second half set arise from fewer emitters or from more photostable emitters. On the other hand, photobleaching

may also reduce spurious correlations due to reactivation of previously active emitters in the second half set for this

splitting method. We have nevertheless chosen for splitting the experimental timeseries in smaller blocks because it

only has the problem of spurious correlations and because it is more accurate in the absence thereof.

5.2 Discretization

Two issues regarding the discrete computation of the FRC curve require some further discussion here. The first issue

is the masking of the binned images. This masking is needed to suppress high frequency components in the Fourier

transforms that may result from the edges of the binned images. It is a common technique in signal processing [56]

to suppress edge artifacts resulting from the digital Fourier transformation which cannot be avoided otherwise. If an

object which is imaged extends up to the edge of an image and no mask is applied, then the finite extent of the image

acts as a rectangular window M (~r) which is 1 inside the field of view and 0 outside. In the frequency domain this has

the effect on the images f̂ (~q) that:

f̂ (~q) → f̂ (~q) ∗ M̂ (~q) = f̂ (~q) ∗ L2sinc (πqxL) sinc (πqyL) . (S.78)

Here sinc(x) ≡ sin(x)/x and ∗ is the convolution operation. The window extends the highly correlating low spatial

frequency components into the higher spatial frequencies due to the finite width and oscillating tails of the sinc func-

tions. Therefore it increases the FRC at those frequencies and leads to a higher threshold frequency qres. In order to

reduce this effect, a mask M (~r) with a smooth drop-off to 0 at the edges has to be applied which is narrower in the

frequency domain. Note that qres will then still be slightly overestimated, proportional to the finite width of M̂ (~q).
A second issue worth mentioning here is the effect of the pixel size in the binned images (i.e. the superresolution

pixel size) on the FRC. As a first consideration, pixel sizes larger thanR/2 will result in aliasing at spatial frequencies

around qres. This will appear as additional correlation in the FRC and may therefore artificially increase the esti-

mated resolution. Furthermore, the pixel binning also acts as a low pass filter. If l is the pixel size then the effect is

approximately as if the exponential in Eq. (2) is replaced by:

exp
(

−4π2σ2q2
)

→ sinc (πql)
2
exp

(

−4π2σ2q2
)

. (S.79)

At q = qres this is the same as replacing σ in Eq. (2) by:

σ2 → σ2
eff = σ2 −

log
(

sinc (πql)2
)

4π2q2
. (S.80)

If we assume that R ≈ 2πσ and we require that the loss in the resolution from having a finite pixel size should not be

greater than 10%, the this leads to the requirement that

∆R = 2π (σeff − σ) < 0.1R = 0.1 · 2πσ, (S.81)
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which implies that

4π2σ2
effq

2
res − 4π2σ2q2res = − log

(

sinc (πqresl)
2
)

< 0.21, (S.82)

from which it can be deduced that

l <
0.25

qres
=
R

4
. (S.83)

The recommendation is therefore to keep the superresolution pixel size smaller than R/4.

5.3 Data visualization

The images used for resolution estimation are computed by binning localizations. For the experimental results pre-

sented in this article, however, the binned images were Gaussian blurred to make them visually more appealing for

the various figures. One might wonder whether using these blurred images would lead to a different FRC resolution

estimate. It turns out that this is not the case. The blurring does suppress high spatial frequencies in the images. The

FRC though is only sensitive to the correlation between these components in the half images and not to the magnitudes

of these components. Therefore the blurring does not influence the resolution. This was tested for the data in Fig. 2a

by blurring the binned half images and calculating the FRC with these, but the typical difference in the FRC values

was on the order of 10−4; this is negligible compared to the variance in the FRC values. Note that the above implies

that other isotropic linear filtering approaches than Gaussian blurring would also not have influenced the resolution,

provided that the frequency response of the filter is nonzero for all spatial frequencies.

The influence on resolution estimation of non-linear visualization methods, such as adaptive bin size histograms or

methods based on Delauney triangulation [57], is more difficult to analyze. Two general points can be made. First, the

density of localizations is proportional to the number of labeled sites on a structure. Therefore, unbiased visualization

methods should be linear in the density of localizations. Second, visualization methods cannot distinguish between

variations in local localization density due to the underlying sample structure and variations due to noise. Consequently

they cannot both be unbiased and improve the FRC between two half data image and can therefore not provide a more

accurate resolution estimate than the binning method used here. It may be concluded that the non-linear visualization

methods that have been proposed in the literature [57, 58] do not increase the useful information content of the image.

5.4 Thresholds

In the field of single-particle electron microscopy, there is no general consensus on what threshold θ (q) should be used

for the FRC or FSC. Three main kinds of thresholds are used: The first is fixed thresholds (e.g. θ (q) = 1/7 ≈ 0.143
[20] or θ (q) = 0.5 [18, 19]). The second kind is sigma factor curves (θ (q) ∝ 1/

√
qL [15, 59]), which require the

FRC to be larger than some multiple of the standard deviation of the FRC for white noise (for which 〈FRC〉 = 0),

with L the field-of-view. The third kind is information level curves[60]. The curves were derived based on the RMS

value of the numerator and denominator of the FRC curve which leads to the following approximation:

FRC (q) ≈ SNR (q) + (2/SNR (q) + 1) /
√
qL

SNR (q) + (2/SNR (q)) /
√
qL+ 1

. (S.84)

The requirement that the information content per pixel log2 (1 + SNR) is larger than a certain number of bits (e.g. 0.5

or 1) results in the desired curves. Note here that for 0.5 bits of information per pixel and largeL, the threshold rapidly

converges to θ (q) = 0.1716, which is close to the 1/7 threshold. The sigma factor and information level curves are

conceptually conservative: they are chosen such that even if due to noise FRC (q) is larger than its expected value, the

image should still be resolved if it is above the threshold. However, since the FRC gives a single resolution figure for

an entire image, it should be seen as giving the length scale at which details are resolved on average rather than with

certainty. Moreover, these curves do not take into account that the noise on FRC (q) is heavily suppressed by means

of smoothing. Therefore these conservative thresholds are inappropriate. The most commonly used fixed threshold is

0.5 [61]. However, recent work [37] suggests that this threshold appears to give a realistic resolution estimate because

the FSC in single-particle electron microscopy is often overoptimistic due to spurious correlations. In the absence of

spurious correlations the threshold of 1/7 ≈ 0.143 was found to be more adequate. Ultimately though, the correct
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threshold is determined empirically: it is the one that corresponds best with what intuitively appears to be resolved in

actual images. From the results in Supplementary Fig. 1 we conclude that the 1/7 threshold is the most appropriate

choice of threshold.

34

Nature Methods: doi:10.1038/nmeth.2448



Supplementary Note 6: Supplementary simulations

6.1 Qualitative validity in simulations

The qualitative validity of the FRC resolution method in simulations was verified for the object shown in Supplemen-

tary Fig. 16a. Simulations with a single localizations per emitter (i.e. with Q≪ 1) were done for various values of the

localization uncertainty σ and the density of localized labels ρ on the lines (i.e. the pixel values of the white parts of

the ‘ground truth’ image were equal to ρ). In the simulations, the superresolution pixel size of 5 nm and the expected

photon count per localization nph = 500. Note that the empty areas in the images of the simulation results were

removed for display. The Nyquist resolution was taken to be RNyquist = 2/
√
ρ. The FRC resolution value could not

be calculated from the simulation data since the field of view and number of localizations are too small for accurate

resolution determination. Instead, the resolution was calculated from the expected FRC curve in Eq. (2). The results

are shown in Supplementary Fig. 2. From this figure it becomes clear that the FRC resolution value does indeed show

for which separation the two crossing lines can just be separated.

Simulations with multiple localizations per emitter were set up in the same way as above but with a few changes:

the density of labels was constant at ρ = 4 · 104 µm−2 (N.B. this is the density of all labels, both localized and not

localized). However, the average number of times Q that emitters (including unlocalized ones) were localized in the

simulations was equal to 1/4, 1 and 4. The FRC curve that was used to compute the resolution was the theoretical

FRC from Eq. (S.28) instead of the one calculated from the simulated data, since the number of localizations was too

small to accurately determine the resolution from the data. Note that Eq. (S.28) gives the expected resolution when the

Q-correction for spurious correlations is perfect. The Nyquist resolution was calculated as RNyquist = 2/
√
Qρ. The

results are shown in Supplementary Fig. 2. From this figure it is clear that also in the case where emitters are localized

multiple times, the FRC method with perfectQ-correction provides a resolution that seems to correspond qualitatively

well with the distance for which the crossing lines can just be distinguished. This supports the qualitative validity of

the FRC number.

Another test of the validity of the simulation method is in the sample dependence of the image resolution. Eq. (2)

suggests that the image resolution depends on the sample itself. This insight was not originally considered for classical

resolution limits such as the Abbe resolution. Simulations were carried out for pairs of lines where the spacing between

the lines is kept constant but the width of the lines is varied. The localization precision σ was equal to 20 nm. The

results of these simulations are shown in Fig. S.19. In Fig. S.19a, the two line pairs have the same localization density

ρ = 104 µm−2 and spacing d = 30 nm, but the width of the lines w = 10 nm to the left and w = 30 nm to right. In

Fig. S.19b, the two line pairs have N = 100 localizations per line and spacing d = 20 nm, but the width of the lines

w = 20 nm to the left and w = 100 nm to right. In both cases, it is evident that the two line pairs are not equally easy

to distinguish, even though (a) σ and ρ or (b) σ and N are kept constant. This implies that the resolution must depend

on the width of these lines, and therefore on the spatial structure of the object.

An extreme example of the sample dependence is shown in figure S.20, where the result of a simulation of an

object without structure is shown (i.e. an object with constant expected labeling density). The resulting FRC curve also

indicates that no structure can be interpreted in the image. This means that no interpretable details can be distinguished

in the image, which is reasonable since no details are present in the structure of the object itself.

6.2 Supplementary Figs. 8 and 9: Correction for spurious correlations

In these simulations, the algorithm for correcting spurious correlations was applied 100 times for various values of

the density of labels ρ, the localization uncertainty σ (which was the same for all localizations in a single simulated

experiment) andQ for the Siemens star object in Fig. 1a. The object image was 4096×4096 pixels with a pixel size of

2.5 nm, whereas the localizations were binned into pixels of 10 nm in size. This was done in order to make sure that

effects of pixelation in the object did not influence the numerator of the FRC curve.

A number of relevant experimental effects is not taken into account in these simulations: imperfect correction

for drift and the heterogeneity of the switching kinetics leading to e.g. variations in the distribution of localization

uncertainties and in the number of switching cycles all influence the drop-off of the spurious correlation term in
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Aa Bb

Figure S.19: Simulations without multiple localizations per emitter of line pairs with σ = 20 nm. In a, the localization

density ρ = 104 µm−2 and the spacing d = 30 nm for both line pairs, but the width w = 10 nm to the left and w = 30
nm to right. In b, all lines contain 100 localizations and the spacing d = 20 nm for both line pairs, but the width

w = 20 nm to the left and w = 100 nm to right.
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Figure S.20: Simulation without multiple localizations per emitter with constant density of localized labels ρ =
103 µm−2 everywhere and σ = 20 nm. The FRC curve drops immediately below 0. The resolution is therefore larger

than half the size of the field of view which is 512 nm (256 pixels of 2 nm). Therefore it more or less indicates that no

structural information can be interpreted in the image.
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Eq. (S.26) and may therefore have an influence on the performance of the algorithm. Also, the noise floor on the

numerator of the FRC is inversely proportional to the size of the field of view. Therefore the algorithm will perform

better for larger fields of view, all other things being equal. Finally it should be noted that the Siemens star object in

these simulations has a rather typical shape: about 97% of the emitters reside in parts of the object where the arms

are wider than 100 nm. Therefore the high frequency content of the object itself is relatively low. Consequently, the

resolution values in these figures are not representative of the values that will generally be obtained in experiments

with similar values of ρ, σ, and Q.

6.3 Supplementary Fig. 15: Illustration of FLC

The FLC-concept is illustrated in Supplementary Fig. 15. The figure shows a simulation of a grating structure propor-

tional to sin2 (πx/p) in a 1.285 µm field of view with 25 grating periods (i.e. p = 51.4 nm). In the simulations, the

average density of localizations ρ = 104 µm−2 and the localization uncertainty σ = 5 nm. The FLC is calculated by

splitting the localizations randomly into two half data images. The FLC shows a distinctive ∞-symbol shape which

can be described by q = |cosφ| /p, in correspondence with the apparent pitch p/ |cosφ| in azimuthal direction φ. Note

that the FLC-plot always has point symmetry due to the real valuedness of the image data. It appears that the noise

level at high spatial frequencies takes values up to 0.1 (root-mean-square value) at the edges of the Fourier domain.

The threshold level 1/7 = 0.14 used for the FRC or FSC may therefore not be directly appropriate for the FLC or FPC

measures. The cause for this may be the noise averaging which is less complete for lines or planes normal to spatial

frequency vectors with large magnitude compared to circles or spheres with that particular radius. A sensible remedy

may be to smooth the evaluated FLC or FPC (e.g. through Gaussian filtering) before thresholding, since smoothing

was also applied to the FRC curves. Another remedy may be to introduce a weighted average over the lines or planes

in Fourier space such that the contribution of noise in the regions of high spatial frequency is suppressed. As weight

we would envision a Gaussian type weight with center at q that should account for the differences in SNR of the

Fourier pixels over the line or plane. Another reason why the 1/7 threshold level may be inappropriate is that the

signal-to-noise-ratio in the Fourier pixels varies along the lines or planes in Fourier space, which also suggests the use

of weighted averages.

Supplementary Fig. 15 shows that the FLC gives an indication of image resolution that corresponds to the anisotropy

of the sample. However, other ways to extend the average over rings can be envisioned, e.g. using segments of

rings/cones or Gabor wavelets. These other approaches can localize strongly in Fourier space, which would yield a

more or less two point response to the simulated grating of Fig. 15. We argue that the resolution in a observed direction

of e.g. φ = 45◦ to the grating normal is not zero (as would be assessed by the wavelets or ring segments) but just less

than perpendicular to it by cos(45◦) = 1/
√
2 as the effective pitch distance increases by 1/ cos(φ) =

√
2. The FLC

or FPC gives this desired behavior, as opposed to the approach relying on wavelets or ring segments.
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Supplementary Note 7: Supplementary experimental setup and methods

7.1 Supplementary Fig. 5: Tubulin filaments in a HeLa cell

Supplementary Fig. 5 shows another example of an acquisition of tubulin filaments in a human epithelial cervical

cancer (HeLa) cell. In this case, both anti-alpha tubulin and anti-beta tubulin antibodies were used. The instrumental

setup and the localization and image rendering steps were the same as before.

In the sample preparation protocol for this second acquisition, the fixing step was the same as before. However, the

fixing was quenched using 50 mM Tris(hydroxymethyl)amino methane (Tris-Cl). Afterwards the cells were washed

thrice in PBS and permeabilised (0.5%v/v Triton X-100 with 2% Bovine Serum Albumin (BSA) in PBS) for 5 minutes,

washed twice with PBS and put in 2% BSA for 20 minutes to reduce non-specific binding. Then the cells was were

washed three times in PBS again and subsequently they were labeled with Alexa Fluor 647 molecules conjugated

to anti-beta tubulin antibodies (9F3 rabbit monoclonal, Cell Signaling Technology Inc.) in PBS at a concentration of

approximately 1.0 µg/ml, after which they were washed thrice in PBS and put in 2% PFA to fix the antibodies in place.

Next the cells were washed once with Tris-Cl and twice with PBS and put for 1 hour in a 1:350 dilution of anti-alpha

tubulin acetylated antibodies (Sigma-Aldrich Corp.) in PBS. Then they were washed thrice in PBS and labeled in a

1:100 dilution of 2 mg/ml donkey anti-mouse IgG antibodies conjugated to Alexa Fluor 647 dye molecules (Invitrogen

Corp.) in PBS. Finally the cells were washed thrice in PBS, put in 2% PFA again, washed once with Tris-Cl again and

twice with PBS.

7.2 Supplementary Fig. 6: Actin filaments in an RBL cell

Supplementary Fig. 6 shows another additional experimental result of a localization microscopy data acquisition of

actin filaments in Rat Basophil Leukemia (RBL) cells.

RBL-2H3 cells were plated on 18 mm cover slips overnight in standard DMEM phenol free media. Cells were

rinsed once with warm PBS and then fixed in 0.3% PFA, 0.25% triton 5 mM glucose in cytoskeleton buffer (10 mM

MES, 138 mM KCl, 3 mM MgCl, 2 mM EGTA, 0.32 M sucrose) for 1 minute and then with 4% PFA, 5 mM glucose

in cytoskeleton buffer for 10 minutes. Cells were rinsed 4 times for 10 minutes with PBS and then labeled for 2

hours with 250 mM phalloidin-Alexa Fluor 647 (Invitrogen Inc.) in PBS. Immediately before imaging, cells were

rinsed 2 times with PBS for two minutes and then mounted on a slide with imaging buffer (10% (w/v) glucose, 50

mM Tris, 10 mM NaCl, pH 8.5, glucose oxidase, catalyze, and 50 mM MEA) and sealed using nail polish. Single

molecule imaging experiments were performed using an inverted microscope (IX71, Olympus) with a 1.45 NA TIRF

objective (U-APO 150x, Olympus America Inc.). A 635 nm diode laser (Radius 635, Coherent) provided excitation

and the emission path included a 685/40 emission filter (Semrock) and an electron multiplying CCD camera (iXon

897, Andor Technologies) Data was collected at 46 frames per second.

The localization and image rendering algorithms that were used were the same as above, except for the values used

for filtering the localizations because of the different sample and dye used. The minimum value for nph was set to

50, the maximum value for σ to 54 nm, all values of σPSF were accepted and a maximum number of 50 estimated

background photons per pixel was used for filtering localizations.

7.3 Supplementary Fig. 7: Keratin filaments in a PA-JEB cell

Supplementary Fig. 7 shows a localization microscopy image of keratin filaments in immortalized β4-deficient ker-

atinocytes derived from a patient with pyloric atresia associated with junctional epidermolysis bullosa (PA-JEB)

[62, 63]. PA-JEB cells stably expressing β4 integrin were cultured on #1.5 coverslips. After 48 hours cells were

washed briefly with PBS and fixed with 4%PFA in PBS for 10 minutes at room temperature. Samples were extensively

washed with PBS and blocked with 5% BSA for 30 minutes at room temperature. Immunolabelling was performed at

room temperature using first a polyclonal antibody against Keratin 14 (Covance, Catalog Number PRB-155P) diluted

in 5%BSA in PBS to a final concentration of 1.25 µg/ml and later a Goat Anti-Rabbit IgG antibody coupled to Alexa
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Fluor 532 (Invitrogen) diluted in 5%BSA in PBS to a final concentration of 0.2 mg/ml. Cells were washed using first

0.1% Tween-20 in PBS and then PBS

The same instrumental setup as described in sec. was used for this acquisition, except for the EM gain of 16.8 that

was used for this acquisition instead of 50.6. The localization and image rendering algorithms that were used were

also the same, except for the values used for filtering the localizations because of the different dye used. The minimum

value for nph was set to 100, and the accepted values of σPSF ranged from 89 nm to 133 nm.

7.4 Supplementary Fig. 13: Widefield imaging

Red fluorescent beads (Duke Scientific Corp.,) with a diameter of 200 nm (excitation maxima 542 nm, emission max-

ima 612 nm) were diluted and put onto a coverslip. Images were recorded on a ORCA-ER CCD camera (Hamamatsu

Photonics) mounted to an inverted microscope (IX71 Olympus). The sample was illuminated with a Hg lamp. The

filter set consisted of a 560/20 excitation filter, 585 nm DRLP dichroic mirror and 630/40 emission filter (all Chroma

Technology). The pixel size of the camera is 6.45 µm and for imaging we used 10x 0.25 NA (acquisition series ids

1-3) and 60x 0.7 NA (acquisition ids 4-11) air objectives. The exposure time was between 0.2 and 0.5 s. For each

field-of-view a series of 20 consecutive images was recorded. A second series of images with identical acquisition

parameters was taken with no light incident on the camera. This background estimation was averaged over time, then

subtracted from each image of the data series on a pixel by pixel basis. The displayed FRC curves and resolution val-

ues are computed from the average of 19 FRC curves from the 20 subsequent images of the same scene. The standard

deviation of the values is below 1% within one image series.

7.5 Supplementary Fig. 14: SEM imaging

The resolution in SEM depends on many different aspects, such as the electron beam size, its aberrations [64, 65],

and very importantly, the beam-sample interaction. The cross-correlation between images in a time series of the same

scene, in particular its decay as a function of spatial frequency has been proposed as a resolution measure for SEM

[66]. We have applied the FRC resolution concept to SEM time series in which only single electrons are recorded due

to the very short pixel dwell time and the low probe current. The FRC method should also be applicable to images

acquired with the newest generation Transmission Electron Microscopy (TEM) cameras that can operate in single

electron counting mode.

Images of gold on carbon were acquired on a FEI Quanta FEG SEM (FEI Company) at 5 kV acceleration voltage

in high vacuum mode. We recorded time series of 128 images each of size 512 × 442 pixels with an effective pixel

size of 1.7 nm or 0.83 nm. The pixel dwell time was set to 50 ns and single secondary electrons were recorded with an

Everhart-Thornley detector. Due to the very small pixel dwell time and the comparably slow detector response, single

events show up as 1-3 pixel wide streaks along the scan line. These events were replaced with one single peak of unit

height at the maximum pixel response position.

7.6 Additional analyses of the data in Fig. 3

7.6.1 Checks of the spurious correlation correction in Fig. 3

An estimate of the localization uncertainty for the data in Fig. 3 was obtained by analyzing the distribution of local-

izations of several bright, isolated clusters of localizations, which may be interpreted as originating from the same

binding site. The histograms of the found localizations for Alexa Fluor 647 and Alexa Fluor 750 are compiled from

the data of 56 and 61 hand-picked clusters, respectively, and fitted with a 2D-Gaussian in order to determine the lo-

calization uncertainty. The fit points to localization uncertainties equal to 7.7 nm for Alexa Fluor 647 and 11.9 nm for

Alexa Fluor 750 (see histograms in Fig. S.21), in good agreement with the spurious correlation analysis (localization

uncertainties 9.2 nm for Alexa Fluor 647 and 12 nm for Alexa Fluor 750). The histograms of the number of local-

izations per cluster is shown in Fig. S.21, giving rise to a mean number of localizations per cluster equal to 22±9 for

Alexa Fluor 647 and 31±22 for Alexa Fluor 750, which is a factor of two higher than the values for the Q-parameter

estimated from the spurious correlations (10 for Alexa Fluor 647 and 18 for Alexa Fluor 750). The reason for this

discrepancy is that there is a substantial bias towards higher numbers of localizations per cluster, as only relatively
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Figure S.21: Cluster analysis for the data in Figure 3. Histograms of found x and y positions of localizations in

several bright, isolated clusters of localizations in Fig 3 for Alexa Fluor 647 (a) and Alexa Fluor 750 (b) and Gaussian

fits to the 2D-histograms, as well as the histogram of the number of localizations per cluster for both species (c).

The estimated localization uncertainties, 7.7 nm for Alexa Fluor 647 and 11.9 nm for Alexa Fluor 750, are in good

agreement with those used in the spurious correlation analysis for Fig. 3 (respectively 9.2 nm and 12 nm). Also the

ratio between the number of Alexa Fluor 647 localizations and Alexa Fluor 750 localizations per cluster of 1.4 agrees

well with the ratio of 1.8 between the Q-values in Fig. 3.

bright clusters are picked for the analysis. However, the ratio of the mean number of localizations per cluster for Alexa

Fluor 647 and Alexa Fluor 750 (equal to 1.4) does fit reasonably with the ratio of theQ-parameters estimated for both

species (equal to 1.8).

The values for Q are also consistent with the uncorrected resolution values. It follows from Eq. (2) that the

FRC resolution without spurious correlation correction is equal to 2πσ/
√

log (3Q) in the regime where spurious

correlations dominate the FRC curve (Supplementary Note 1). Using this formula and the found values for σ and Q
we obtain 31 nm for Alexa Fluor 647 and 37 nm for Alexa Fluor 750, close to the uncorrected resolution values of

25 nm and 34 nm respectively.

An additional check that was made to confirm the validity of the correction for spurious correlations involved a

comparison between the corrected FRC curves and cross-channel FRC curves. This comparison involves a theoretical

insight obtained in the context of colocalization analysis. There it was shown that if two independent noisy imagesA1

and A2 are available for color channel A and two independent noisy images B1 and B2 for color channel B and all

images show the same structure, then:

1

4
(r(A1, B1) + r(A1, B2) + r(A2, B1) + r(A2, B2)) ≈

√

r(A1, A2)r(B1, B2), (S.85)

where r(., .) denotes the cross-correlation between two zero-mean images [67]. Since the sum of all the pixel
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Figure S.22: Validation of Q-correction. Plots of the left-hand side and right-hand side of Eq. (S.86) for the data

of Fig. 3. The right-hand side is computed with the uncorrected FRC-curves from Fig. 3c and the corrected FRC-

curves from Fig. 3d; the images used to compute those FRC curves were also used to compute the left-hand side of

Eq. (S.86). This figure suggests that Eq. (S.86) is correct after correction for spurious correlation, thus indicating that

the correction was successful.

values over a ring in Fourier space of an image is typically very small, the FRC can be considered to be the same

kind of correlation as r(., .). Therefore it follows that if two images fA647,1 and fA647,2 are obtained from the Alexa

Fluor 647 localizations and two images fA750,1 and fA750,2 from the Alexa Fluor 750 localizations then:

1

4

∑

i,j=1,2

FRC
(

f̂A647,i (~q) , f̂A750,j (~q)
)

≈
√

FRC
(

f̂A647,1 (~q) , f̂A647,2 (~q)
)

FRC
(

f̂A750,1 (~q) , f̂A750,2 (~q)
)

.

(S.86)

Fig. S.22 shows that if the Alexa Fluor 647 and Alexa Fluor 750 datasets are split into half andFRC(f̂A647,1, f̂A647,2)

and FRC(f̂A750,1, f̂A750,2) are corrected for spurious correlations, then the left-hand side is approximately equivalent

to the right-hand side of Eq. (S.86). This implies that the corrected FRC curves give rise to the same equivalence in

Eq. (S.86) as when FRC curves were obtained with independent images in both color channels, and therefore that the

correction for spurious correlations was successful.

7.6.2 Calibration sample for emitter estimation

In order to test how well the spurious correlation correction method performs in estimating the number of localizations

per emitter, calibrations experiment were carried out with fluorescent dyes on a glass surface.

For the first experiment, streptavidin molecules were labeled with a combination of two amine-reative fluorescent

dyes: Cy3 and Alexa Fluor 647. The average degree of labeling for each streptavidin molecule was 3.1 Cy3 and

0.6 Alexa Fluor 647 fluorophores per streptavidin. The labeled streptavidin was bound to a glass surface coated

with biotinylated BSA, at a concentration low enough such that single molecules of fluorescent streptavidin were

distinguishable on the surface when viewed through the microscope. By repetitive cycling of a weak activation light

source (a 532 nm laser) and an excitation light source (a 642 nm laser), the Alexa Fluor 647 fluorophores were switched

between the fluorescent (on) state and the dark (off) state. The cycling continued until all of the molecules in the field

of view had photobleached. This dataset was analyzed by a conventional localization microscopy analysis, resulting

in an image where each molecule appears as a small cluster of localizations. The number of localizations per cluster

corresponds to the number of times each molecule switched on before bleaching.

In the second experiment, streptavidin was labeled with Cy3 and Alexa Fluor 750, with an average degree of

labeling of 2.0 Cy3 and 0.07 Alexa Fluor 750 per streptavidin. The rest of this second experiment proceeded analogous

to the first, but with a 752 nm laser instead of a 642 nm laser as an excitation light source.
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To count the number of localizations per cluster, these clusters first had to be identified. This was done by binning

localizations to make superresolution images of the localizations from the first 5,000 frames and searching for con-

nected regions in those images with at least 4 nonzero superresolution pixels. Pixels were considered to be connected

if at least 1 of their 8 neighbors had a nonzero value. The reason for taking only the first 5,000 frames was to limit

the number of false clusters from false positive localizations. Subsequently regions arising from multiple emitters

were filtered out based on their ellipticity by computing the largest eigenvalue of the inertia tensor of the distribution

of localizations in each region. The average number of localizations in the previously identified clusters was then

computed for clusters containing at least one localization for various fractions of the total acquisition time. Finally, the

Q-parameter was estimated on the segmented localizations for the same fractions of the total acquisition time, using a

mean and width of the distribution of localization uncertainties equal to 5.0 and 4.0 nm.

Supplementary Fig. 10 shows a comparison between the counted number of localizations and the estimated value

of the Q-parameter for the first 5,000 frames. From this it becomes clear that the Q-parameter provides an accurate es-

timate of the number of localizations per emitter when few emitters have bleached. When more emitters have bleached,

the Q-parameter increasingly overestimates the number of localizations per emitter, even though it does correspond

well to its expected value based on Eq. (S.20). The amount of overestimation was calibrated by considering the extent

of photobleaching of the emitter population. The number of localizations per emitter over time is proportional to

1− exp(−t/τ) for some decay time τ which is estimated from the data (3.4× 103 frames in Supplementary Fig. 10).

Since the laser power was different in the control experiments and the experiments for Fig. 3, the ratio t/τ was used to

quantify the extent of photobleaching in a way that is invariant to these differences in the illumination. Fig. 10 shows

the overestimation of the number of localizations per emitter by the Q-parameter as a function of t/τ for the Alexa

Fluor 647 and the Alexa Fluor 750 dataset separately.

When the data from Fig. 3 are considered, it turns out that the cumulative number of localizations over time can

also be fitted with a model of the form A(1 − exp(−t/τ)) for τ = 1.8 × 105 frames for the Alexa Fluor 647 and

τ = 3.6 × 104 frames for the Alexa Fluor 750. Based on the acquisition times, it then follows that the Q-parameter

overestimates the number of localizations per emitter by a factor 1.5 for the Alexa Fluor 647 and 1.7 for the Alexa

Fluor 750.
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