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A relativistic description of the Kapitza-Dirac effect in the so-called Bragg regime with two and three interacting
photons is presented by investigating both numerical and perturbative solutions of the Dirac equation in momen-
tum space. We demonstrate that spin-flips can be observed in the two-photon and the three-photon Kapitza-Dirac
effect for certain parameters. During the interaction with the laser field the electron’s spin is rotated, and we give
explicit expressions for the rotation axis and the rotation angle. The off-resonant Kapitza-Dirac effect, that is,
when the Bragg condition is not exactly fulfilled, is described by a generalized Rabi theory. We also analyze the
in-field quantum dynamics as obtained from the numerical solution of the Dirac equation.
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1. Introduction

The diffraction of electrons at a standing wave of light is re-
ferred to as the Kapitza-Dirac effect [} [2]]. It is the counterpart
process of the usual diffraction of light at a material grating.
The observation of the Kapitza-Dirac effect seemed to be fea-
sible with the advent of the laser [3 4] but its experimental
realization was refuted shortly after the claim of detection [5-
7]. The first observation of the Kapitza-Dirac effect in the
so-called Bragg regime was achieved by employing atoms
[8L19] in 1986 [[10] and two years later in the so-called diffrac-
tion regime [11]. The realization of the Kapitza-Dirac effect
with electrons was achieved in 1988 [12] in the diffraction
regime. The scattering of electrons in the Bragg regime was
demonstrated in a precise and sophisticated experimental setup
in 2001 [13,114]. Among all experiments this comes closest to
the diffraction process as proposed originally by Kapitza and
Dirac [1]].

The latter experiment was performed at nonrelativistic laser
intensities with a laser field parameter [[13)] & = eEy/(mcw) =
5 x 107% (with —e denoting the electron’s charge and m its
mass, laser electric field amplitude Ey and angular frequency
w, and the speed of light ¢), with nonrelativistic electron mo-
menta |p| = 0.04mc, and at nonrelativistic photon energies
& = 5x107% mc?, raising the question [[13] of how the Kapitza-
Dirac effect might be modified in the relativistic regime. Higher
intensities [16H18]] and shorter wavelengths [[19H21]] are in-
deed available nowadays, demanding a relativistic theory of
Kapitza-Dirac scattering within the framework of the Dirac
theory which also accounts for the electron’s spin degree of
freedom. Beside considerations of the Kapitza-Dirac effect
with adiabatic pulse turn-on [22]], two electrons [23}24], and
perturbative solutions [25H28]], relativistic investigations have
been described in [29 30] based on the Klein-Gordon equa-
tion and therefore neglecting the spin. Freimund and Batelaan
raised the question of whether the electron spin is affected in
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the Kapitza-Dirac effect, but found a vanishingly small spin-flip
probability in the investigated parameter regime by simulat-
ing the Bargmann-Michel-Telegdi equations [31]]. Another
derivation which was carried out by Rosenberg [32] solved the
Pauli equation perturbatively in a second-quantized field in the
diffraction regime and also found only tiny spin effects. The
impact of the electron’s spin has also been investigated with
respect to free-electron motion [33], bound-electron dynam-
ics [34], atomic photoionization [35], and Compton and Mott
[36] scattering in strong plane-wave laser fields. In addition
collapse and revival spin dynamics has been put forward in
strongly laser-driven electrons [37] and notable spin signatures
have been found in laser-induced ionization [38]]. Our recent
publication on the Kapitza-Dirac effect [39] solves the Dirac
equation numerically and perturbatively in the Bragg regime
and demonstrates pronounced spin dynamics in the Kapitza-
Dirac effect involving three photons. In the present paper,
we elaborate our theory in detail and discuss the possibility
of spin dynamics for Kapitza-Dirac scattering with only two
interacting photons.

This article is organized as follows. In Sec. 2] we specify
the Bragg and the diffraction regimes and characterize the inter-
action in the Bragg regime employing a classical picture. The
quantum equations of motions (namely, the Pauli and Dirac
equations) are considered in Sec.[3] where it is shown that for
the setup of the Kapitza-Dirac effect they take a particular sim-
ple form in momentum space. Based on these equations, we
study the Kapitza-Dirac effect with two interacting photons in
Sec. @l numerically and analytically and demonstrate the occur-
rence of spin flips at relativistic electron momenta. We show
that the diffraction probability is independent of the spin orien-
tation of the incident electron beam. The spin orientation of the
diffracted electrons is rotated as a result of the interaction with
the laser field. We also discuss the resonance peak structure
of the diffraction within a generalized Rabi theory. In Sec. [5}
we investigate the Kapitza-Dirac effect with three interacting
photons in close analogy to the two-photon case. We analyze
the in-field quantum dynamics of the Kapitza-Dirac effect and
we discuss the tilt of the axis about which the electron spin is
rotated.
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2. Semi-classical considerations

Depending on the parameters of the laser and the incident
electron, the scattering dynamics of the Kapitza-Dirac effect
happens in different regimes. Phenomenologically one refers
to the Bragg regime if the electron is scattered into a single
diffraction order and one refers to the diffraction regime if many
diffraction orders can be reached. Employing an argument
based on the time-energy uncertainty relation [14} [40] one
can show that if the interaction time of the electron with the
laser is short, the electron is diffracted into several diffraction
orders. Long interaction times, however, permit dynamics in
the Bragg regime [25]]. In the Bragg regime the electron can be
diffracted only if it fulfills the classical energy and momentum
conservation. This article focuses on the Kapitza-Dirac effect
in the Bragg regime.

The Kapitza-Dirac effect can be viewed as a scattering pro-
cess where the electron either absorbs or emits photons from
or into the counter-propagating laser beams. We denote the
number of absorbed photons from the left- (right-) traveling
laser beam by n; (n,). Negative values of n; or n, correspond to
photon emission of the electron into the left or the right laser
beam. Following this notion, classical momentum conservation
requires

Pout = Pin + nk—nik. (D

Note that Gaussian units are used in this article and we set
h = 1. Furthermore, energy conservation implies

E(Pou) = E(pin) + nyck + nick, 2

with p;, and poy denoting the electron’s momentum before and
after interaction with the laser, the electron’s kinetic energy
&(p), and the photon momentum k. For convenience, we
separate the electron’s momentum into components in the laser
propagation direction py, the laser polarization direction pg,
and the direction of the laser magnetic field pp (see Fig. [I).
Applying the nonrelativistic energy-momentum relation

2

&"(p) = 2. ©
m
the solution of Eq. (2)) with respect to py, yields
r rt
Prin = My umc, 4)
’ 2 n,—n;

whereas Eq. (2)) with the relativistic energy-momentum relation

E'(p) = \Jm2c* + 2p? 5)

yields

n, —n;
r _
Pijn = 3 k

n—n n+n \/k2 B m*c? + (Pfs,in)2 + (D)’
I, —my| 2

(6)
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Figure 1: (Color online) Setup of the two-photon and the three-
photon Kapitza-Dirac effects. If the electron is diffracted, it may
pick up two photon momenta or three photon momenta, respectively,
from the laser field. Directions of the electron beams are indicated by
dotted (two-photon Kapitza-Dirac effect) and dashed (three-photon
Kapitza-Dirac effect) lines. The gray panels emblematize screens,
which display the intensity of the scattered and unscattered electron
beams (colored bars), depending on the electron momentum in the
laser propagation direction. In both Kapitza-Dirac effects spin flips
may occur, indicated by the light red bar of the diffraction pattern
as compared to the dark blue bars of the unflipped electron beam
intensity. According to the considerations of Secs.[2]and[] the elec-
tron enters the laser almost perpendicular to the laser’s propagation
direction for the two-photon Kapitza-Dirac effect with spin-flip dy-
namics, implying ¢ = 90°. For the three-photon Kapitza-Dirac effect,
however, the energy-momentum conservation constraint (6) results in
relativistic momenta of the electron in the laser propagation direction
such that typically ¢ < 90°.

Note that the solution (6) is real-valued and finite only if n, and
n; are non-zero and have opposite signs. This means that the
Kapitza-Dirac effect in the Bragg regime requires that at least
one photon is absorbed from one laser beam and at least one
photon is emitted into the counterpropagating laser beam. For
n,+n; = 0 the electron’s energy @ is conserved and, therefore,
the scattering is elastic; otherwise it is inelastic.

Equation (@) as well as Eq. (6) yield pzréfn = —p',:,ri/nr for
elastic electron scattering corresponding to “The reflection of
electrons from standing light waves” proposed by Kapitza and
Dirac [1]]. Energy-momentum conservation can be illustrated
in an energy-momentum diagram as shown in Fig. 2[a) for the
elastic two-photon Kapitza-Dirac effect.

In the case of the three-photon Kapitza-Dirac effect, two
laser photons are absorbed (n, = 2) and one is emitted
(n; = —1). The energy-momentum diagram of this process
is sketched in Fig. 2(b). Processes with n, = —1 and n; = 2,
n, =-2andn; = 1, orn, = 1 and n; = -2 are also possible
but not fundamentally different from the Kapitza-Dirac effect
with n, = 2 and n; = —1 and therefore not considered here.
For such an inelastic process, energy is transferred from the
laser field to the electron. This energy transfer is indicated by
a dashed line in Fig.[2(b). Approaching the limit k — 0, the
dashed line in Fig. [2[b) is shifted downwards while preserving
its slope until it becomes a tangent of the energy hyperbola
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Figure 2: Sketch of the energy and momentum conservation in the
Kapitza-Dirac effect. The electron must reside on its relativistic
energy-momentum relation (3) (solid hyperbola) before as well as
after the interaction, and the laser can transfer only energy and mo-
mentum quanta which fulfill 4& = ck (diagonal arrows). In the
two-photon Kapitza-Dirac effect (a), one photon is absorbed and one
photon is emitted, whereas in the three-photon Kapitza-Dirac effect
(b) two photons are absorbed and one photon is emitted. In the lat-
ter process the energy of the electron changes during diffraction as
indicated by the nonhorizontal dashed line.

(). Consequently, energy-momentum conservation requires
a non-vanishing initial momentum of the electron in the laser
propagation direction even for small photon momenta. Further-
more, the energy conservation (2) enforces that at least one of
the momenta k, py, pg, or pg is relativistic, i. e., of the order of
or larger than mc. Consequently, no nonrelativistic limit of (6)
exists in this case. For example, the momenta @) and (6 do
not converge even for small laser photon momenta k. Rather

we find with n, = 2 and n; = —1 the differing limiting values
. mc
fim P = 3 7
and

m2c? + p2 + p?
limpt, = | PE"PB 7b
lim pl;, = g (7b)

For p; ;, to be small compared to mc the number of interact-
ing photons has to go to infinity such that |n, — n;| > 1 and
|n, + ny| = 1. In this case the slope of the energy-momentum
transfer (dashed lines in Fig. [2)) goes to zero. Therefore, the

touching point of the corresponding tangent that results in the
limit & — 0 lies at small electron momenta in laser propagation
direction for Kapitza-Dirac scattering with a high number of
interacting photons.

3. Quantum dynamics in momentum
space

In order to study spin effects and the quantum dynamics of the
two-photon and three-photon Kapitza-Dirac effects in a rela-
tivistic setting we will solve the time-dependent Dirac equation.
For two-photon interactions we will also utilize the nonrela-
tivistic Pauli equation given that relativistic parameters are
not mandatory in this case. As we will show in this section,
the Pauli equation and the Dirac equation for the setup of the
Kapitza-Dirac effect can be reduced to a system of ordinary
differential equations by transforming them into momentum
space

3.1. Laser setup

For the Kapitza-Dirac effect we consider two counterpropa-
gating linearly polarized lasers of equal intensity and angular
frequency w. The vector potential of this laser setup is given
by

Ax, 1) = fi(t) cos(k - x) sin(wt) , (8)

where we have introduced the temporal envelope function

sin® 2L if 0 <t < AT,
. R 1 ifAT <t <T —AT
A(f) = Apax X == 9
(0= Anmax X4 G2 1D T AT <t <T, ©)
0 else,

which allows for a smooth turn-on and turn-off of the laser
field. The variables T and AT denote the total interaction time
and the time of turn-on and turn-off. After turn-on and before
turn-off, the electric and magnetic amplitudes of the oscillating
electromagnetic fields are given by

E = kA, (10)
B=—kxApn. (11)

For convenience, we will choose our coordinate system such
that the orthogonal vectors k, I§, and E point along the x, y,
and z directions. In the following all vector quantities will
be projected in the directions of k, E, and B as indicated
by the indices k, E, and B, respectively. For simplicity, we
omit the index E for the vector potential, because the vector
Hotentieil always points in the electric field direction, that is,
A(t) = Ag(2).



3.2. The Pauli equation

The Pauli equation that governs the quantum motion of a spin-
1/2 particle of mass m and charge ¢ is given by

Wix, 1) = —( v —A(x t)) wx, t)—zia-B(x, 1) (x, 1)

mc (12)
with the Pauli matrices o = (071, 02,03)" = (0%, 05, 0E)"
and B(x,t) = V X A(x, t). Taking advantage of the sinusoidal
spatial periodicity of the vector potential A(x,?), we expand
the wave function

Y0 = i) (13)
g

into momentum eigenfunctions of the free Pauli Hamiltonian

Vi) = [ pre (14)
71'

with £ € {1, |}, the two spinor basis functions

o)) o

and the momentum p, = p + nk. Inserting the ansatz (13))
into the Pauli equation (I2)) and projecting onto the basis ele-
ments (T4) from the left-hand side yields the Pauli equation in
momentum space

ién(t) =
(p + nk)’ PAe?
——a+ sin“(wi) [cu—2(1) + 2¢,(2) + cpaa(D)]
2m. 8mc?
LIS A 1~ ionk x AWs] 1),

one{l,~1}
(16)

where the vectors ¢, (1) = (cl(t), cfl(t))T and the 2 X 2 identity
matrix 1 have been introduced.

3.3. The Dirac equation

The Dirac equation is a relativistic generalization of the non-
relativistic Pauli equation. It is given by

i(x, 1) = ca - (—iV - %]A(x, t)) Y(x, 1) + mczﬁ vix,t) (17)

with @ = (@1, @2, @3)" and B denoting the Dirac matrices [41].
We transform the Dirac equation into momentum space
in close analogy to the momentum space transformation of the
Pauli equation (T6). For this purpose, the basis elements (T4)
of the wave function (T3) are replaced by

) = | e (18)
2r

The bi-spinors u), with y € {+ T,- T,+ |,— |} are explicitly

given by
&y +mc? ( X¢ )
+{ n
u, = T Ac o-cpy (193)
28" En -HfleXg
and
O-CPn
u;( - &y + mc? ( &, +mc2/‘f/{) (19b)
28, X

The basis functions w,,[(x) are simultaneously eigenfunctions
of the free time-independent Dirac equation with energy eigen-
value +&, defined as
&y = Jmc* + 2p? (20)

and eigenfunctions of the momentum operator with momen-
tum eigenvalue p,. Furthermore, tjf,fT(x) and l//,fl(x) are eigen-
functions of the Foldy-Wouthuysen spin operator along the £
direction with eigenvalues 1/2 and —1/2 [42H45]].

Inserting the ansatz (I3) with the basis elements (I9) in
the Dirac equation (I2) and projecting with these from the
left-hand side yields the Dirac equation in momentum space

lcn(t) = Snﬂcn(t) - %(a)t) (Ln,n—lcn—l([) + Ln,n+lcn+1(t)) 5
2n
with the vectors
en®) = (1), e 0, ;1 (@), ¢ ()T (22)

and the coupling matrices L,,» whose elements are defined as

L =u (e A0)ul,. (23)

3.4. Numerical procedure

The absolute square values of the expansion coefficients c,,(t)
in represent the probability of finding the electron in a
particular free particle quantum state. The state that is repre-
sented by c; ¢ (1) has definite spin that is encoded in the index
{ and also has a definite momentum p,, = p + nk. Thus, the
index n counts the number of laser photon momenta relative to
the reference momentum p. For convenience, we use the term

“mode n” for these different electron momenta.

In numerical simulations, we start from an initial quantum
state with definite momentum p and spin-up polarization. This
means

ifn=0andy=+Tory="1,
O else.

The case y = + T applies for the Dirac equation, while y = 7
is for the Pauli equation. The initial electron momentum p, the
laser intensity, and the laser frequency are chosen to meet the
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Figure 3: Occupation probabilities as a function of the total interac-
tion time T for the two-photon Kapitza-Dirac effect calculated by em-
ploying the Dirac equation (crosses and dots) and the Pauli equa-
tion (T6) (solid and dashed lines). The electron enters the laser field
with a momentum component of pr = —12.5keV/c = 2.4 X 10~%mc
along the laser electric field direction and interacts with the stand-
ing laser field of peak intensity 5 x 10?! W/cm? (corresponding to
eApy = 8.6 x 1073 mc?) for each laser beam and a photon energy
of 12.5keV (corresponding to a laser wave length of 4 = 0.1 nm).
The probability that the electron is diffracted from mode 0 to mode 2
oscillates in Rabi cycles as a function of the total interaction time
T. The laser field is modulated via the envelope function (@) with a
turn-on and turn-off time of ten laser periods.

nonrelativistic Bragg condition (@) or its relativistic generaliza-
tion (6) depending on whether the Pauli equation or the Dirac
equation is solved numerically. The numerical solution of the
differential equations (I6) and (Z1) is obtained by employing
a Crank-Nicholson scheme [46]. Equations (T6) and (1) cou-
ple an infinite number of modes. In numerical simulations,
however, these systems are truncated to a finite number of
modes, —fmux < 1 < Nmax With nyy large enough such that
the physical results are independent of n,,x. The number of
included modes depends on the laser parameters and ranges
typically from one dozen to several dozens. The duration of
the turn-on and turn-off phases AT is ten laser periods for all
simulations presented in this article unless another turn-on and
turn-off time is indicated.

Note that our approach to solving the Dirac equation is
tailored for interactions with monochromatic laser fields. More
general approaches include solving the Dirac equation via a
Fourier transform split-operator method [47]], in particular by
employing geometric algebra [48]] and by making use of a
graphics processing unit [49]. Other methods employ spherical
harmonics as basis functions and Runge-Kautta integration [50]
or are based on the method of characteristics [51]].

4. Two-photon Kapitza-Dirac effect

4.1. Numerical results

In the electron scattering dynamics as described by Kapitza
and Dirac [[1] one photon is absorbed from the laser field and
one is emitted into the laser field, n, = 1 and n; = —1 in our
notation. For realizing this effect the parameters of the laser as

well as of the incident electron have to be chosen such that the
quantum dynamics is in the Bragg regime [40]]. For n, + n; = 0
the nonrelativistic Bragg condition (@) as well as the relativistic
Bragg condition (6) require that the electron enters the laser
beam with p; = —k. For the numerical simulations shown in
Fig. We choose p = —ke; + kep with k = 2.4 x 10~%mc and
eAmax = 8.6 X 1073mc?.

Figure [3]shows the quantum state after turn-off of the laser
for the two-photon Kapitza-Dirac effect for different total in-
teraction times T as calculated by solving the Dirac and the
Pauli equation numerically. As all parameters are in the nonrel-
ativistic regime the Dirac equation and the Pauli equation give
qualitatively and quantitatively the same results. The quan-
tum dynamics exhibits the well-known Rabi oscillations of
the diffraction probability [40]] from mode O with momentum
p = —key. + keg to mode 2 with momentum p = +ke; + keg, in
the form

lesT(T)P = cos? (%) , (25a)

3T (T)P = sin® (%) ) (25b)

Here, Qg denotes the Rabi frequency. The occupation prob-
ability of all other modes is vanishingly small, in particular,
ley“(T)I? < 107°. This means that no spin flip occurs during
two-photon Kapitza-Dirac scattering. From a naive point of
view the vanishing spin-flip probability might be surprising,
because one might expect a precession of the electron spin in
the magnetic field of the external laser field. The question of
electron spin precession has already been investigated based
on nonrelativistic classical equations of motion [31] but no
significant spin effects could be found. In Sec. 4.4 however,
we will show that spin-flips are possible in the two-photon
Kapitza-Dirac effect for certain relativistic parameter settings.

4.2. Perturbation theory

In the following we will complement our numerical findings
with analytical results obtained via time-dependent perturba-
tion theory. Time-dependent perturbation theory for the Dirac
equation (2I)) will allow us to calculate analytical expressions
for the Rabi frequency and to derive conditions that permit
spin-flip dynamics in the two-photon Kapitza-Dirac effect. The
perturbative solution also allows for deduction of a rotation of
the electron spin during diffraction. As the initial condition is
given by (24) and the electron momentum is changed by two
photon momenta our aim is to approximate the time evolution
operator Us (¢, 0) that maps co(0) to c(¢), viz.,

c2(t) = Uz o(t,0)co(0) . (26)
Since the Dirac equation couples next neighboring

modes only, the lowest non-vanishing contribution to U, (%, 0)
is of second order in time-dependent perturbation theory. The



general second order propagator for a time-dependent Hamil-
tonian H(¢) reads [52]

Una(1,0) =

1 t 5}
i—zfodlzfo dty Uo(t, 1) V() Uo(ta, 1)V (1) Uo(1,0) . (27)

The symbol Uy(t, 0) denotes the free propagator Uy(t,0) =

e o’ with the time-independent field-free Hamiltonian
Ho:1,1
Hy = Hop (28)
Ho,-1-1
with Ho,p = E,60., and the time-dependent interaction

Hamiltonian V(t) = H(¢) — Hy. For the Dirac equation in mo-
mentum space (21), the free propagator reads explicitly

0 exp(iE,)1 | %
(29)

J

Unan(t,0) = o iEt Su (exp( iE,01 0 )

The corresponding interaction Hamiltonian reads

g sin(wr)

Vap(t) = ——

(La,a—lfsa,b+1 + La,a+16a,b—1) . (30)

Inserting these expressions into (27) yields

! "2 ~ sin(wt
Una2,0(1,0) = —f dlzf dfleﬂSZB(t*tZ)quLzl
0 0

. 1 t .
x gi€B-m 4T 51n2(a) l)Ll pe &P (3]

In order to ease notations, it will be useful to split the 4 x 4
matrices L, ,, and Upg. (%, 0) into blocks of 2 x 2 matrices,
viz.,

Liw Liw) b (L L
Lo = (L_, ) i = G2

nn n,n n.n’ n,n’

and

(33)

(t,0) U7, ,t0)

U++ 0 U+_ ,0
Unazo(,0) = ( 42020 Unaa ! ))

nd20 nd;2,0

Explicit expressions for the matrices L"b, are given in the Ap-

pendix [Al With these definitions the sub propagator ur 420 0)
in the space of positive-energy free-particle states reads for
times after the turn-on phase and before the turn-off phase
UT =0and0<t<T)

U;(;;Z,O(t’ 0) = q L;YLTB]\ dlzf dt; sin(wt,) sm((utl)v+(t bh,h) — L;I f dtzf dzy sin(wt,) sin(wt))v™ (¢, 1, 11)
(34)
where we have introduced the two complex phases
V(.12 1) = exp|—i (Ext + AETS 0 + 4ETTH)] (35)
v (t, 12, 11) = exp| =i (Ext + AET5 0 + 4E 1)) - (36)

Here, ASan, is an abbreviation for the energy difference ASZ"H,

= sign(a)&, —

sign(b)E,, , where the signum of the upper indices is

sign(+) = 1 and sign(-) = —1. Performing the first integral in (34) we find

! 153
f dr, f dt; sin(wty) sin(wt) v (¢, 1, 1)) =
0 0

l i& 1 : ++ H ++ l
— e ot dt —1(A50‘2+2w)t2 _ e—1(A8112+w)t2 _
4 *lagg + ( ) A8 —w

i .
- s
0.1 +w

The integral may show linear or oscillating behavior de-
pending on the laser parameters and the initial electron mo-
mentum p. For transitions from mode 0 to mode 2 the absolute
value of the coefficient c,(f) must grow linearly in ¢ within
perturbation theory. The expression and therefore the

( e—iAS;}rz _ e—i(A8f7§+w)t2)

,i(AST;—w)tz) + ( emiE ;20 _ ei(ASI’;w)tz)]' (37)

i
HEF _ )
ASO’I w

(

propagator (34)) feature terms growing linearly in # if and only
if at least one of the exponents on the right-hand side of (37) is
zero. Taking into account |4E; 7| < [n — n’|w, this leads us to
the unique resonance condition ABS; = 0 which is equivalent
to the classical energy-momentum conservation conditions (I))



and (]Z[) with p;, = pand n, = 1 and n; = —1. The second
integral in (34) leads to the same resonance condition. Thus,

on resonance the propagator U;;z o(#,0) reads in leading order
int

i 2
t
Uit ot,0) = f S (PLYILY; + U L3LT)  (38)

with the coefficients

I I

= , 39
18 —w A& +w (%

S 1

Fme— e (39b)

4.3. The relativistic Rabi frequency

Employing the explicit form of the matrices L"b, in Egs. (A3)
and (A4) and the propagator (38) we calculate the diffrac-
tion probability |c2T(z‘)|2 + |c2l(z‘)|2 which equals with ¢ () =

(e @, et )T
ST OF + e3P OF = (0 s ()

= c3(0) Ui, o(1,0) Up (1, 0)c3(0) . (40)

Expanding U*!, ((¢,0) from Eq. (38) in the momenta &, pg,
and pg yields

s 20 A2 —i&yt 2 2
ig°t A e 2 5
L :&2,0(1‘, O) = __q e |( 2C2 Py pE] 1

16 mc? m?c?
ik i3k
+ IKPp + 19KPE

OE+ T +O(3, i, py) . (41)

Taking advantage of the normalization of the initial state, i.e.,
TP +1c; (0)P = 1, we finally get with (@0) and (@T)

qz £ )2

8k2mc? (42)

ST + et o) = (

in leading order in k, pp, and pg. For times of the order of
8k>mc? /(q* E?) or larger we leave the domain where our time-
dependent perturbation theory is valid. Thus, the result (#2)
is correct for times much shorter than 8k*mc?/(¢*E?) only.
Making the ansatz

leg T = cos? (QTRt) , (43a)
ST O + I3t 0 = (%’”) (43b)

for the long-time behavior, expanding this ansatz for short
times, and comparing it to (#2)) gives the known Rabi frequency
of the two-photon Kapitza Dirac effect [2]

q2 EZ

Qra= L=
R2 = Sk2me?

(44)
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Figure 4: The relativistic Rabi frequency Qr of the two-photon
Kapitza-Dirac effect normalized to the nonrelativistic Rabi frequency
Qg in Eq. @). The applied parameters correspond to a photon
energy of 12.5keV. The gray filled circles indicate momenta for which
the condition (@9) is fulfilled and full spin flips can be observed. These
momenta can be approximated by Eq. (solid black line).
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Figure 5: The off-resonant scattering probability P,(T) = |c2T(T)|2
|c2 YT)? at time T = n/Qg (half a Rabi cycle on resonance) and
maximal scattering probability maximized over the total interaction
time Pymax = maxys Po(7T”) as functions of the relative detuning
(w — w*)/w*. Dots and squares represent numerical data while lines
are obtained via a fit to @3) and (@6€) yielding b = 29.2 for the fitting
parameter.

The expression [@4)) for the Rabi frequency which is based
on the expansion (#T)) is valid only in the nonrelativistic domain.
The Rabi frequency for relativistic momenta k, pg, and pg can
be calculated, however, with the help of computer algebra and
numerical methods in a similar fashion as (@4) by evaluating
(@0) and employing the fully relativistic propagator (38). The
relativistic Rabi frequency is shown Fig. [d] Generally the
relativistic Rabi frequency is lower than the nonrelativistic
result (@4). For the parameters as applied in the setup of Fig.[3]
the theoretical relativistic Rabi frequency is Qg = 7.241 X
10" Hz, while numerically we obtain Q = 7.237 x 10" Hz,
which is in a fair agreement with the theoretical prediction.

Let k* denote an electron momentum and a photon mo-



mentum that fulfill the Bragg condition (6). When the Bragg
condition (6) is not exactly fulfilled by shifting the photon
momentum k from k*, electrons scatter off-resonantly, leading
to a modification of the Rabi frequency and a reduction of the
maximal scattering probability. In the resonant two-photon
Kapitza-Dirac effect only modes 0 and 2 are populated. Thus,
the quantum system behaves similarly to an effective two-level
system. This leads us to the off-resonant generalization

Q (T
R R = i () @
of (23b) with the off-resonant Rabi frequency [53]]
3 5 (LL) — 0.)*)2
Q=42+ — (46)

w = ke, w* = k¥c, and the parameter b that accounts for the
fact that the two-photon Kapitza-Dirac effect is not a pure
two-level system. Numerical simulations indicate that the
parameter b varies with the laser frequency and the electron
momentum and has the value b = 29.2 for pp = 0 and pg =
1.00012mc and eAmax = 2.2 x 1072mc?. The off-resonant
scattering probability P,(T) = |C;T(T)|2 + Ic;'l(T)I2 attime T =
7/ Qg (half a Rabi cycle on resonance) and maximal scattering
probability maximized over the total interaction time P max =
maxy P>(T") obtained via numerical simulations are shown in
Fig.[5as functions of the relative detuning (w — w*)/w*. These
numerical results can be fitted to {3)) and (46)), respectively,
leading to the value b = 29.2.

4.4. Spin flips

The propagator (@I} features spin-preserving terms (propor-
tional to 1) and spin-flipping terms (proportional to og and
o). If the condition

1 5

me® = 2py = 5pp =0 (47)
is met, the propagator (1)) predicts that spin-preserving tran-
sitions are totally suppressed; thus, a spin-flipping dynamics
may become observable in the two-photon Kapitza-Dirac ef-
fect. However, this condition corresponds to an ellipse with
major axis pg = V2mc and minor axis pg = V2/5mc and,
therefore, we are beyond the validity of the nonrelativistic
propagator (41). Although Eq. is not a valid condition for
spin-flipping transitions its derivation gives us a hint as to how
to calculate the proper condition. In analogy to (@) one can
expand the relativistic propagator (38)) as a superposition of
the matrices 1, o, o g, and og. With the help of the Frobenius
inner product one can write

ot.0) = tr (]1T AN G 0)) M+t (a'k" ot 0)) Loy
+tr(ag ;;;2,0(;,0)) %0'B+tr(0'2 ;;;2,0@,0)) log. (48)

Thus, spin-preserving transitions are expected to be suppressed
for

tr (17 U,,0(6,0)) = 0. (49)
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Figure 6: The two-photon Kapitza-Dirac effect with electron mo-
menta chosen such that the spin-flip condition is fulfilled simulated by
employing the Dirac equation (black solid and dashed lines) and
the Pauli equation (T6) (gray solid and dashed lines). The electron
interacts with a standing laser field of peak intensity 3 x 10%> W/cm?
(corresponding to €A, = 2.2 x 10"2mc?) for each beam and pho-
ton energy of 12.5keV. The electron is diffracted to mode 2, as in
Fig.[3] However, because the initial electron momentum (pp = 0,
pe = 1.00012mc) fulfills the spin-flip condition the electron spin
changes its spin orientation during the diffraction process.

Again this condition can be evaluated with the help of computer
algebra and numerical methods. The result is indicated in Fig.[4]
by gray filled circles. These points lie approximately on the
hyperbola (black solid line in Fig.

m*c* + pi—pr =0, (50)

which can be seen as the fully relativistic version of the condi-
tion 7).

Employing time-dependent perturbation theory for the Pauli
equation one can show that m*c* — p2. = 0 is the corresponding
condition for spin flips in the two-photon Kapitza-Dirac effect
under the dynamics of the Pauli equation. Thus, the parameter
setting pp = 0 and pg = mc fulfills the conditions for spin-
flipping electron scattering under the dynamics of the Dirac
equation as well as under the Pauli equation, as demonstrated
in Fig.[6] In contrast to the setting in Fig.[3] the Pauli equa-
tion and the Dirac equation yield different Rabi frequencies
due to the relativistic electron momenta, for which the Pauli
equation is actually not applicable. The hyperbola (50) lies
approximately in a local minimum of the Rabi frequency (see
Fig.[). The Rabi frequency along the gray filled dots in Fig. 4]
is shown in Fig. [/} For photon momenta k that are small com-
pared to mc the Rabi frequency drops down by two orders of
magnitude compared to g, which is a consequence of the
relative strengths of the spin-preserving and the spin-flipping
terms in (41).

Because the basis functions (I8 are eigenfunctions of the
Foldy-Wouthuysen spin operator in the laser’s polarization
direction the coefficients c;T(t) and c;l(t) give immediately
the spin of the diffracted beam if one chooses the electric field
direction as quantization axis. Perturbation theory allows us
also to calculate the orientation of the spin in the diffracted
part of the electron beam. More precisely, we ask the question:
What is the expectation value of the spin s, in the scattered
beam if the beam of incident electrons has spin sj,?
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Figure 7: Relativistic Rabi frequency of the two-photon Kapitza-
Dirac effect at momenta for which full spin flips are possible (that
means along the gray filled circles in Fig. [d).

The electron spin is determined by applying the Foldy-
Wouthuysen spin operator to the quantum state. In our
momentum-space representation the expectation value of the
Foldy-Wouthuysen spin operator is

1
s =5 D o) Ze,), (51)
with X = (2}, 2, 23)" and
g 0
3= (0 m) ) (52)

The incident electron beam has well-defined momentum but
may have arbitrary spin orientation; thus it can be expressed
as a superposition of two positive-energy states with the same
momentum. Introducing the Bloch angles 6 and ¢ we may
write the initial state as

CQI(O) cos(6/2)

+ . i

co(0) = ESTES; _ sm(@(/)Z)e 53)
() 0

and ¢,(0) = (0,0,0,0)" for all n # 0. The spin expectation
value of the initial quantum state is

sin(6) cos(¢)
sin(0) sin(¢) | . (54)
cos(6)

Sin = 3

The spin expectation value of the diffracted part is

_Lax®)'Ze )
72w | ©Y

Employing the time evolution operator (38) we find
165 OU343,09 Ui o5 ©)

2 SHOUT U, 050

(56)

Sout =

The time evolution operator (38) is up to a multiplicative factor
a unitary 2 X 2 matrix and, therefore, may be witten as

Uil = VP [cos(%)]l —isin(%)nr . 0'] (57)

with the real-valued parameters y, n;, and P which can be
determined via equating coefficients in (7)) and (38). The
expression in the square brackets is the SU(2) representation of
a rotation around the rotation axis given by the unit vector n,
and the rotation angle y. Thus, the electron’s spin orientation
after diffraction s, results from a rotation of s;, around the
axis n, by the angle vy.

For nonrelativistic electron momenta the parameters of this
rotation can be uniquely identified by equating coefficients in
(®7) and @T). We find the rotation axis

1 0
n=—-————|3pk (58)

,[9p% +pé PB
l9.,,2 2
kA[9p% + Py

2 2
2m?c? — py — Spy,

and the rotation angle

y = 2arctan (59)

Thus, for nonrelativistic momenta k, pg, and pp only very
small spin rotations may be observed in the two-photon
Kapitza-Dirac effect.

5. Three-photon Kapitza-Dirac effect

5.1. Numerical results

According to the semi-classical considerations in Sec. 2} two
photons are absorbed from the laser field and one photon is
emitted into the laser field in the three-photon Kapitza-Dirac

1.0
0.8F . |C5T|2

= T2

=06} +

B8 A |C3 |

8 +12

S 0.4f v les7l

o
02l | |C;T|2 + |c;rl|2
0.0 =

"0 100 200 300 400 500 600
T (laser periods)

Figure 8: The three-photon Kapitza-Dirac effect simulated by em-
ploying the Dirac equation for one half of a Rabi cycle. The
electron with initial momentum 176keV = 0.347 mc in the laser
propagation direction (dashed line) is diffracted to the final momen-
tum 177keV = 0.365 mc in the laser propagation direction (solid
line) by its interaction with a standing light wave with peak intensity
2 x 102W/cm? (corresponding to eA o = 0.21mc?) for each beam
and photon momentum 3.1keV/c = 6.1 X 1073 mc. The electron mo-
mentum in the laser polarization direction is 1.2keV = 2.4 x 1073 mc.
The probability of the diffracted electron thereby splits up into a spin-
flipped part (downward triangles) and a spin-preserving part (upward
triangles). Data adopted from [39].
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Figure 9: (Color online) The in-field quantum dynamics of the three-photon Kapitza-Dirac effect. The graph shows the occupation probability
of the unscattered beam |co|? and of the diffracted beam |c3|?, and the remaining occupation probability 1 — |co|* — |c3/|* of all other modes. The
occupation probabilities oscillate in the laser field with twice the laser frequency. The laser field is shaped by a turn-on envelope of ten laser
cycles (left part of the plot) followed by a period of 678 laser cycles with constant laser intensity (center part of the plot) and a turn-off envelope
of ten laser cycles (right part of the plot); see (9). When the laser is at maximal intensity the probability of finding the electron at a certain
momentum is distributed over the neighboring modes of the modes 0 and 3. After the final turn-off, however, only the modes 0 and 3 are
occupied. The relative occupation of modes 0 and 3 depends on the total interaction time T'; see Fig.[§] Here T has been chosen such that

leo(T)2 = 0 and |e3(T)P? ~ 1.

effect, corresponding to n, = 2 and n; = —1. This partic-
ular Kapitza-Dirac effect has been examined in our recent
publication [39] where we demonstrated that explicit spin dy-
namics can be observed depending on the electron’s and the
laser’s parameters. Here we will investigate the three-photon
Kapitza-Dirac effect in more detail, analyzing, for example, the
in-field dynamics, conditions for full spin flips, and the Rabi
frequency at relativistic electron momenta. For the readers’
convenience we show in Fig.[8]the time evolution of the occupa-
tion |ci(t)|2 governed by the Dirac equation in momentum space
(21)) for the parameters that have also been considered in [39].
The parameters of the simulation are a photon momentum of
k = 6.1x 103 mc, an electron momentum of py = 2.4x 10> mc
in the laser polarization direction, an electron momentum of
pr = 0.347 mc in the laser propagation direction and a field
amplitude of eAp, = 0.21mc?. Starting from the initial condi-
tion the quantum dynamics features Rabi oscillations in
the form

6 (D = cos® (%) L 60

. QpT
NP + 1HT)P = sin? (%

) , (60b)

similarly to the two-photon Kapitza-Dirac effect. However, a
fraction of 0.33 of the diffracted electrons have flipped their

J

spin with respect to the quantization axis in the laser polariza-
tion direction.

In contrast to the quantum state after the interaction with
the laser (shown in Fig. [§), also the neighboring modes of
the modes 0 and 3 are occupied during the in-field quantum
dynamics; see Fig.[9] During the turn-on phase the quantum
state populates the neighboring modes of mode O and in the
following interaction with the laser at constant intensity mode 3
gets partly occupied. After turn-off, however, only the modes 0
and 3 have a significant occupation probability and all other
occupation probabilities vanish.

5.2. Perturbation theory

In this section we derive a perturbative short-time solution of
the three-photon Kapitza-Dirac effect, for obtaining analytic
expressions for the Rabi frequency and the electron spin-flip
probability, as in the two-photon Kapitza-Dirac effect. Anal-
ogously to the two-photon Kapitza-Dirac effect, we want to
approximate the propagator Us; (#, 0), which maps the initial
quantum state cy(0) to the final quantum state by c3(f) by

c3(t) = Usp(t,0)co(0) . (61)

Since the Dirac equation contains only couplings to the next-
neighboring modes, the lowest-order perturbative solution is
of third order and reads

1 ! 13 153
Urd(l,o):ijj(;d%j(; dlzj(; dr Uo(t, 3)V(t3)Uo(t3, 12) V(1) U (t2, 1) V(1) Uo (21, 0) . (62)

Utilizing the explicit form of the free propagator (29) and the interaction Hamiltonian (30) in momentum space yields the

time-dependent perturbation theory propagator



11

3 15 13 153
1 . . .
Unaiso(t, 0) = %L;;L;mg f drs f dty f dty sin(wts) sin(wra) sin(wt v @, 3, 1, 1)
0 0 0

ig®
8

8

1CI
8

with the phases

v (1,13, 10,11) =
exp|—i (Est + 4E551 + A + 4EH)| . (64)

where the upper indices a and b take the values + and —. Anal-
ogously to Sec.[.2] the integrand of the time integral

/ f3 fs
f ds; f dr, f d#y sin(wtz) sin(wt,) sin(wt; )Vab(l, t3,t,1)
0 0 0

(65)
also contains oscillating terms which become constant if the
resonance condition of the three-photon Kapitza-Dirac effect
&3 — Ep = w is met. Accounting only for the terms which grow
linearly in time yields the propagator

Urtfao(t’ 0) =
(_q6_34t) e—l&t (l++L++L++L+B + I +L§,5LZ{LI6
+ LIS + L L LG ) . (66)
with the coefficients
1 1 N 1 1
- wdESS  AE + w AESS
1 1
AE”’ + wAE”’ + 2w

lab —
b
AE]

(67)

5.3. The relativistic Rabi frequency
An expansion of the propagator U %; (¢,0) in Eq. (66) with
respect to the momenta k, pp and pg yields
Ural3,0(1,0) =
Ot Apx €7 (SpE 3-2V2

—1 —ikop—1i

kPBU'k]
V2

+ 0<k3,pi~,p33>. (68)

Evaluating |c;r T + |c L(H) in analogy to [@0) with (61) and
(68) yields the short—time diffraction probablhty

48 m2c* mc

ST OF + et 0 =

2 QB 25 5 o, A
z(m) SR (2R 5] @)

! 13 1
+—L3, L LT L dny f(; dr, L dt; sin(wt3) sin(wty) sin(wt) v (¢, 13, 12, 1)
iq3 - —+ ' " " . : : =
+ —L3,2L2‘1L1’0 f d[3 f dt2 f dtl sm(wt3) sm(a)t2) sm(a)tl)v (t, 13,1, [1)

L§2L5]L10 f ds; f dr, f dt; sin(wt3) sin(wt,) sin(wty v (t, 13,1, 1), (63)

(

By comparing this probability with the analogous short-time
expansion of the ansatz (43)), one finds the Rabi frequency

2 2
QR_QR3\/—p—E+1+ 3-2v2) P a0
m=c

with the Rabi frequency

q3 E3

Qp3 = ————.
R am3esk?

(71)

The expression (70) holds only for small k, pg, and pg. How-
ever, one may evaluate |c3T(z‘)|2 + Ic3l(t)|2 with the exact rel-
ativistic propagator (66), which is shown in Fig. [I0] The
common property of the Rabi frequencies Qg , and Q3 is that
both hold at the origin pg = pg = 0 of the pg-pg plane. The
difference between the two is that the two-photon Kapitza-
Dirac effect shows no spin flip for pr = pp = 0 and the Rabi
frequency is maximal for these momenta. In the three-photon
Kapitza-Dirac effect py = pp = 0 implies a full spin-flip posi-
tion (see the next section) and the Rabi frequency has a saddle
point. For the parameters which are used in Fig. [§ this Rabi
frequency evaluates to Qg = 3.43 x 10'> Hz whereas the Rabi
frequency from the simulation Q¢ = 3.34 x 10" Hz agrees
well with the analytical result.

In analogy to the two-photon Kapitza-Dirac effect, the off-
resonant diffraction probability (43)) with the off-resonant Rabi
frequency (@6) also applies to the three-photon Kapitza-Dirac
effect. For the parameters applied in Fig. [§] we find numer-
ically b = 45.7. We remark that in the case of the three-
photon Kapitza-Dirac effect a systematic shift of the resonance
peak appears in the numerical simulation, as compared to
the peak position which we obtain from the classical reso-
nance condition @ For the parameters p; = 0.3470 mc and
pEe = 2.4 x 1073 mc of Fig. Ifor example, one finds the res-
onance peak at the photon momentum k = 6.1 x 1073 mc in
the numerical simulation, whereas the resonance condition (6)
predicts the photon momentum k = 4.4 x 1073 mc. This shift
scales with the laser intensity, as the quantum dynamics leaves
the perturbative regime with increasing field amplitude. There-
fore, the resonance peak position of the numerical solution and
the classical condition (6) converge to the same value in the
limit of small laser intensities.



2.0 ; ; ; . .
1.5} \\“..// ) 120
1ol | 105
90
0.5F 1
g 0.0 75 C':’%
< U =
S 60 ¢
-0.5¢ 1
45
-1.0p 1 30
—-1.5¢ //cﬁ\‘\ | 15
-2.0 0
-2.0 —15—10 -05 00 05 10 15 20

pa/(mc)

Figure 10: The relativistic Rabi frequency of the three-photon
Kapitza-Dirac effect normalized to the full spin-flip Rabi frequency
Qg in Eq. (71). The parameters in this figure are a laser intensity
of 2 x 10> W/cm? and a photon energy of 3.1keV . The gray filled
circles mark positions in which condition @) is fulfilled, which are
approximated by the Egs. (73).

5.4. Spin flips

As in Sec.[4.4] we identify the parameter space for spin-flips
in the three-photon Kapitza-Dirac effect by the condition

tr (17U ,4(t.0)) = 0. (72)

The numerical evaluation of this condition yields the gray filled
circles in Fig. [I0] which form a line and a hyperbola. The line
and the hyperbola can be approximated by the equations

(73a)
(73b)

pe=0,
m?c* +0.847p% — 0.608p% = 0.

The line (73a) can also be derived from the expansion (68)),
because the spin-flip condition runs through the point pg =
pp = 0, and the Taylor expansion is exact in the vicinity of this
point. We also plot the Rabi frequency at the regions of a full
spin flip in Fig. [T1] as in Sec..4] the Rabi frequency of the
spin-flip regions is about two orders of magnitude lower than
the Rabi frequency of the spin-preserving regions.

In analogy to the two-photon Kapitza-Dirac effect the elec-
tron spin in the diffracted part of the laser beam can be ex-
pressed as

+ il
P 1€y (O)U++3 0 rdSch(O)
out — ~

2 C(J)r I(O)UZJFJOU:(';O 0(0)

(74)

by utilizing the time evolution operator (66). For nonrelativistic
electron momenta pp and pg the parameters of the rotation of
the spin can be uniquely identified by equating coefficients in
(37) and (68). In contrast to the two-photon Kapitza-Dirac ef-
fect we find significant spin rotations for the electron momenta
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Figure 11: Relativistic Rabi frequency of the three-photon Kapitza-
Dirac effect at momenta for which full spin-flips are possible (that
means along the gray filled circles in Fig.[T0).
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Figure 12: Tilt of the electron spin rotation axis n,. The dashed line
shows the analytical result (77) of the expanded propagator (68). The
black line is obtained numerically from the exact propagator (66).
The tilt of the rotation angle takes place in the plane spanned by k and
B, because the E component of the vector (75) and the E component
of the vector from the exact computation are zero.

pr and pp. For the case of the three-photon Kapitza-Dirac
effect, the rotation axis is given by

1 (3 — 2 \/E) PB
n = me (75)
\/(3 -2 «/5)2 P+ m2c 0

and the rotation angle reads

2 k :
vy = 2 arctan i— 1+ (3 -2 \/5)2 P (76)
5 m2c?

PE

Equation (73)) means that the electron spin is rotated around the
axis of the magnetic field, if the electron momentum pjp in the
magnetic field direction is zero. A nonvanishing pg, however,
tilts the rotation axis of the spin rotation into the direction of
the laser propagation direction by the angle

n= arctan(

Mk = arctan |(3 = 2V2 PB . )
mc

nr,B

This tilt angle 7 is plotted together with the exact value, ob-
tained from the propagator (66), in Fig.[T2]



6. Conclusions and Outlook

We discussed the general relativistic and nonrelativistic Bragg
conditions for a Kapitza-Dirac effect with n interacting photons
that follow from energy-momentum conservation. We investi-
gated the two-photon and three-photon Kapitza-Dirac effects
by accounting for the Bragg conditions and simulating the
Pauli equation and the Dirac equation, which were transformed
into a momentum-space representation. In both scenarios spin
effects appear at relativistic momenta of the electron. We
also presented an analytic solution of the Kapitza-Dirac effect
by computing the short-time evolution with time-dependent
perturbation theory for the two-photon and the three-photon
Kapitza-Dirac effects. By the help of our analytical and numer-
ical methods, we were able to demonstrate full spin flips within
the two-photon Kapitza-Dirac effect. Furthermore, we pointed
out that the spin flip in the Kapitza-Dirac effect corresponds to
a rotation of the electron spin, when the electron is diffracted.
The diffraction probability, however, does not depend on the
spin orientation of the incident electrons. Our numerical simu-
lations indicate that the off-resonant Kapitza-Dirac effect can
be described by a generalization of Rabi theory for two-level
systems.

The Rabi frequency of the n-photon Kapitza-Dirac effect
scales with the nth power of eE [/ (kmc?), because the lowest or-
der contribution in time-dependent perturbation theory is of nth
order and contains a product of n times the interaction Hamil-
tonian (30). Therefore, the Rabi frequency of the three-photon
Kapitza-Dirac effect is suppressed by a factor of e£/(kmc?) as
compared to the Rabi frequency of the two-photon Kapitza-
Dirac effect. Note that e£/k is always smaller than mc? in the
Bragg regime. Thus, from this point of view, higher laser in-
tensities are in principle required for higher photon processes.

The two-photon and three-photon Kapitza-Dirac effects are
different, if the two are compared against the background of
spontaneous emission. Since spontaneous emission is propor-
tional to the square of the electric field, the radiation power
spontaneously emitted by the electron scales like the Rabi fre-
quency of the two-photon Kapitza-Dirac effect with the square
of eE/(kmc?). This implies that the spontaneously emitted
energy which is emitted in one Rabi cycle is independent of
the laser intensity for the two-photon Kapitza-Dirac effect. The
Rabi frequency of the three-photon Kapitza-Dirac effect, how-
ever, scales with the third power of eE /(kmc?). Therefore, the
three-photon Kapitza-Dirac effect and all higher-order Kapitza-
Dirac effects may become only visible for very high intensities
of the external laser field.

Even though the above considerations favor the two-photon
Kapitza-Dirac effect for an experimental demonstration of spin
effects, the two-photon Kapitza-Dirac effect has the drawback,
that spin effects occur only for relativistic momenta of the in-
jected electron in the laser polarization direction. This implies
less favorable short interaction times of the electron with the
laser, if the electron passes through a narrowly focused laser
beam.

Our numerical solution of the quantum dynamics also shows
that many modes are excited in the in-field dynamics, indicat-
ing that the results from perturbation theory might be appli-
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cable even for interaction parameters in which higher-order
perturbative corrections should be of relevance. The good
agreement of our numerical results with the perturbative ap-
proximation moreover suggests the applicability of our predic-
tions in the parameter space of intense, optical laser beams.
Therefore we conjecture that spin signatures in the Kapitza-
Dirac effect might be realizable even for the interaction of
moderately relativistic electrons with intense laser beams in
the optical regime.
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A. Spin-interaction matrices

. . . . b
To express the spin-interaction matrices L}, (2), we first
introduce the coefficients

1 &, + mc?

d, = — (Ala)
V2 En

c 1
d = —{\|——. Alb
"Nz \/ En(E, + mc?) (Alb)

which allows us to define the coeflicients

taw = dydy + pp - pw d,dy (A2a)
Snar = Pl dy + pldydy, (A2b)
Fow = Phdydy = pydyd, (A2)
Wi, = plpldydy + pipld;dy . (A2d)
hﬁz,n’ =e- (pn X Pn')d;d,;r (A2e)

The upper indices denote the vector components of the coeffi-
cients, whereas the lower indices correspond to a mode number
of the wave function (T3] of the electron. One can show [54]]
that the matrices Lﬁf’n, in (32) are given by

Lyt ==Ly = > AW, 1+ ) epgrt Ao (A3)
l lqj

and

+- _ —+
L,,= L.,

= e’ = Y Wit Aol i Y A, 1.
1 Lq l
(A4)
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