日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Background conditions influence the decadal climate response to strong volcanic eruptions

MPS-Authors
/persons/resource/persons37386

Zanchettin,  Davide
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37249

Lorenz,  Stephan
Numerical Model Development and Data Assimilation, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37356

Timmreck,  Claudia
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37193

Jungclaus,  Johann H.       
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

jgrd50229.pdf
(出版社版), 4MB

付随資料 (公開)
There is no public supplementary material available
引用

Zanchettin, D., Bothe, O., Graf, H. F., Lorenz, S., Luterbacher, J., Timmreck, C., & Jungclaus, J. H. (2013). Background conditions influence the decadal climate response to strong volcanic eruptions. Journal of Geophysical Research-Atmospheres, 118, 4090-4106. doi:10.1002/jgrd.50229.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-F676-A
要旨
Background conditions have the potential to influence the climate response to strong tropical volcanic eruptions. As a case study, we systematically assess the decadal climate response to the April 1815 Tambora eruption in a set of full-complexity Earth system model simulations. Three 10-member simulation ensembles are evaluated which describe the climate evolution of the early 19th century under (1) full-forcing conditions, (2) volcanic forcing–only conditions, and (3) volcanic forcing–only conditions excluding events preceding the Tambora eruption. The amplitude of the simulated radiative perturbation induced by the Tambora eruption depends only marginally on the background conditions. In contrast, simulated near-surface atmospheric and especially oceanic dynamics evolve significantly differently after the eruption under different background conditions. In particular, large inter-ensemble differences are found in the post-Tambora decadal evolution of oceanic heat transport and sea ice in the North Atlantic/Arctic Ocean. They reveal the existence of multiple response pathways that depend on background conditions. Background conditions are therefore not merely a source of additive noise for post-eruption decadal climate variability but actively influence the mechanisms involved in the post-eruption decadal evolution. Hence, background conditions should appropriately be accounted for in future ensemble-based numerical studies.