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Abstract

Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A
severe problem concerns the loss of dental materials (enamel and dentine) at the buccal cervical region of the tooth. This
‘‘modern-day’’ pathology, called non-carious cervical lesions (NCCLs), is ubiquitous and worldwide spread, but is very
sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real
dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element
analysis (FEA), to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor
leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2) to
demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down
artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results
obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental
wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for
decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of
other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new
challenges that can only be understood in an evolutionary perspective.
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Introduction

Wedge-shaped defects in the buccal cervical region of the tooth,

known as non-carious cervical lesions (NCCLs) (Figure 1) [1–3],

do not find any parallel in the ancestral human lineage and are

very sporadic in modern humans from pre-industrialized societies

[4–6]. To account for the worldwide spread of NCCLs scholars

have advocated multifactorial aetiologies, such as toothbrush/

dentifrice abrasion, biocorrosion, and abfraction. Abrasion is

considered a physical mechanism causing wear by friction of

physical–chemical agents on the tooth surface [7–9]. Biocorrosion

represents the chemical, biochemical and electrochemical degra-

dation of dental tissues due to endogenous and exogenous acids, by

biochemical proteolytic enzymes and piezoelectric effects

[3,10,11]. The term abfraction was introduced by Grippo [14]

to underline the loss of hard tissue in the cervical region of the

tooth by non-axial forces exerted on the occlusal surface, which

cause microfractures of dental tissues in areas of stress concentra-

tion [3,12,13]. For a review of the purported causes for NCCLs,

the reader may refer to the copious literature on this topic (i.e.,

[1,3,15,16]).

Scholars disagree about the relative importance of these factors.

NCCLs have been observed in modern populations wherein

toothbrush and dentifrice were not in use [17] and biocorrosion

alone cannot satisfactorily explain this phenomenon. Indeed,

lesions have been observed in subjects with no acidic raw food

intake [18] and they can only affect a single tooth [15]. Wedge-

shaped defects are frequently located subgingivally, which argue

against both toothbrushing abrasion and biocorrosion as being the

main contributing factors [18,19]. Moreover, to our knowledge,

NCCLs have not been observed in deciduous teeth, further

undermining toothbrushing and biocorrosion as the main causes.

The role of abfraction has also been widely challenged, as it is

controversial and poorly understood [15,16]. To support the role

of occlusal forces in the development of NCCLs in the buccal

cervical region of the tooth, scholars have mostly used finite

element analysis (FEA) [12,13]. However, the some approach has

also provided contradictory evidences, given that tensile stresses

were observed also in the lingual cervical region of the tooth, an
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area where NCCLs are rarely observed [20]. Scholars have also

searched for a correspondence between NCCLs and malocclusion

[12], as well as between NCCLs and occlusal wear [9,19,21],

arguing that malocclusion (i.e., angle class II and III) should

produce wear facets and that the more wear facets the tooth has,

the more likely the tooth is affected by NCCLs (see [22] for

a systematic review of the correspondence between NCCLs and

occlusal wear). However, evidence goes against this assumption,

because in some circumstances no association has been observed

between angles classification and NCCLs [23], and because

slightly worn teeth (namely, teeth with few wear facets) show

NCCLs too [1,24].

Many erroneous considerations among dental practitioners rely

on a fundamental misunderstanding of the concept of tooth wear

[2,22,25], seen more as the result of malocclusion or atypical

occlusal loading than as a natural physiological process. Extensive

tooth wear was ubiquitous in every past-populations of the world,

who consumed less refined and processed foods [25,26]. However,

in the last century people of most modern societies have

experienced a dramatic decrease in dental wear due to the

consumption of softer and cleaned food items and differences in

lifestyle [25,26]. As suggested by Kaifu and colleagues [26], the

discrepancy between ‘‘the original design of our dentition and our

present environment’’ might explain the increase in frequency of

some dental diseases in contemporary societies. For example,

mesial drift, continuous eruption, lingual tipping of the anterior

teeth might be evolved as compensatory mechanisms for heavy

interproximal and occlusal wear. Alterations of these compensa-

tory mechanisms can be, for example, important factors leading to

malocclusion [26]. Moreover, Aubry and colleagues [4] concluded

that the lack of wear characteristic in modern humans of

contemporary societies may play a major role in the development

of NCCLs.

In this contribution we describe an investigation of Aubry and

colleagues [4] hypothesis about the relation between the lack of

tooth wear and the risk of NCCLs. Testing this hypothesis through

biomechanical in vivo experiments is impossible due to practical

and ethical reasons. In vitro biomechanical tests of complete teeth

would be difficult to perform and inaccurate, due to the small size

of the occlusal contact areas (wherein forces should be applied) in

comparison to the relative large size (for a tooth) of available strain

gauges. Therefore, we tested the effects of tooth wear using three-

dimensional (3D) FEA [27]. While in previous contributions based

on 3D FEA less attention was devoted to the loading conditions, as

most of the scholars simplify forces to point loads (i.e.,

[12,13,28,29]), here we apply a newly developed advanced loading

concept derived from the individual occlusal wear information

[30,31]. Lower premolars are often affected by NCCLs. We

therefore compared maximum principal stresses in slightly worn

(specimen S23 and S81) and heavily worn (specimen S5 and S126)

lower right second premolars (RP2s) during maximum intercuspa-

tion contact (tooth-to-tooth contact; load= 100 N). Afterwards,

specimen S23 and specimen S81 were artificially worn down

(hereafter referred as S23w and S81w, respectively) to directly

evaluate the effects of wear on the stress distributions.

Results

During maximum intercuspation, slightly worn RP2s present

contact areas mainly localized on the buccal cusp and in the distal

margin of the occlusal surface (Figure 2A,B). Due to the steepness

of the buccal cusp, the load is directed obliquely with respect to the

axis of the tooth. Consequently, the buccal side of the tooth

experiences high tensile stresses, affecting the cervical half of the

root in S23 (Figure 2A) and the lower third of the crown in S81

(Figure 2B). Differences in the pattern of stress distribution

between the two specimens is due to differences in morphology of

the teeth and to the different wear stages of the two specimens, as

S81 is more worn than S23. Moreover, the high tensile stresses

observed in the roots of S23 (buccally; Figure 2A) and S81 (distally;

Figure 2B) might also account for another major clinical issue

currently faced by dental clinicians, namely root fracture.

In worn teeth (S5 and S126), contact areas cover a larger

portion of the occlusal surface, favouring a less localized

distribution of the load. Since the occlusal reliefs are reduced,

the occlusal load is almost parallel to the longitudinal axis of the

tooth and the force is directed towards the root’s apex, which

indeed shows compressive stresses (Figure 3A,B). Due to the

decrease of the non-axial loadings (i.e. bending loads), the tensile

stresses are reduced and affect the lateral sides of the teeth, mainly

distally, instead of the buccal region. Interestingly, the lack of

tensile stresses in the lingual side is in agreement with only

a sporadic presence of NCCLs in this region of the teeth.

When specimen S23 and S81 are artificially worn down (S23w

and S81w, respectively), the contact areas increased in number

and extension, the pattern of stress distribution changes accord-

ingly and the tensile stresses in the teeth decrease meaningfully,

particularly in the buccal side (Figures 4A,B). Indeed, as shown in

the plots of Figure 5A and 5B, tensile stress values in the buccal

cervical region are notably higher in the original (S23 and S81)

than in the artificially worn down (S23w and S81w) RP2s. While in

specimen S23w tensile stresses are generally low and mainly

concentrated in the grooves of the occlusal surface, in specimen

S81w tensile stresses interest the sides of the tooth, as previously

observed in the worn specimens S5 and S126. Accordingly, this

result shows that tooth wear changes the stress distribution,

independently on the primary morphology of the tooth.

Discussion

Dental wear is a physiological process that progressively affects

mammalian teeth throughout their functional life. Being a ubiqui-

tous phenomenon, with obvious positive correlation with the

individual age, we can assume that dental wear has played an

important role in mammalian dental evolution, where the

Figure 1. Modern lower premolars presenting non-carious
cervical lesions (NCCLs). Arrows point towards the NCCLs in the
buccal cervical region of the lower left first and second premolar (LP1
and LP2, respectively).
doi:10.1371/journal.pone.0062263.g001
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progression of volume loss of dental materials must have been

somehow calibrated depending on the tooth architecture and the

lifetime of each species. In fact, it has been suggested that the

morphology of the crown might have been selected to maintain

chewing efficiency throughout the life of the individual as the tooth

wear increases [32]. The topography of the occlusal surface, albeit

functionally important for food processing, does not represent the

tooth as a whole. In order to explain the functional biomechanics

of a tooth both its external (i.e., crown and root shape) and internal

architecture (i.e., dentine volume, enamel thickness and its

microstructural organization) have to be considered in response

to their occlusal load. We can assume that the dental architecture

is designed to withstand and distribute the high stress produced

during masticatory loadings to their supporting structures. In this

regard, since tooth wear changes both the loading position and the

loading direction of the occlusal forces [30] and hence changes the

distribution of stress (mainly tensile stresses) on the whole tooth.

The wear process might have had a crucial influence in the

evolution of teeth able to reduce high tensile stresses at the cervical

margin in the advanced period of an individual’s lifetime.

To test this hypothesis it was important to overcome limits of

current FEA studies, which simplify occlusal forces to a point load,

e.g. placed in the central basin of the tooth crown or on the cusp

tips (i.e., [12,13,28,29]). We have considered individual tooth-

tooth contact scenarios, which might be more damaging to the

tooth crown than food-tooth contacts, because more localized

Figure 2. The maximum principal stress distribution for specimen S23 and S81 lower right second premolars (RP2). A, specimen S23 in
occlusal, buccal, lingual, mesial and distal view. B. specimen S81 in occlusal, buccal, lingual, mesial and distal view. Blue spots in the occlusal surface
(compressive stress) represent the contact areas with the antagonistic teeth, during maximum intercuspation (see Video S1 for specimen S23, and
Video S2 for specimen S81), where the load was applied. Red spots represent tensile stresses. B, buccal; D, distal; L, lingual; M, mesial.
doi:10.1371/journal.pone.0062263.g002
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stresses increase [33]. Based on advanced loading concepts derived

from individual occlusal wear information (see methods below), for

the first time the pattern of stress distribution in teeth (namely,

lower second premolars) can be evaluated in different wear stages

derived from the physiological crown contacts. Additionally, the

experimental individual wear simulation enabled us to directly

assess the potential effects of advanced tooth wear on the same

specimen (Figures 4A,B, 5A,B).

Our results confirm that the occlusal loads are transferred to the

crown following a direction dictated by cusp inclination, lending

support to the hypothesis that abfraction is a main factor involved

in NCCLs [12,13]. Since in unworn to moderately worn RP2s

occlusal contact areas are mainly localized in the steeply inclined

slopes of the buccal cusp, the occlusal force will be fragmented in

lateral loadings that ultimately create tensile stresses in the buccal

cervical region of the tooth. Moreover, the concentration of tensile

stresses in the root maybe also account for another worldwide

dental failure, root fracture [34]. Root fracture is frequently

encountered emergency in a dental clinic, but to our knowledge it

is not a matter of concern in paleopathological researches of jaw

remains. However, our findings should be considered preliminary

and need to be confirmed in further studies and enlarged samples.

Aubry and colleagues [4] suggested that as the buccal cusp

becomes flatter and the contact areas with the antagonistic teeth

increase, the occlusal stresses should decrease, reducing the risk of

NCCLs. Indeed, our results confirm this assumption. In our worn

Figure 3. The maximum principal stress distribution for specimen S5 and S126 lower right second premolars (RP2). A, specimen S5 in
occlusal, buccal, lingual, mesial and distal view. B. specimen S126 in occlusal, buccal, lingual, mesial and distal view. Blue spots in the occlusal surface
(compressive stress) represent the contact areas with the antagonistic teeth, during maximum intercuspation (see Video S3 for specimen S5, and
Video S4 for specimen S126), where the load was applied. Red spots represent tensile stresses. B, buccal; D, distal; L, lingual; M, mesial.
doi:10.1371/journal.pone.0062263.g003
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specimens (both the original and the experimentally worn teeth),

the load directions change from oblique to nearly parallel direction

to the dental axis, and locally directed stresses ultimately reduce,

thus improving the dispersion of occlusal forces. Therefore, the

morphological modification of the occlusal surface resulting from

wearing seems important to balance the pattern of stress

distribution to which a tooth is subjected during the lifespan of

an individual, reducing and shifting the tensile stresses from the

buccal side (in unworn-slightly worn teeth) to the mesial/distal

sides (in teeth with advanced wear) (Figures 2, 3, 4). The

biomechanical implications of this shifting of tensile stresses in

the lateral sides of the tooth are currently unclear, and further

works are warranted.

Modern human populations of pre-contemporary societies were

subjected to high rates of tooth wear, due to the abrasiveness of the

diet and adherent grit derived from less refined and processed

foods (relatively to modern processed soft foods in contemporary

societies) [35–37]. In such conditions, cusps became progressively

lower and flatter already in young adults, and the load direction

during mastication changed from oblique to parallel to the dental

axis. It is worthwhile to note that this rapidly progressing tooth

wear was usually accompanied by a relatively short lifetime of the

individuals (when compared with contemporary societies), as the

average life expectancy at birth in prehistoric populations (both

hunter-gatherers and agriculturalists) has been estimated between

18–25 years, remaining stable or maybe increasing up to 30–35

Figure 4. The maximum principal stress distribution for specimen S23w and S81w lower right second premolars (RP2). A, specimen
S23w in occlusal, buccal, lingual, mesial and distal view. B. specimen S81w in occlusal, buccal, lingual, mesial and distal view. Blue spots in the occlusal
surface (compressive stress) represent the contact areas with the antagonistic teeth, during maximum intercuspation (see Video S5 for specimen
S23w, and Video S6 for specimen S81w), where the load was applied. Red spots represent tensile stresses. B, buccal; D, distal; L, lingual; M, mesial.
doi:10.1371/journal.pone.0062263.g004
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years in the Middle Ages and 40–45 years in the 19th century

[38,39].

This trend has completely reversed in the last century, due to

the fact that a decrease in tooth wear is now associated with an

increase in life expectancy, which is currently about 80 years in

industrialized countries [39]. While in pre-contemporary societies

dentine exposure in premolars is ubiquitous from about the age of

20/25 [35], in the majority of the modern population tooth wear is

often limited to enamel in the entire life of an individual. Wearing

affects the dentine to a relatively small degree and, in any case, it

occurs at a very advanced age [40]. This implies that in

contemporary societies occlusal reliefs do not noticeably reduce,

wear facets increase only modestly in surface area, and teeth are

exposed to high tensile stresses in the buccal region of the teeth for

a much longer time due to non-axial loadings. For this reason,

some dental practitioners have suggested reducing cusp height

relief to decrease tensile stress values [41].

Results from fracture mechanics show that during the loading of

teeth enamel cracks usually develop due to tensile stress and

propagate depending on the stress distribution. They follow the

pathways of tufts (hypocalcified, protein dense fissures) from the

internal enamel-dentin junction (EDJ) towards the outer enamel

surface (OES) and from the cervix (enamel-cementum junction)

towards the occlusal surface [42,43]. Cracks can grow incremen-

tally, heal, and grow again over a lifetime, providing information

about the load history in a tooth [43]. The travel distance of

a crack is limited, depending on the load magnitude and enamel

thickness. If a crack has reached the OES, it may cause enamel/

dentine failure. The magnitude of load alone cannot be considered

the only factor involved in the aetiology of NCCLs. Past modern

humans had a stronger masticatory apparatus (as suggested by

muscle insertions in the cranium and mandible) than contempo-

rary populations and yet in these early modern humans NCCLs

have been rarely observed [4,5]. However, continuous cyclic

occlusal loading can lead to the accumulation of cracks, promoting

fatigue and maybe ending in delaminating enamel from dentin

[42]. Extensive cyclic tensile stresses along the thin enamelled

buccal cervical margin favours the occurrence of multiple cracks

on the OES, increasing the surface for activity of additional

disruptive processes such as biocorrosion (cyclic fatigue stress

biocorrosion) [3]. More studies are needed to explore the relation

between marginal cracks and NCCLs.

It is important to raise further observations and comments on

some limits of our analysis that should be addressed in future

works. First, we have considered only six specimens due to the

efforts required to develop the FE models and contact areas. Even

though we do believe our sample is morphologically representa-

tive, more studies are needed to confirm our preliminary results,

including other tooth classes across the dental arch, accurate

evaluations of in vivo condition of the same tooth used in the

simulation, and in vitro experiments. Second, we have attributed

isotropic property to the enamel due to practicability of the FEA,

but enamel should be considered anisotropic, having different

physical properties in different directions and crown regions [44].

Third, the artificially worn dental casts used in the present study

(see methods below) obviously simplify the naturally worn

condition. Finally, Bondioli and colleagues have recently observed

NCCLs in the Neolithic dental sample, including teeth with

advanced wear from Mehrgarh, Pakistan [6]. Even though the

frequency of the cases observed in the Mehrgarh prehistoric

sample is still low (10 individuals out of 225; 4.4%) compared to

the currently worldwide diffusion of the pathology (in the range of

5–85% [45]), it nonetheless suggests that other factors, i.e.

parafunctional habits, cannot be excluded in the aetiology of

NCCLs. However, despite non-axial occlusal loadings might also

depend on parafunctional habits (i.e., bruxism [46]), the surprising

spread of the disease in contemporary societies must depend on

more generalized changes that took place in the last century.

To summarize, our results support Aubry and colleagues’

abfraction hypothesis for the diffusion of NCCLs in contemporary

populations [4], suggesting that the lack of tooth wear increases

tensile stresses near the buccal cervix of the tooth, augmenting the

risk of NCCLs. This main factor might work in concert with

additional disruptive processes (i.e., toothbrush/dentifrice abra-

sion, biocorrosion), which might explain the variability in the

appearance of NCCLs shape and surface roughness, and also the

Figure 5. Differences in tensile stress values between the original (S23 and S81) and the artificially worn down (S23w and S81w)
lower right second premolars. A, the maximum principal stress values for specimen S23 and S23w based on 10 homologous nodes in the buccal
cervical region. B, the maximum principal stress values for specimen S81 and S81w based on 10 homologous nodes in the buccal cervical region.
doi:10.1371/journal.pone.0062263.g005
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tendency for a higher prevalence with increasing age [1,11].

Moreover, if future studies confirm that alterations of the

compensatory mechanisms for heavy tooth wear (such as mesial

drift, continuous eruption, lingual tipping of the anterior teeth) are,

to some extent, responsible for malocclusion and other dental

diseases in contemporary societies [26], the consequences related

to the lack of tooth wear might be more serious than generally

thought.

In modern societies, the use of our dentition and its pattern of

decay have changed dramatically. An unworn dentition is most

desired for aesthetic reasons and as a sign of good oral health. For

the prevention of NCCLs and maybe even other dental failure

(i.e., root fracture), the dental academic community should be

amenable to consider physiological tooth wear in an evolutionary

perspective to understand its specific role in the dynamics and

function of the masticatory system, instead of seeing it as

a phenomenon which just acts to the detriment of oral conditions.

Ironically, it seems the lack of physiological wear may in fact lead

to pathological conditions!

Materials and Methods

Sample
We obtained permission from the Department of Anthropology,

University of Vienna, to select four dried modern human skulls

from the archaeological skeletal sample collected by Rudolf Poech

in South Africa in 1907–1909 [47]. The age at death, and when

possible the sex, was assessed by the examination of the cranial

and postcranial characters [48–50]. The first two specimens

(ID=S23 and ID=S81, respectively) are young individuals (15–

20 years old), while the second two specimens (ID=S5 and

ID=S126, respectively) are adults (about 30 years old). The sex

was only assessed for specimen S23 (female) and specimen S5

(male).

The four specimens were selected both because of their

complete dentition and because their lower right second premolar

(RP2) differing in wear stage (after Smith [51]): specimen S23 and

S81 show wear stage 1 (wear facets are visible (S81) or slightly

visible (S23) on the occlusal surface, but they do not coalesce

together and there is not dentine exposed), while specimen S5 and

S126 show wear stage 2 (wear facets coalesce together) and wear

stage 3 (dentine exposed in the protoconid cusp), respectively.

Micro-CT Scan, Segmentation and 3D Reconstruction
Scanning of the skulls with upper and lower dentition in

maximum intercuspation contact was carried out at the Vienna

Micro-CT Lab, Department of Anthropology, University of

Vienna, with a Viscom X8060 mCT scanner using the following

scan parameters: 130 kV, 100 mA, 1.0mm copper filter,

319762239 matrix, and 1440 steps during 360u of rotation.

Volume data were reconstructed using isometric voxels of̀55 mm.

The 3D digital surfaces for the lower right premolars and first

molar (RP1-RM1) and the upper right premolars (RP1-RP2) were

obtained in Avizo 7 software (Visualization Sciences Group Inc.).

For the RP2 (used for FEA) a complete segmentation of the

dental tissues (enamel, root and pulp chamber) and the supporting

dental tissues (periodontal ligament - PDL, trabecular and cortical

bone) was carried out (Figure S1A,B). To reduce the size of the

digital models for FEA, we cut the mandibles distally to the socket

of the lower first premolar and mesially to the socket of the lower

first molar. Consequently, we considered only the bone tissues

surrounding the RP2. For RP1, RM1 and RP1-RP2, which were

used to assess the occlusal contacts with RP2 (two-body

interactions), only the external surface of the teeth was segmented.

The final refinement of the digital models was carried out in

Rapidform XOR2 (INUS Technology, Inc., Seoul, Korea).

Besides cleaning processes and corrections of defects to create

fully closed surfaces, the digital models were optimized for

downstream Computer-Aided Engineering (CAE) applications.

Simulation of Tooth Wear
For the simulation of tooth wear for specimens S23 and S81 we

followed indications provided by Kullmer and colleagues [31]. As

a first step, there was need to perform a slight repositioning of the

crowns to match perfectly the individual occlusal pattern between

the antagonists before the experiment in the dental articulator.

Therefore we have moulded the original dentition using 3 M

ESPE Imprint (TradeMark) II Garant (TradeMark) Light Body

(Vinyl Polysiloxane Impression Material). Casts of the crowns were

reproduced with dental stone material (hydro-baseH, Dentona

AG). The dental stone casts were cut into isolated crowns for the

premolars and molars and along the midsagittal line for the

incisors and the canines. After that all crowns were mounted with

dental wax in a best-fit occlusal situation on ARUNDO-FLEX

2000 duett-plates (Baumann Dental GmbH) such as they are used

in dental laboratories. The best occlusal fitting was found

regarding the wear facet information incorporated in the crown

morphology. The restored dental arches of S23 and S81 were

setup in a dental articulator (PROTAR, KaVo Dental GmbH)

using geometry details (distances edge length of triangle between

midcondyle points and incisor point, distances edge length of

triangle between the M2 metaconid cusp tips and incisor point,

angle between both triangles) from the original jaws of the

specimens (Figure S2A,B). The attrition of the premolars was

carried out following the description in Kullmer et al. [31]. The

condyle boxes of the articulator were setup using the information

of the individual occlusal movements, which were extracted from

moving the specimen in occlusion in all possible directions starting

from maximum intercuspation during the repositioning of the

crowns, while the condyle boxes are open with no constraints.

Accordingly, both specimens (S23 and S81) got their individual

setup in the dental articulator (for more information about the

setup of the dental articulator see also [52,53]).

After the individual condyle constraints were set, most of the

crowns in the upper arch were removed to reduce the occlusal

contacts to the region of interest (RP1 and RP2; RP1, RP2 and

RM1) (Figure 6A). This procedure supported a rapid attrition on

the RP2 grinding the upper against the lower crowns.

The movable upper arm of the fully adjustable dental

articulator was moved in occlusion following the directions given

through the individual setup. The movements of the antagonists

towards each other produced considerable attrition on the dental

stone casts (Figure 6B), expressed in the change of crown

morphology and extension of occlusal contacts. The artificial

tooth wear was stopped when the protoconid tip was oblate,

showing distinctive enlarged and flattened wear facets for a new

FEA in the worn S23 and S81 RP2s (S23w and S81w,

respectively).

Finally, the isolated split-cast segments of RP1-RP2 and RP1-

RM1 crowns were removed and surface scanned using the optical

topometry system SMARTSCAN (Breuckmann GmbH) with

a resolution of 55 mm [54]. Polygonal surface models were

generated using OPTOCAT (Breuckmann GmbH). The complete

dental arches in maximum intercuspation were also surface

scanned to reference the orientation of the digital RP1-RP2 and

RP1-RM1 crowns to the articulator’s orientation.
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Loading Position
In order to recognize the contact areas on the RP2 during

maximum intercuspation contact with the antagonistic teeth, the

dental surface models of RP1-RM1 and RP1-RP2 of the six

specimens (S5, S23, S81, S126, S23w and S81w, respectively) were

imported into the Occlusal Fingerprint Analyser (OFA) software.

The software allows moving one model towards the antagonists

along a defined pathway in order to analyse the collision of crown

contacts. OFA software prevents the penetration of the models

into one another and detects the occlusal contacts through

collision detection, deflection and break free algorithms. The

colliding triangles of the models are automatically selected by the

software and highlighted in a user-defined colour (Figure 7A,B;

Video S1–S6).

With regard to the loading direction, for maximum intercuspa-

tion contact we can assume that a compressive force acts between

complementary wear facet pairs, which could ultimately be

represented as perpendicular loads to these facets [30,55–56]

(Figure 8).

Finite Element Mesh Feneration and FEA
The surface models were then imported into HyperWorks

Software (Altair Engineering, Inc.), where volumetric meshes (for

enamel, dentine, pulp, PDL, cortical and trabecular bone shown

in Figure S1C) were created using 10-nodes tetrahedral elements

(Table S1). For specimen S23w and S81w, the same volumetric

meshes of specimen S23 and S81 were used, except for the enamel

and the dentine. To include the new information of the artificially

worn occlusal surfaces, the RP2 digital crowns of S23w and S81w

were superimposed to the original RP2 crowns in Rapidform

XOR2, constraining the superimposition to the regions of the

crown unaffected by the wearing. Then, the original RP2 occlusal

surfaces of specimen S23 and S81 were substituted by the

artificially worn occlusal surfaces of specimen S23w and S81w,

respectively.

Information for material properties such as the elastic modulus

– E, and the Poisson’s ratio were collected from the literature [57–

61] and summarized in Table 1. All the biological materials

represented in the models were considered homogeneous, linearly

Figure 6. Cast of specimen S81 in the dental articulator (PROTAR, KaVo Dental GmbH). A, buccal view of the specimen during the artificial
attrition experiment of the RP2 based on the individual pattern of occlusal movements. B, occlusal view of specimen S81w RP1-RM1 crowns with
artificially enlarged wear facets.
doi:10.1371/journal.pone.0062263.g006

Figure 7. Collision detection for specimen S126 in the Occlusal Fingerprint Analyser (OFA) software. A, mesiolingual view during
maximum intercuspation between the lower right premolars and first molar (RP1-RM1) and the upper right premolars (RP1-RP2). B, the RP1-RP2 are
transparent to better show the collision (red areas) on the occlusal surface of the RP2. See also Video S4. B =buccal; D = distal; L = lingual; M=mesial.
doi:10.1371/journal.pone.0062263.g007
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Figure 8. Loading position and direction for specimen S23, S23w, S81, S81w, S5 and S126. For each lower right second premolar (RP2)
only the volumetric mesh of the enamel is displayed. The load (black arrows) was distributed proportionally according to the occlusal contact areas
detected in the Occlusal Fingerprint Analyser (OFA) software. D =distal; L = lingual; M=mesial.
doi:10.1371/journal.pone.0062263.g008
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elastic and isotropic, assumptions that are regularly applied with

simpler continuum mechanics models [62–66].

Boundary constraints were applied to the medial and distal cut

surfaces of the mandible section following indications provided by

Benazzi et al. [56]: the medial nodes were restrained only in x-axis

translation (linguo-buccally), while the distal nodes were restrained

both in the y- and z-axes (supero-inferiorly and medio-distally,

respectively). The load (uniform pressure) was distributed

proportionally according to the occlusal contact areas detected

in the OFA software (Figure 8) and was such that the magnitude of

the resultant vector was equal to 100 N. A large range of occlusal

loads have been proposed in the literature. Nonetheless, since we

are interested in the patterns of stress distribution rather than

predicting realistic loads that cause fractures of the tooth, the

magnitude of the occlusal load is not a crucial factor, since at each

material point of the model the stress is linearly proportional to the

magnitude of force applied [56,64].

The stress state patterns were qualitatively and quantitatively

compared according to the first maximum principal stresses

criterion for brittle materials [29,30,56,65,66], wherein the stresses

inform about tensile behaviour in specific sites of the volumetric

meshes.

Supporting Information

Figure S1 Basic steps to create a volumetric mesh for
specimen S126 (lower right second premolar - RP2). A
and B show dental tissues and supporting structures after

segmentation; PDL=periodontal ligament. C, the FE mesh

consisting of 840,455 10-noded tetrahedral elements. B = buccal;

D= distal; L = lingual; M=mesial.

(TIF)

Figure S2 Cast of specimen S23 mounted in the dental
articulator (PROTAR, KaVo Dental GmbH). In order to

perform artificial attrition, setup of the articulator condyle boxes

derived from the individual occlusal movements extracted from

the macrowear on the crowns, following Kullmer et al. [22]. A,

frontal view. B, right lateral view.

(TIF)

Table S1 Numbers of nodes and tetrahedral elements for each

specimen.

(DOC)

Video S1 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S23 applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)

Video S2 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S81 applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)

Video S3 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S5 applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)

Video S4 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S126 applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)

Video S5 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S23w applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)

Video S6 Simulation of the individual occlusal ‘‘power
stroke’’ of specimen S81w applying the Occlusal Finger-
print Analyser (OFA) software. The OFA calculates a relief-

guided pathway of antagonistic tooth rows from collision de-

tection, deflection and break-free algorithms for user-defined

timesteps. The contact areas of maximum intercuspation have

been chosen for applying loads in the FE models.

(MP4)
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Table 1. Elastic properties of dental and bone tissues.

Materials Eb (GPa) Poisson’s ratio References

Enamel 84.1 0.3 57

Dentine 18.6 0.31 58

Pulp 0.002 0.45 59

PDLa 0.0689 0.45 60

Alveolar bone 11.5 0.3 61

aPeriodontal ligament;
belastic modulus.
doi:10.1371/journal.pone.0062263.t001
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Subseries A: Physical Anthropology Vol. XII., Hermann Böhlaus Nachf.,
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