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Von fundamentalen Prinzipien zu Leptogenese
Baryogenese durch Leptogenese liefert eine elegante Erklärung für den Ursprung der Baryone-
nasymmetrie des Universums durch den CP-verletzenden Zerfall von schweren rechtshändigen
Neutrinos (im frühen Universum). Die nahe Verbindung zu Neutrinophysik hat in den letzten
Jahrzehnten sehr zur Popularität dieses Szenarios beigetragen. Eine präzise Berechnung der
Baryonenasymmetrie ist schwierig, da sie es erfordert, der Entwicklung des warmen frühen
Universums im thermischen Ungleichgewicht zu folgen. In dieser Arbeit diskutieren wir Lep-
togenese mit Methoden der Nichtgleichgewichts-Quantenfeldtheorie. Diese Methode ist frei
von zahlreichen Problemen der konventionellen Herangehensweise, welche auf der klassischen
Boltzmann-Gleichung basiert. Wir leiten eine quanten-korrigierte Boltzmann-Gleichung für die
Asymmetrie direkt aus den Grundprinzipien her. Die erhaltende Gleichung ist frei von dem
Doppelzählungsproblem und beinhaltet konsistent die thermischen Korrekturen zu den Eigen-
schaften der Quasiteilchen, insbesondere deren thermische Masse und Breite. Effekte durch
die begrenzte Breite werden durch eine modifizierte Quasiteilchennäherung berücksichtigt. Wir
vergleichen numerisch die Ergebnisse dieses Nichtgleichgewichts-Quantenfeldtheorie-Ansatzes
mit den konventionellen Methoden, und finden, dass die thermischen Effekte teilweise durch
die thermischen Massen kompensiert werden.

First principles approach to leptogenesis
Baryogenesis via leptogenesis offers an elegant explanation of the origin of the baryon asym-
metry of the universe by means of the CP-violating decay of heavy right-handed neutrinos
in the early universe. This scenario has become very popular over the past decades due to
its connection with neutrino physics. A precise computation of the baryon asymmetry pro-
duced in the leptogenesis scenario is difficult since it requires to follow the out-of-equilibrium
evolution of the hot early universe. We present here a nonequilibrium quantum field theory
approach to leptogenesis. This method is free of many problems inherent to the conventional
approach based on the classical Boltzmann equation. Starting from first principles we derive
a quantum-corrected Boltzmann equation for the asymmetry. The obtained equation is free of
the double counting problem and incorporates consistently thermal corrections to the quasi-
particles properties, in particular thermal masses and thermal widths. Finite width effects
are taken into account through the extended quasiparticle approximation. We compare nu-
merically the reaction densities obtained from the conventional and nonequilibrium quantum
field theory approaches. We find that the enhancement due to thermal effects is partially
compensated by the suppression due to thermal masses.
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Chapter 1

Introduction

1.1 Overview

At a fundamental level the vast majority of physical phenomena can be explained by the two
basic theories of modern physics, the Standard Model (SM) of particle physics [1–3] and gen-
eral relativity (GR). These theories have successfully passed numerous experimental tests over
the past decades, the most recent one being the discovery at the Large Hadron Collider (LHC)
of a Higgs boson [4–6] consistent with the SM predictions. Complementary to man-made
experiments, the primordial universe constitutes a unique laboratory to test our current un-
derstanding of the laws of nature at energies that cannot be reached by existing or forthcoming
facilities. When extrapolating the SM with the concordance model of cosmology (ΛCDM) back
in the hot early universe one arrives at the conclusion that matter and antimatter would com-
pletely annihilate into radiation if they were present in exactly equal amount. An asymmetry
between matter and antimatter in the primordial universe is therefore needed to explain the
baryon asymmetry in the present universe. The generation of this asymmetry, baryogenesis, is
one of the greatest challenges of modern physics. It is now widely accepted that the SM alone
cannot be responsible for the matter-antimatter imbalance of the universe. The asymmetry
as initial condition for the universe is very unsatisfactory and disfavoured when one includes
a period of inflation in the very early universe to explain the flatness and horizon problems
observed in the cosmic microwave background (CMB). Any scenario of a dynamical asymmetry
generation must satisfy the three Sakharov conditions [7]:

(i) Baryon number nonconservation,

(ii) C- and CP-violation,

(iii) Departure from thermal equilibrium.

Interestingly enough, these conditions are fullfilled within the SM. Baryon number is violated
by the triangle anomaly. Non-perturbative baryon number violating processes, which are called
sphalerons, involve nine left-handed quarks and three-left-handed leptons. They conserve B−L
(B is the baryon number and L the lepton number) but violate any other linear combinations.
At zero temperature their amplitudes are highly suppressed [8] but become large at high
temperature [9]. The chiral nature of the SM violates C (C denotes charge conjugation) and
the phases in the Cabibbo-Kobayashi-Maskawa (CKM) matrix violate CP (P is the parity).
Finally, the electroweak phase transition provides the out-of-equilibrium dynamics required by
the condition (iii). However, in the SM, the CP-violation is too small and the departure from
equilibrium not strong enough to generate the observed baryon asymmetry.
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Chapter 1 Introduction

Over the past decades many theories beyond the SM have been proposed to generate the
baryon asymmetry dynamically. Amongst the most studied ones are GUT baryogenesis [10–
19], electroweak baryogenesis [20–22], Affleck-Dine mechanism [23, 24] and leptogenesis [25].
Because of its connection with neutrino physics, the mechanism of baryogenesis via leptoge-
nesis has become very popular over the past few years. In this scenario an asymmetry is
first produced in the lepton sector by the decay of heavy right-handed neutrinos, and then
transferred to the baryon sector through the sphaleron processes.

A precise computation of the baryon asymmetry in any theory of baryogenesis is very chal-
lenging because of the third Sakharov condition (iii): one needs to track down the out-of-
equilibrium evolution of the baryon number in the early universe. In leptogenesis the conven-
tional way to tackle this problem is a semiclassical approach: classical Boltzmann equations
with vacuum transition amplitudes computed in the S-matrix formalism are used to follow
the number densities of the different particle species. It is however clear that this approach
is questionable: baryon number generation is a pure quantum phenomenon which takes place
in the hot early universe. Moreover, the Boltzmann equations suffer from the so-called double
counting problem, which can be solved only in some limiting cases.

Even though a Boltzmann treatment of leptogenesis is not well justified, it has been used
extensively to analyse many different aspects of leptogenesis, such as flavour effects [26–30],
resonant effects [31, 32], the role of spectator processes [33, 34], supersymmetric extension
of leptogenesis [35–37], soft leptogenesis [38–47] and N2-dominated leptogenesis [48, 49]. The
conventional method based on the Boltzmann equation with vacuum transition amplitudes has
been improved [50, 51] by using transition amplitudes from thermal field theory. This approach
was able to include thermal masses of the quasiparticles and finite density corrections to the
amplitudes. However, it has been shown that these results are in contradiction with a first
principles approach [52, 53].

Recently, many efforts towards a nonequilibrium quantum field theory (NEQFT) treatment
of leptogenesis have been made [54–71]. NEQFT puts the thermal and quantum fluctuations
on an equal footing and is therefore the appropriate formalism to describe the baryon number
generation in the early universe. However, the resulting equations, the so-called Kadanoff-
Baym (KB) equations, cannot be solved analytically except in some particular cases and are
extremely difficult to handle numerically, even for simplistic models. For practical use the KB
equations must be considerably simplified by applying a series of approximations.

In this work, quantum-corrected Boltzmann equations are derived from the KB equations for
the case of leptogenesis. We focus here on the simplest scenario, i.e. unflavoured leptogenesis
with hierarchical heavy neutrino mass spectrum. However, the method presented here can
be easily generalised to more elaborate leptogenesis scenarios. Since the obtained equations
describe the time evolution of the distribution functions they are very similar to the classical
Boltzmann equations. However, unlike the classical ones, the quantum-corrected Boltzmann
equations incorporate consistently the thermal corrections to the masses and to the amplitudes
and are free of the double counting problem. They include decay and inverse decay of the
right-handed neutrinos, lepton number violating scattering processes mediated by the heavy
neutrinos, and Higgs mediated processes. They can also be easily extended to take into account
other lepton number violating processes or lepton flavour effects.

We do not attempt to solve numerically the quantum-corrected Boltzmann equations ob-
tained from first principles. In the conventional approach the asymmetry is usually computed
by solving a system of rate equations. These are equations for the number density and can be
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1.2 Baryon asymmetry of the universe

derived from the corresponding classical Boltzmann equations. They are governed by a set of
reaction densities, which roughly correspond to thermally averaged transition amplitudes. We
follow here a similar approach and derive rate equations from the quantum-corrected Boltz-
mann equations. In addition to the thermal corrections to the amplitudes, the reaction densities
derived from the quantum-corrected Boltzmann equations contain quantum statistical factors,
which are usually neglected in the conventional approach. The size of the thermal and medium
corrections can be estimated by comparing the reaction densities obtained in the conventional
approach with the ones obtained in the NEQFT formalism.

The aim of this work is to present a consistent way of studying the nonequilibrium production
of baryon asymmetry in the early universe. We do not perform a phenomenological study of
the parameter space of the leptogenesis Lagrangian. A parameter scan is only useful if one
considers the full leptogenesis scenario, including e.g. lepton flavour effects and gauge boson
interactions. This is beyond the scope of this work. However, we would like to stress that the
formalism presented here can be used to incorporate these effects.

In the rest of this chapter we discuss the basic features of leptogenesis and its connection with
neutrino physics. We then review the Boltzmann equations and the conventional approach to
leptogenesis in chapter 2. A comprehensive overview of nonequilibrium quantum field theory
and the derivation of quantum-corrected Boltzmann equations are presented in chapter 3. This
formalism is applied to leptogenesis in chapter 4. In chapter 5 we derive from the quantum-
corrected Boltzmann equations the set of rate equations and numerically compare the reaction
densities obtained in this approach with the conventional ones. In chapter 6 we summarise our
results and conclude.

Parts of this thesis are in print [72] or in preparation [73]. Major part of this work has been
done in collaboration with Mathias Garny, Andreas Hohenegger, Alexander Kartavtsev and
David Mitrouskas.

1.2 Baryon asymmetry of the universe

In this section we briefly review the experimental measurements of the baryon asymmetry of
the universe, see e.g. [74] and references therein for a short review on the subject . We present
then the main features of the leptogenesis scenario. Many reviews on leptogenesis can be found
in the literature, see e.g. [75–78].

1.2.1 Baryon asymmetry of the universe

The baryon asymmetry of the universe is usually characterised by the baryon-to-photon ratio
η,

η ≡ nB − nB̄
nγ

, (1.1)

where nB (nB̄) is the baryon (antibaryon) number density and nγ the photon number density.
This number can be measured in two independent ways. The baryon-to-photon ratio can be
extracted from the cosmic microwave background (CMB). CMB anisotropies are sensitive to
ΩBh

2, the baryon energy density normalised by the critical energy density of the universe
multiplied by the square of the reduced Hubble constant, h ≡ H0/(100km sec−1Mpc−1). The
effect of baryon is to enhance the odd peaks in the CMB power spectrum. The latest mea-
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Chapter 1 Introduction

surement of the CMB anisotropies from the Planck satellite [79] gives a baryon energy density
(at 68% c.l.),

ΩBh
2 = 0.02207± 0.00033 . (1.2)

Combining the Planck power spectrum measurement with the Wilkinson Microwave Anisotropy
Prope 9 years (WMAP9) data [80] one finds at 68% c.l. [79],

ΩBh
2 = 0.02205± 0.00028 . (1.3)

The baryon energy density ΩBh
2 is related to baryon-to-photon ratio through η = 2.74 ·

10−8 ΩBh
2. In terms of η the combined result (1.3) reads,

η = (6.0417± 0.0077) · 10−10 . (1.4)

The second way of determining the baryon asymmetry of the universe is through the measure-
ment of the abundance of light elements, D, 3He, 4He and 7Li. These abundances are predicted
by the theory of Big Bang nucleosynthesis (BBN) and depend only on the parameter η 1. The
synthesis of D and 3He are particularly sensitive to the baryon-to-photon ratio. The duration
of nucleosynthesis depends strongly on the expansion rate of the universe, which is determined
amongst others by the parameter η. The baryon-to-photon ratio predicted by BBN as given
by [81] is (at 68% c.l.),

η = (5.80± 0.27) · 10−10 . (1.5)

It is important to notice that the physics involved in the BBN computation and the physics
affecting the CMB power spectrum are completely different since BBN takes place at T ∼ 2
MeV and the photon decoupling at T ∼ 0.3 eV. Therefore the measurements of η from the
CMB power spectrum and from BBN, which are in perfect agreement, are independent of each
other and are therefore a reliable confirmation of the value of the baryon asymmetry of the
universe. Moreover they also constitute a solid evidence for the ΛCDM model below T . 1
MeV.

1.2.2 Type-I seesaw Lagrangian

The simplest and probably most popular realisation of leptogenesis takes place in the type-I
seesaw extension of the SM. In addition to the SM particles it contains three2 right-handed
Majorana neutrinos Ni which are singlet under the SM gauge group,

L = LSM +
1
2
N̄i

(
i/∂ −Mi

)
Ni − hαi ¯̀αφ̃PRNi − h∗αiN̄iφ̃

†PL`α , (1.6)

1This is true only for standard BBN. The abundances of light elements also depend on other parameters,
such as the number of relativistic degrees of freedom at the time of BBN (dark radiation) and the lepton
asymmetry. The standard assumptions are that only photons and the three SM neutrino species contribute to
the radiation energy density and that no sizeable lepton asymmetry is present.

2For leptogenesis one needs at least two right-handed neutrinos. Neutrino oscillation experiments also
require the presence of at least two right-handed neutrinos. However, the case of three generations is interesting
from an aesthetic point of view since it restores the symmetry between leptons and quarks.
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1.2 Baryon asymmetry of the universe

where `α are the lepton doublets and φ̃ ≡ iσ2φ
∗ the conjugate of the Higgs doublets. The heavy

neutrinos (in this work we use interchangeably the terminology right-handed or heavy neutrino
to designate Ni) are Majorana particles, i.e. they satisfy Ni = N c

i ≡ iγ2γ0N̄T
i . Without loss

of generality we choose the right-handed neutrino mass matrix Mi to be diagonal with positive
entries.

The Lagrangian (1.6) is well known in neutrino physics since it provides a naturally small
mass term to the SM neutrinos through the seesaw formula. In the SM the (left-handed)
neutrinos are strictly massless. The observations of neutrino oscillations, i.e. flavour conversion
during the neutrino propagation, can be explained by introducing a neutrino mass matrix which
is not diagonal in flavour basis, see e.g. [82] for a review on the subject. Neutrino oscillation
experiments are sensitive in particular to the neutrino mass square differences. Up to now,
only two mass square differences have been measured. In the case of normal hierarchy, their
best-fit value as given by [83] reads (at 68% c.l.),1

∆m2
sol = 7.54+0.26

−0.22 · 10−5 eV2 , (1.7a)

∆m2
atm = 2.43+0.06

−0.10 · 10−3 eV2 . (1.7b)

Oscillation experiments cannot measure the absolute neutrino mass scale. The best constraint
on the mass scale comes from cosmology. Combining the Planck and WMAP9 data one finds
for the upper bound on the sum of neutrino masses [79] (at 95% c.l.),∑

i

mνi < 0.933 eV . (1.8)

The tiny neutrino masses can be elegantly explained by the model (1.6). Much below the
electroweak scale one can approximate the Higgs field by its vacuum expectation value (vev),
v = 174 GeV. Then (1.6) takes the form,

L = LSM +
1
2
N̄i

(
i/∂ −Mi

)
Ni − (mD)αiν̄αPRNi − (m∗D)αiN̄iPLνα , (1.9)

where να are the active (SM) neutrinos and we have defined the Dirac mass term, (mD)αi ≡
vhαi. The neutrino mass matrix (the hat denotes matrices),(

0 m̂D

m̂T
D M̂

)
, (1.10)

can be block diagonalized in the limit m̂D � M̂ . One obtains two distinct sets of eigenvalues.
The first three eigenvalues are suppressed by a factor m̂DM̂

−1 and give naturally small masses
to active neutrinos. They are found by diagonalizing the mass matrix obtained from the seesaw
formula [84–87],

m̂ν = −m̂DM̂
−1m̂T

D . (1.11)

The second set of eigenvalues is approximatively given by the masses Mi and corresponds to
the physical mass of the right-handed neutrinos. Assuming the Yukawa couplings to be of

1In this work we are using natural units where c = ~ = kB = 1. This implies that [mass] = [energy] =
[temperature] = [time]−1 = [length]−1.
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Chapter 1 Introduction

the order O(1), we find from the active neutrino mass matrix (1.11) that the right-handed
neutrino must be very heavy, Mi ∼ 1013 GeV, if we want the active neutrinos mass to be of
the right order of magnitude, mν ∼ 0.1 eV, as suggested by neutrino oscillation experiments.
However, the masses of right-handed neutrino can be much smaller if the Yukawa couplings are
suppressed, see e.g. [88, 89]. In thermal leptogenesis, for a hierarchical right-handed neutrino
mass spectrum (M1 �Mi 6=1), the mass of the lightest right-handed neutrino (M1) is bounded
from below if one wants to explain the baryon asymmetry of the universe [90]. This is the
Davidson-Ibarra bound,

Mi & 109 GeV . (1.12)

Such large masses make the production of right-handed neutrinos impossible in present or
forthcoming accelerator facilities. This is the main drawback of the leptogenesis scenario. It
can only be tested indirectly. For example the observation of neutrinoless double β-decay (see
e.g. [91] for a review), which is consequence of the Majorana nature of the neutrinos, would
give us an indirect hint of the existence of the right-handed neutrinos.

There are many ways of lowering the right-handed neutrino masses to testable scales. For
example, in the case of quasidegeneracy between the right-handed neutrino masses (resonant
leptogenesis [31]), the CP-violating parameter (see (1.13)) is resonantly enhanced. In this way
the Davidson-Ibarra bound can be relaxed and the right-handed neutrinos can have masses
in the TeV range [31]. In this work we only consider leptogenesis with a hierarchical mass
spectrum, with M1 ∼ 109 GeV.

1.2.3 Production of baryon asymmetry in the leptogenesis scenario

In the leptogenesis scenario an asymmetry is first produced in the lepton sector and then
transferred to the baryons, hence the name leptogenesis. In the SU(2)L-symmetric phase the
heavy neutrinos can decay into a lepton-Higgs pair, Ni → `φ, or an antilepton-antihiggs1 pair,
Ni → ¯̀φ̄. In the presence of CP-violating phases in the Yukawa couplings hαi these decay
rates can be unequal. In that case a lepton asymmetry is produced by the decay of the right-
handed neutrinos. The CP-asymmetry is usually characterised by the so-called CP-violating
parameter,

εi ≡
ΓNi→`φ − ΓNi→¯̀φ̄

ΓNi→`φ + ΓNi→¯̀φ̄

, (1.13)

where ΓNi→`φ (ΓNi→¯̀φ̄) is the decay rate into a lepton-Higgs (antilepton-antihiggs) pair. The
CP-violating parameter εi corresponds to the average lepton asymmetry produced by each
decay of Ni is vacuum. As mentioned in section 1.1 the baryon and lepton numbers are not
conserved separately at high temperature due to the sphaleron processes [9]. The latter are
non-perturbative electroweak processes which connect different vacua. They violate B+L but
conserve B − L. Sphaleron processes are in equilibrium (i.e. their rates are larger than the
expansion rate of the universe) in the temperature range 140 GeV . T . 1012 GeV [92] for
a Higgs mass mφ ≈ 125 GeV. The baryon (B) and lepton (L) numbers are related through

1Since we are working in the SU(2)L-symmetric phase the Higgs field φ is complex. In this work the
terminology Higgs refers to the doublet φ and antihiggs to its hermitian conjugate.

12



1.2 Baryon asymmetry of the universe

[93, 94],

B = −28
51
L . (1.14)

In this work we focus exclusively on the scenario of thermal leptogenesis in which the heavy
neutrinos are thermally produced from the plasma. This scenario requires the reheating tem-
perature Tre to be larger than the mass of the lightest right-handed neutrino N1, Tre & M1.
If Tre . M1 the production rate of the right-handed neutrinos is Boltzmann suppressed,
∝ e−Mi/T . In this case the heavy neutrinos cannot be produced in sufficient amount and
another production mechanism is needed, e.g. through inflaton decays [95]. Thermal pro-
duction, together with the Davidson-Ibarra bound (1.12), implies Tre & 109 GeV 1. Once the
temperature drops below M1, the equilibrium number density of the lightest right-handed
neutrinos is exponentionally suppressed. If the interaction rate of N1 with the plasma is not
strong enough the number density of the right-handed neutrino cannot follow the equilibrium
one. The third Sakharov condition, departure from thermal equilibrium, is therefore satisfied.
If the interactions of N1 are CP-violating, the three Sakharov conditions are fulfilled and an
asymmetry can be generated. The asymmetry produced in the lepton sector by the heavy
neutrinos is then partially transferred (see (1.14)) to the baryon sector through the sphaleron
processes.

At very low temperature, when T � M1, the number densities of the heavy neutrinos
are Boltzmann suppressed, ∼ e−Mi/T . The CP- and lepton number violating interactions
become negligible since they require the presence of the right-handed neutrinos, and the B−L
asymmetry freezes out. At even lower temperature, T . 140 GeV, the sphaleron processes
become ineffective. Then baryon and lepton numbers are separately conserved and the baryon
asymmetry of the universe survives until now.

Computing of the baryon asymmetry produced by the leptogenesis mechanism requires to
track down the number density of the different particles involved in the generation of the
asymmetry. In the canonical approach this is done with the help of the Boltzmann equation,
see chapter 2.

1In the supersymmetric extension of leptogenesis, such a high reheating temperature leads to an overpro-
duction of gravitinos which spoils BBN predictions.
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Chapter 2

Boltzmann approach to leptogenesis

The Boltzmann equation has been used extensively in the literature to study leptogenesis (for a
review, see e.g. [75, 77]). Different aspects of leptogenesis have been treated in the Boltzmann
framework within the past few years, in particular flavour effects [26–30], resonant effects
[31, 32], the role of spectator processes [33, 34] and N2 dominated leptogenesis [48, 49]. We
first briefly review the Boltzmann equation in an expanding universe, and then apply it to the
most simple regime, unflavoured leptogenesis with a hierarchical right-handed neutrino mass
spectrum. This computation will reveal the problems inherent to the Boltzmann treatment of
leptogenesis and will be used as a comparison with the more sophisticated approach based on
nonequilibrium quantum field theory.

2.1 Boltzmann equation

Equilibrium thermodynamic ensembles can be well described by macroscopic quantities such
as temperature, pressure or chemical potential. However, as required by the third Sakharov
condition, the production of an asymmetry requires a departure from equilibrium. In order
to capture the physics of a nonequilibrium system one needs to follow the time evolution of
the one-particle distribution function fψ(xµ, pµ) for each particle species ψ. The distribution
function satisfies the Boltzmann equation, which can be schematically written as [96],

L̂[fψ] = C[fψ] , (2.1)

where L̂ is the Liouville operator and C is the collision operator. The Liouville operator can
be written in terms of the covariant derivative, Dµ,

L̂[fψ] = pµDµfψ . (2.2)

In a Friedmann-Robertson-Walker (FRW) universe the distribution function depends only on
the time and energy variable, fψ = fψ(E, t), and the Liouville operator simplifies to

L̂[fψ] =
(
E
∂

∂t
−H |~p|2 ∂

∂E

)
fψ(E, t) , (2.3)

where H is the Hubble rate. In the radiation dominated epoch, where leptogenesis takes place,
H = 1/(2t) =

√
4π3g∗/45T 2/Mpl. Here g∗ = 106.75 (in the SM without the heavy neutrinos)

is the number of relativistic degrees of freedom and Mpl = 1.22 · 1019 GeV is the Planck mass.
For notational convenience we will often suppress the time argument and write the energy (or,
equivalently, the momentum) as a subscript, fpψ ≡ f

E
ψ ≡ fψ(E, t).
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Chapter 2 Boltzmann approach to leptogenesis

The collision operator can be written as a sum of collision terms for each process ψ+a+. . .↔
i+ . . .,

C[fψ] =
∑
{a}, {i}

Cψ+a+...↔i+...[fψ] , (2.4)

with

Cψ+a+...↔i+...[fψ] =
1
2

∫
dΠpa...pi...

a...i... (2π)4δ(pψ + pa + . . .− pi − . . .)

×
[
|M|2i+...→ψ+a+...

(∏
i

fpii

)
(1± fpψψ )

(∏
a

(1± fpaa )
)

− |M|2ψ+a+...→i+... f
pψ
ψ

(∏
a

fpaa

)(∏
i

(1± fpii )
)]
, (2.5)

where |M|2i+...→ψ+a+... is the transition amplitude summed over the internal degrees of freedom
of the particle species {a} and {i}, and dΠpapb...

ab... is a product of Lorentz invariant integral
measure,

dΠpapb...
ab... =

d3~pa
2Epaa (2π)3

d3~pb
2Epbb (2π)3

. . . . (2.6)

The factors (1± f), where the + sign applied to bosons, and − sign to fermions, are called the
quantum statistical factors, and are manifestation of the Bose enhancement or Pauli blocking.
The first term in the square bracket of (2.5) is the so-called gain term as it increases the
number of ψ-particle, and the second one is called the loss term since it decreases the number
of ψ-particle. Since the transition amplitudes in (2.5) are computed in the S-matrix formalism
we will often refer to this approach as the S-matrix approach.

The particle number density nψ is given by the distribution function integrated over the
momentum,

nψ(t) =
∑
sψ

∫
d3~p

(2π)3
fψ(E, t) , (2.7)

where the sum is over the internal degrees of freedom of ψ. Integrating the RHS of the
Liouville operator (2.3) with the measure d3~p/[Epψ(2π)3] and summing over the internal degrees
of freedom, we find dnψ/dt+ 3Hnψ and write the Boltzmann equation as,

dnψ
dt

+ 3Hnψ =
∑
{a}, {i}

∫
dΠpψpa...pi...

ψa...i... (2π)4δ(pψ + pa + . . .− pi − . . .)

×
[
Ξi+...→ψ+a+...

∏
i

fpii (1± fpψψ )
∏
a

(1± fpaa )

− Ξψ+a+...→i+...f
pψ
ψ

∏
a

fpaa
∏
i

(1± fpii )
]
, (2.8)

where we have defined the transition amplitude summed over all internal degrees of freedom
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2.2 Boltzmann equation at O(h4)

as,

Ξψ+a+...→i+... ≡
∑
sψ

|M|2ψ+a+...→i+... . (2.9)

The LHS of (2.8) is often written in terms of the abundance Yψ ≡ nψ/s, where s = 2π2

45 g∗T
3 is

the comoving entropy density,

dnψ
dt

+ 3Hnψ = s
dYψ
dt

. (2.10)

2.2 Boltzmann equation at O(h4)

We now apply the Boltzmann equation (2.8) to leptogenesis. We consider here only the terms
up to O(h4). The inclusion of the top quark, which contributes to the production of the
asymmetry at O(h4λ2

t ), is performed in the next section.

At this order the processes contributing to the Boltzmann equation for the lepton asymmetry
are the (inverse) decay of the heavy Majorana neutrinos and the |∆L| = 2 scattering processes
mediated by the right-handed neutrinos.

Figure 2.1: Decay amplitude ΞNi→`φ at one-loop order. The second and third diagrams are
the self-energy or wave-function diagrams, and the last one is the vertex diagram. Note that
the second diagram is CP-conserving and does not contribute to the production of the total
lepton asymmetry, but is relevant for the study of flavour leptogenesis [26–30].

Let us first consider the (inverse) decay. At O(h4) we need to consider the one-loop cor-
rections to the decay amplitudes, see Fig. 2.1. We follow here the approach of [31], where
effective Yukawa couplings are used to take into account the loop corrections,

λ+,αi ≡hαi − ihαj(h†h)∗jifij , (2.11a)

λ−,αi ≡h∗αi − ih∗αj(h†h)jifij , (2.11b)
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Chapter 2 Boltzmann approach to leptogenesis

where fij is the loop function,

fij ≡
1

16π
MiMj

M2
i −M2

j

+
1

16π
Mj

Mi

[
1−

(
1 +

M2
j

M2
i

)
ln
(

1 +
M2
i

M2
j

)]
. (2.12)

The first term in (2.12) describes the self-energy (or wave-function diagram) [97–99], and the
second one the vertex diagram [25]. In the hierarchical limit, Mi � Mj , the loop function
reads,

fij ≈ −
3

32π
Mi

Mj
. (2.13)

Then the decay amplitudes at one-loop take the same form as the tree-level ones, but with the
effective Yukawa couplings,

ΞNi→`φ =2gw(λ†+λ+)ii(pq) , (2.14a)

ΞNi→¯̀φ̄ =2gw(λ†−λ−)ii(pq) , (2.14b)

where the factor gw = 2 comes from the summation over the SU(2)L indices and (pq) = M2
i /2

under the constraints of the energy conserving delta-function. We are using here the notation
ΞX→Y for amplitude summed over all internal degrees of freedom. The decay rates in the rest
frame of the parent particle are then given by,

ΓNi→`φ =
ΞNi→`φ
32πMi

=
gw
32π

(λ†+λ+)iiMi , (2.15a)

ΓNi→¯̀φ̄ =
Ξ
Ni→¯̀φ̄

32πMi
=

gw
32π

(λ†−λ−)iiMi , (2.15b)

where we have neglected the mass of the final particle. Note that the effective Yukawa couplings
are not complex conjugate of each other, λ+,αi 6= λ∗−,αi, which reflects the fact that the decay
of the right-handed neutrino is CP-violating at one-loop level. The CP-asymmetry is usually
parametrised by the CP-violating parameters,

εi ≡
ΓNi→`φ − ΓNi→¯̀φ̄

ΓNi
=

Im
[
(h†h)2

ij

]
(h†h)ii

2fij , (2.16)

where we have defined the total decay rate, ΓNi ≡ ΓNi→`φ + ΓNi→¯̀φ̄. εi corresponds to the
average fraction of lepton number produced by each decay of Ni and plays a central role in the
study of leptogenesis.

Using (2.14) we can write the Boltzmann equation for the lepton as,

s
dY`
dt

=
∑
i

∫
dΠpqk

`Niφ
(2π)4δ(q − p− k)

×
[
ΞNi→`φf

q
Ni

(1− fp` )(1 + fkφ)− Ξ`φ→Nif
p
` f

k
φ(1− f qNi)

]
, (2.17)
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2.2 Boltzmann equation at O(h4)

and a similar equation for the antilepton,

s
dY¯̀

dt
=
∑
i

∫
dΠpqk

¯̀Niφ̄
(2π)4δ(q − p− k)

×
[
ΞNi→¯̀φ̄f

q
Ni

(1− fp¯̀)(1 + fkφ̄)− Ξ¯̀φ̄→Nif
p
¯̀f

k
φ̄(1− f qNi)

]
. (2.18)

The inverse decay amplitudes are related the decay amplitude by the CPT symmetry,

Ξ`φ→Ni = ΞNi→¯̀φ̄ , and Ξ¯̀φ̄→Ni = ΞNi→`φ . (2.19a)

Equations (2.17) and (2.18) describe the time evolution of the lepton and antilepton number
density in the FRW universe. However they are incomplete as we will see by the following
computation. In thermal equilibrium, the distribution functions of particle and antiparticle
are equal and satisfy the detailed balance condition,

f eq,q
Ni

(1− f eq,p
` )(1 + f eq,k

φ ) = f eq,p
` f eq,k

φ (1− f eq,q
Ni

) , (2.20)

where we have used the energy conservation. The equilibrium distribution functions in (2.20)
are the Bose-Einstein or Fermi-Dirac distribution functions,

f eq,p
a =

1
eE

p
a/T − 1

, and f eq,p
a =

1
eE

p
a/T + 1

, (2.21)

for bosons or fermions, respectively. The time evolution of the lepton asymmetry abundance,
YL = Y` − Y¯̀, is obtained by subtracting (2.17) and (2.18),

s
dYL
dt

= 2
∑
i

∫
dΠpqk

`Niφ
(2π)4δ(q − p− k)2εiΓNif

eq,q
Ni

(1− f eq,p
` )(1 + f eq,k

φ ) , (2.22)

where we have used (2.16) and assumed that the antiparticle dispersion relation is the same as
its corresponding particle. Neglecting the quantum statistical factor, (1−f eq,p

` )(1 +f eq,k
φ ) ≈ 1,

and using the Maxwell-Boltzmann distribution function for the right-handed neutrinos, f eq,q
Ni
≈

exp(−EqNi/T ), we can show by integrating over the phase space that the RHS of the above
equation in non-zero (see appendix B for details about the phase space integration),

s
dYL
dt

=
∑
i

2εiΓNiTM
2
i

π
K1(

Mi

T
) 6= 0 , (2.23)

where K1 is the modified Bessel function of the second kind. This implies that non-zero
asymmetry can be produced even in thermal equilibrium, which is in contradiction with the
third Sakharov condition. One could think that this problem arises because we did not consider
the |∆L| = 2 scattering processes, which are of the same order in the Yukawa coupling.
However, including the tree-level scattering does not solve this problem because the tree-level
scattering processes, which are at CP-conserving, do not contribute to the RHS of (2.22) and
cannot cancel the contribution of the RHS of (2.23).

This problem is a consequence of the fact that the process consisting of an inverse decay
followed by the decay is counted twice in the Boltzmann equation, once in the decay process,
and once in the s-channel scattering amplitude where the intermediate state is on-shell (RIS,
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Chapter 2 Boltzmann approach to leptogenesis

Figure 2.2: s- and t-channel contribution to the tree-level scattering amplitude Ξ¯̀φ̄→`φ. This
process is lepton-violating but CP-conserving at tree-level.

or real intermediate state). This is the so-called double counting problem.

Let us check that these two contributions are indeed equal. The only processes which can
exhibit a RIS are the scattering processes ¯̀φ̄� `φ, see Fig. 2.2. Their amplitudes squared are
given by [31]:

Ξ¯̀φ̄→`φ = 2gw(p1p2)
∑
i,j

MiMj

[
gw(λ†+λ+)2

ijP
∗
i (s)Pj(s) + gw(h†h)ijP ∗i (t)Pj(t)

+ (λ†+h)2
ijP
∗
i (s)Pj(t) + (h†λ+)2

ijP
∗
i (t)Pj(s)

]
, (2.24a)

Ξ`φ→¯̀φ̄ = 2gw(p1p2)
∑
i,j

MiMj

[
gw(λ†−λ−)2

ijP
∗
i (s)Pj(s) + gw(h†h)ijP ∗i (t)Pj(t)

+ (λ†−h)2
ijP
∗
i (s)Pj(t) + (h†λ−)2

ijP
∗
i (t)Pj(s)

]
, (2.24b)

where p1,2 are the momenta of the initial and final (anti)leptons, s and t are the usual Man-
delstam variables, and we have defined the “scalar ” heavy Majorana propagators,

Pi(q2) =
1

q2 −M2
i + iθ(q2)MiΓNi

, (2.25)

where θ(·) is the Heaviside step function. In (2.25) we have resummed an infinite series of
self-energy diagrams to take into account the finite width of the right-handed neutrino. Note
that we include the next-to-leading order in the s-channel amplitude in (2.24) by using the
effective Yukawa couplings. This is crucial in order to obtain amplitude at O(h4) when the
intermediate neutrino goes on-shell. In (2.24a) the only terms where both propagators P ∗i
and Pj can be simultaneously on-shell are the s × s interference channel with i = j. We can
therefore write the RIS part of the scattering amplitude (2.24a) as,

Ξ¯̀φ̄→Ni→`φ = 2(p1p2)g2
w(λ†+λ+)2

ii |Pi(s)|
2

=
2(p1p2)
M2
i

Ξ¯̀φ̄→Ni
1

(s−Mi)2 + (MiΓNi)2
ΞNi→`φ . (2.26)

In the narrow width approximation we can approximate the Breit-Wigner function by a Dirac
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2.2 Boltzmann equation at O(h4)

delta using the representation,

lim
ε→0+

ε

ω2 + ε2
= πδ(w) , (2.27)

and write,

Ξ¯̀φ̄→Ni→`φ ≈
2(p1p2)
M2
i

Ξ¯̀φ̄→Ni
πδ(s−Mi)
MiΓNi

ΞNi→`φ . (2.28)

We see from the appearance of ΓNi in the denominator of the above expression the importance
of computing the s-channel amplitude at next-to-leading order. Similarly the RIS part of the
scattering amplitude (2.24b) is given by,

Ξ`φ→Ni→¯̀φ̄ ≈
2(p1p2)
M2
i

Ξ`φ→Ni
πδ(s−Mi)
MiΓNi

ΞNi→¯̀φ̄ . (2.29)

The RIS parts (2.28) and (2.29) give the following contribution to the Boltzmann equation for
the lepton number,

s
dYL
dt

=2
∑
i

∫
dΠp1k1p2k2

`φ`φ (2π)4δ(p1 + k1 − p2 − k2) (2.30)

×
[
Ξ¯̀φ̄→Ni→`φf

p1
¯̀ fk1

φ̄
(1− fp2

` )(1 + fk2
φ )− Ξ`φ→Ni→¯̀φ̄f

p1

` f
k1
φ (1− fp2

¯̀ )(1 + fk2

φ̄
)
]
.

The overall factor of 2 comes from the fact that the processes (2.24) violate lepton number
by two units. Using equilibrium distribution function and neglecting the quantum statistical
factors we can rewrite (2.30) as,

s
dYL
dt

= 212π3
∑
i

ΓNiεi
Mi

∫
dΠp1k1p2k2

`φ`φ (2π)4δ(p1 + k1 − p2 − k2)

× f eq,p1

` f eq,k1

φ δ((p1 + k1)2 −M2
i )(p1p2) . (2.31)

The integration over the phase-space can be performed analytically (see appendix B) and
we recover exactly the extra production term from the decay, see the RHS of (2.23). This
computation shows that the decay term producing an asymmetry in equilibrium can be exactly
cancelled by subtracting the RIS part of the s-channel scattering amplitude. We therefore
define the RIS-subtracted amplitude (which is denoted by a prime) as the difference between
the tree-level scattering amplitude, Ξ(T )

¯̀φ̄→`φ, and the RIS part,

Ξ
′
¯̀φ̄→`φ ≡Ξ(T )

¯̀φ̄→`φ −
∑
i

Ξ¯̀φ̄→Ni→`φ

=2gw(p1p2)
∑
i,j

MiMj(h†h)2
ij

[
gwP

∗
i (s)Pj(s) + gwP

∗
i (t)Pj(t) + P ∗i (s)Pj(t) + P ∗i (t)Pj(s)

]
−
∑
i

2g2
w(p1p2)(λ†+λ+)2

ii

πδ(s−Mi)
MiΓNi

, (2.32)

and a similar definition for Ξ
′
`φ→¯̀φ̄

with λ+ replaced by λ−. It is then easy to see that the
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Chapter 2 Boltzmann approach to leptogenesis

RHS of the Boltzmann equation for the lepton asymmetry will vanish in thermal equilibrium
if we use the RIS-subtracted amplitude (2.32) instead of the naive scattering amplitude. Since
Ξ(T )

¯̀φ̄→`φ and Ξ(T )

`φ→¯̀φ̄
are CP-conserving they are equal and will cancel each other in thermal

equilibrium. Therefore we will recover the RHS of (2.31), which cancel the RHS of (2.23).
The sum of the RIS-amplitudes Ξ

′
¯̀φ̄→`φ and Ξ

′
`φ→¯̀φ̄

contributes to the washout of the lepton
asymmetry and is given by,

Ξ
′
¯̀φ̄↔`φ ≡

1
2

[
Ξ
′
¯̀φ̄→`φ + Ξ

′
`φ→¯̀φ̄

]
(2.33)

=2gw(p1p2)
∑
i,j

MiMj(h†h)ij
[
gwP2

ij(s) + gwP
∗
i (t)Pj(t) + P ∗i (s)Pj(t) + P ∗i (t)Pj(s)

]
,

where we have defined the RIS-subtracted propagator squared,

P2
ij(q

2) =

{
P ∗i (q2)Pj(q2) for i 6= j ,

|Pi(q)|2 − π
MiΓNi

δ(q2 −M2
i ) for i = j .

(2.34)

Figure 2.3: t- and u-channel contributions to the tree-level scattering amplitude Ξ
φ̄φ̄→``.

The other |∆L| = 2 scattering amplitudes do not need to be RIS-subtracted since they are
product of t- and u-channels only, see Fig. 2.3. At tree-level they read,

Ξ(T )

φ̄φ̄→`` = Ξ(T )

``→φ̄φ̄ =
2gw(p1p2)

2!2!

∑
ij

MiMj(h†h)ij
[
gwPi(t)P ∗j (t) + gwPi(u)P ∗j (u)

+ Pi(t)P ∗j (u) + Pi(u)P ∗j (t)
]
, (2.35)

where p1,2 are the momenta of the (anti)leptons and the factors 1/(2!) are the symmetry factors
due to identical particles in the initial and final states. Finally we can write the Boltzmann
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2.3 Higgs mediated processes

equation for the lepton abundance at order O(h4),

s
dY`
dt

=
∑
i

∫
dΠpqk

`Niφ
(2π)4δ(q − p− k)

[
ΞNi→`φf

q
Ni
− Ξ`φ→Nif

p
` f

k
φ

]
(2.36)

+
∫
dΠp1k1p2k2

`φ`φ (2π)4δ(p1 + k1 − p2 − k2)
[
Ξ
′
¯̀φ̄→`φf

p1
¯̀ fk1

φ̄
− Ξ

′
`φ→¯̀φ̄f

p1

` f
k1
φ

]
+ 2

∫
dΠk1k2p1p2

φφ`` (2π)4δ(k1 + k2 − p1 − p2)Ξ(T )

φ̄φ̄→``
[
fk1

φ̄
fk2

φ̄
− fp1

` f
p2

`

]
,

where the factor of 2 in the last line comes from the fact that the scattering Ξ
φ̄φ̄�``

produce
(destroy) two leptons. This equation must be supplemented by the Boltzmann equations for
the heavy Majorana neutrinos,

s
dYNi
dt

=
∫
dΠqpk

Ni`φ
(2π)4δ(q − p− k)

[
Ξ`φ→Ni

(
f q` f

k
φ − f

q
Ni

)
+ Ξ¯̀φ̄→Ni

(
fp¯̀f

k
φ̄ − f

q
Ni

)]
. (2.37)

In (2.36) and (2.37) we have neglected the quantum statistical factors to ensure consistency
with the RIS-subtraction procedure.

Let us now summarise the procedure that we used above to obtain a consistent set of
Boltzmann equations. We first saw that the Boltzmann equations for the lepton and antilepton,
used with amplitudes computed in the S-matrix formalism, are inconsistent in the sense that
a lepton asymmetry is produced even in thermal equilibrium. We identified the problem as a
double counting of some processes, which need therefore to be subtracted from the amplitudes.
This double counting comes from the fact that, in the S-matrix formalism, the initial and final
states are assumed to be stable, or long-lived enough, to be well described by in- or out-states.
However, in leptogenesis, the most relevant processes involve the heavy Majorana neutrinos,
which are unstable. One need therefore to correct the S-matrix amplitudes by subtracting the
real intermediate state.

Even if the obtained Boltzmann equation are consistent with the third Sakharov condition
they are not completely satisfying. The RIS-subtraction corrects the Boltzmann equation in
equilibrium but we are interested in the out-of-equilibrium evolution of the lepton asymmetry.
The procedure performed above does not ensure that the Boltzmann equation (2.36) is correct
when non-equilibrium distribution functions are used on the RHS. Moreover, our derivation of
the RIS-subtracted amplitudes neglected the quantum statistical factors and used the equality,
f eq,p
` f eq,k

φ = f eq,q
Ni

, which is only true when Maxwell-Boltzmann statistics are used. The RIS-
subtraction with quantum statistics is more involved and can be performed using the optical
theorem [72] but will not be discussed here.

We will see in chapter 4 that nonequilibrium quantum field theory can solved the above
problem in a consistent way. The equation for the lepton asymmetry within this formalism
automatically satisfies the third Sakharov condition. We therefore do not need to performed
any RIS-subtraction procedures and the quantum statistical factors can be kept.

2.3 Higgs mediated processes

Other important processes for leptogenesis are the |∆L| = 1 scatterings with the top quark or
the gauge bosons mediated by the Higgs doublet. We perform here only the computation with
the top quarks. This computation will be used for comparison with the NEQFT treatment.
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Chapter 2 Boltzmann approach to leptogenesis

In the S-matrix formalism the scatterings with the gauge bosons are treated in a similar way.
However, when thermal effects are taking into account, the contribution of the gauge bosons
must be treated in a different way, as multiple interactions with the gauge boson must be
resummed and contribute at leading order [71, 100, 101]. A systematic treatment of the gauge
boson interactions in leptogenesis is still missing in the literature. For simplicity, in this work
we take into account the effects of the gauge interactions only through thermal masses of the
SM particles, and neglect all other effects.

Figure 2.4: One-loop scattering amplitude Ξt̄Q→Ni`. Similarly to the one-loop heavy neutrino
decay the second and third diagrams are the self-energy or wave-function corrections, and the
last one is the vertex correction. The second diagram is CP-conserving and does not contribute
to the generation of the lepton asymmetry.

The only relevant SM Yukawa coupling is the one of the top quark,

LSM ⊃ −λtQ̄φ̃PRt− λ∗t t̄PLφ̃†Q , (2.38)

where Q is the quark doublet of the third generation and t is the top quark singlet, and λt ≈ 1
is the top Yukawa coupling. The lepton violating scattering processes involving the top are the
s-channel scattering processes t̄Q� Ni` (see Fig. 2.4), and the t-channel processes NiQ� `t
(see Fig. 2.5) and Nit̄ � `Q̄ (see Fig. 2.6). For a hierarchical mass spectrum the one-loop
s-channel amplitudes read,

Ξt̄Q→Ni` =Ξt̄Q→φ̄ ×∆2
φ,F (p+ q)× Ξφ̄¯̀→Ni , (2.39a)

ΞNi`→t̄Q =ΞNi→¯̀φ̄ ×∆2
φ,F (p+ q)× Ξφ̄→t̄Q , (2.39b)

where ∆2
φ,F (k) ≈ 1/(k2−m2

φ) is the Feynman (or time-ordered) Higgs propagator, Ξ
φ̄¯̀→Ni and

Ξ
Ni→¯̀φ̄

are given by (2.14a) and (2.14b), respectively, and

Ξt̄Q→φ̄ = Ξφ̄→t̄Q = 2gq |λt|2 (pQpt) . (2.40)

Here gq = 3 is the SU(3)C factor, and q, p, pt and pQ are the momenta of the heavy neutrino,
lepton, top quark and quark doublet, respectively. Note that (2.40) neglects the CP-violation
in the top Yukawa coupling. Similarly, the t-channel scattering amplitudes ΞNiQ�`t are given
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2.3 Higgs mediated processes

Figure 2.5: One-loop level scattering amplitude ΞNiQ→`t. See comments under Fig. 2.4.

by,

ΞNiQ→`t = ΞNi t̄→`Q̄ = ΞNi→`φ ×∆2
φ,F (q − p)× ΞQφ→t , (2.41a)

Ξ`t→NiQ = Ξ`Q̄→Ni t̄ = Ξ`φ→Ni ×∆2
φ,F (q − p)× Ξt→Qφ , (2.41b)

where ΞQφ→t and Ξt→Qφ are both given by (2.40). The other lepton violating processes in-
volving the top quark are the 3-body (inverse) decays,

ΞNi→`tQ̄ = ΞNi→`φ ×∆2
φ,F (q − p)× Ξφ→tQ̄ , (2.42a)

Ξ`tQ̄→Ni = Ξ`φ→Ni ×∆2
φ,F (q − p)× ΞtQ̄→φ . (2.42b)

Note that the factorisation of the amplitudes as in (2.39), (2.41) and (2.42) only works for a
hierarchical mass spectrum Mi �Mj .

The Higgs-mediated processes contribute to the RHS of the Boltzmann equation for the
lepton abundance,

s
dY`
dt

=
∑
i

∫
dΠqpptpQ

Ni`tQ
(2π)4

(
(2.43)

δ(q + pt − p− pQ)
[
ΞNi t̄→`Q̄f

q
Ni
fpt
t̄

(1− fp` )(1− fpQ
Q̄

)− Ξ`Q̄→Ni t̄f
p
` f

pQ
Q̄

(1− f qNi)(1− f
pt
t̄

)
]

+ δ(q + p− pt − pQ)
[
Ξt̄Q→Ni`f

pt
t̄
f
pQ
Q (1− f qNi)(1− f

p
` )− Ξ`Ni→t̄Qf

p
` f

q
Ni

(1− fpt
t̄

)(1− fpQQ )
]

+ δ(q + pQ − p− pt)
[
ΞNiQ→`tf

q
Ni
f
pQ
Q (1− fp` )(1− fptt )− Ξ`t→NiQf

p
` f

pt
t (1− f qNi)(1− f

pQ
Q )
]

+ δ(q − p− pt − pQ)
[
ΞNi→`tQ̄f

q
Ni

(1− fp` )(1− fptt )(1− fpQ
Q̄

)− Ξ`tQ̄→Nif
p
` f

pt
t f

pQ
Q̄

1− f qNi)
])

.

As for the case of (inverse) decay of heavy neutrinos the difference of the above Boltzmann
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Chapter 2 Boltzmann approach to leptogenesis

Figure 2.6: One-loop level scattering amplitude Ξ
Ni t̄→`Q̄. See comments under Fig. 2.4.

equation and the one for the antilepton abundance is nonzero in thermal equilibrium, which
is in contradiction with the third Sakharov condition. One would therefore need to perform a
RIS-subtraction in a similar way as in the previous section. This can be done by including the
2� 3 scattering processes, and subtracting their RIS part. We will however not perform here
the RIS-subtraction in the S-matrix formalism which can be found in [102].

Figure 2.7: One-loop level decay amplitude Ξ
Ni→`tQ̄. See comments under Fig. 2.4.
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Chapter 3

Nonequilibrium quantum field theory

We sketch here the basic formalism of nonequilibrium quantum field theory (NEQFT) [103–
107]. After defining the different quantities of interest we derive the Kadanoff-Baym equations
for a complex scalar, a chiral and a Majorana field. We show then how we can recover the
Boltzmann equations from the Kadanoff-Baym equations [108–112]. We are paying a special
attention to the approximations made during the computation, and to the range of validity of
the obtained equations. The complex scalar, chiral and Majorana fields correspond of course
to the Higgs doublet, the lepton and the heavy neutrino fields in the leptogenesis scenario. We
will however perform the computation in a general way as much as possible, without referring
to the special case of leptogenesis. The application of the formalism derived below will be
used for leptogenesis in the chapter 4. The entire computation will be performed in a flat
space-time. The effect of an expanding universe will implemented by the replacement of the
usual derivative by the covariant one [113, 114].

3.1 Kadanoff-Baym equations

In NEQFT the basic objects under study are the expectation value of the two-point functions
of the fields with the time argument belonging to the closed time path (CTP) [103], see Fig.
3.1. For a massless complex scalar (the Higgs), a massless chiral field (the leptons) and a
Majorana field (the heavy neutrinos) the propagators are defined as,

∆ab(x, y) = 〈TCφa(x)φb†(y)〉 , (3.1a)

Sαβab (x, y) = 〈TC`aα(x)¯̀b
β(y)〉 , (3.1b)

S ij(x, y) = 〈TCNi(x)N̄j(y)〉 , (3.1c)

where TC denotes path-ordering along the CTP, the Latin subscripts are SU(2)L indices, the

tmaxtinit

t

Figure 3.1: Closed time path.

Greek superscripts are lepton flavour indices, the latin superscripts are heavy neutrino flavour
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Chapter 3 Nonequilibrium quantum field theory

indices, and we omitted the spinor indices for the lepton and heavy neutrino field. Here 〈O〉
denotes the expectation value of an Heisenberg operator O and is given by,

〈O〉 = tr(Oρ(t0)) , (3.2)

where ρ(t0) is the density matrix at the initial time. In order to conveniently express the path
ordering TC we generalise the Heaviside step function to time argument belonging to the CTP
[115],

θC(x0, y0) ≡

{
1 if x0 occurs later than y0 on the CTP ,
0 if y0 occurs later than x0 on the CTP ,

(3.3)

and rewrite (3.1) as,

∆ab(x, y) = θC(x0, y0)〈φa(x)φb†(y)〉+ θC(y0, x0)〈φb†(y)φa(x)〉 , (3.4a)

Sαβab (x, y) = θC(x0, y0)〈`aα(x)¯̀b
β(y)〉 − θC(y0, x0)〈¯̀bβ(y)`aα(x)〉 , (3.4b)

S ij(x, y) = θC(x0, y0)〈Ni(x)N̄j(y)〉 − θC(y0, x0)〈N̄j(y)Ni(x)〉 . (3.4c)

Note that the path ordering features the usual minus sign for fermions. We define similarly
the sign function and the Dirac delta on the CTP,

signC(x
0, y0) ≡ 2θC(x0, y0)− 1 , (3.5a)

δC(x0, y0) ≡ d

dx0
θC(x0, y0) , (3.5b)

δC(x, y) ≡ δC(x0, y0)δ(~x− ~y) . (3.5c)

For notational convenience we will often omit the numerous indices and use a matrix notation
for the propagators,

∆̂(x, y) = 〈TCφ(x)φ†(y)〉 , (3.6a)

Ŝ(x, y) = 〈TC`(x)¯̀(y)〉 , (3.6b)

Ŝ (x, y) = 〈TCN(x)N̄(y)〉 , (3.6c)

where the hat over the two-point functions denotes a matrix.

The propagators (3.6) satisfy the Schwinger-Dyson equation,

∆̂−1(x, y) = ∆̂−1
0 (x, y)− Ω̂(x, y) , (3.7a)

Ŝ−1(x, y) = Ŝ−1
0 (x, y)− Σ̂(x, y) , (3.7b)

Ŝ −1(x, y) = Ŝ −1
0 (x, y)− Π̂(x, y) , (3.7c)

where Ω̂(x, y), Σ̂(x, y) and Π̂(x, y) are the self-energies, and ∆̂0, Ŝ0 and Ŝ0 are the free
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3.1 Kadanoff-Baym equations

propagators of the corresponding fields,1

∆̂−1
0 (x, y) = i2xδC(x, y) , (3.8a)

Ŝ−1
0 (x, y) = /∂xPLδC(x, y) , (3.8b)

Ŝ −1
0 (x, y) = −i

(
i/∂x − M̂

)
δC(x, y) , (3.8c)

where 2x is the d’Alembertian. The self-energies are obtained by functional differentiation of
the 2PI effective action [116] and are functionals of the full propagators of each species. It is
useful to trade the propagator with time arguments on the CTP for two propagators with time
arguments living on the positive branch of the CTP. To this end we decompose the two-point
function Ĝ(x, y) (where Ĝ(x, y) stands for any propagators in (3.6)) into a spectral function
Ĝρ(x, y) and a statistical function ĜF (x, y),

Ĝ(x, y) = ĜF (x, y)− i

2
signC(x

0, y0)Ĝρ(x, y) . (3.9)

Using (3.4) and (3.5) we find the statistical and spectral functions for the Higgs,

∆abF (x, y) =
1
2
〈[φa(x), φb†(y)]+〉 , (3.10a)

∆abρ(x, y) = i〈[φa(x), φb†(y)]−〉 , (3.10b)

where [·, ·]± are the commutator and anticommutator, respectively. For the fermions we find
equations similar to (3.10), with commutator replaced by anticommutator, and vice versa. It
will be proven useful to introduce the Wightman propagators, which are linear combination of
the statistical and spectral functions,

Ĝ≷(x, y) ≡ ĜF (x, y)∓ i

2
Ĝρ(x, y) . (3.11)

We define next the retarded and advanced propagators,

ĜR(x, y) ≡ θ(x0 − y0)Ĝρ(x, y) , (3.12a)

ĜA(x, y) ≡ −θ(y0 − x0)Ĝρ(x, y) , (3.12b)

and finally the hermitian propagator,

Ĝh(x, y) ≡ 1
2
(
ĜR(x, y) + ĜA(x, y)

)
. (3.13)

Note that only two propagators for each field are needed to fully describe the system. However,
using the above definitions simplifies significantly the notation. The different propagators
satisfy many symmetry properties which are summarised in appendix C. In particular the

1We are using a superfluous four-component notation for the lepton field. Here the inverse of the lepton
propagator is defined by

R
C
d4zS(x, z)S−1(z, y) = PL and

R
C
d4zS−1(x, z)S(z, y) = PR.
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Chapter 3 Nonequilibrium quantum field theory

Wightmann propagators satisfy,

∆̂≷(x, y) = ∆̂†≷(y, x) , (3.14a)

Ŝ≷(x, y) = γ0Ŝ†≷(y, x)γ0 = PLŜ≷(x, y)PR , (3.14b)

Ŝ≷(x, y) = γ0Ŝ †
≷(y, x)γ0 = CŜ T

≶ (y, x)C−1 . (3.14c)

The non-local part of the self-energy can be decomposed in a similar way,

Π̂(x, y) ≡ −iδC(x, y)Π̂loc(x) + Π̂F (x, y)− i

2
signC(x

0, y0)Π̂ρ(x, y) , (3.15a)

Π̂≷(x, y) ≡ Π̂F (x, y)∓ i

2
Π̂ρ(x, y) , (3.15b)

Π̂R(x, y) ≡ θ(x0 − y0)Π̂ρ(x, y) , (3.15c)

Π̂A(x, y) ≡ −θ(y0 − x0)Π̂ρ(x, y) , (3.15d)

Π̂h(x, y) ≡ 1
2

(
Π̂R(x, y) + Π̂A(x, y)

)
, (3.15e)

where Π̂(x, y) stands for any self-energies in (3.7) and Π̂loc(x) is the local self-energy. The self-
energies satisfy symmetry properties similar to their corresponding propagators, see appendix
C.

Finally, we will also need the CP-conjugated propagators. Under a CP-transformation the
Higgs, lepton and heavy neutrino fields transforms as,

φa(x) CP−−−−→ φa†(x̄) , (3.16a)

`aα(x) CP−−−−→ CP ¯̀aT
α (x̄) , (3.16b)

Ni(x) CP−−−−→ CPN̄T
i (x̄) , (3.16c)

where the transposition acts on the spinor indices. Here x̄ ≡ (x0,−~x), and C ≡ iγ2γ0 and
P ≡ γ0 are the charge conjugation and parity matrices, respectively. The CP-conjugated
propagators on the CTP are given by,

∆̄ab(x, y) = ∆ba(ȳ, x̄) , (3.17a)

S̄αβab (x, y) =
(
CP
)
Sβαba (ȳ, x̄)

(
CP
)−1

, (3.17b)

S̄ij(x, y) =
(
CP
)
Sba(ȳ, x̄)

(
CP
)−1

, (3.17c)

and the CP-conjugated self-energies are defined in a similar way. The CP-conjugate of the
statistical, spectral and other two-point functions immediately follow from their definition and
the CP-conjugated propagators (3.17) on the CTP and are listed in appendix C.

It is interesting to investigate the properties of the propagators in exact thermal equilibrium.
A system in thermal equilibrium is characterised by the density matrix,

ρeq =
1
Z
e−βH , (3.18)

where Z is a normalisation factor, β = 1/T the inverse temperature and H the Hamiltonian
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3.1 Kadanoff-Baym equations

of the system. In equilibrium the Wightman Higgs propagator reads,

∆eq
ab,>(x, y) = 〈φa(x)φb†(y)〉 =

1
Z

tr
[
e−βHφa(x)φb†(y)

]
=

1
Z

tr
[
ei(iβ)Hφa(x)e−i(iβ)Hei(iβ)Hφb†(y)

]
. (3.19)

In the Heisenberg picture, when the Hamiltonian is time independent (which is obviously the
case in thermal equilibrium), the time evolution of the field takes a simple form,

φa(x0 + t, ~x) = eiHtφa(x0, ~x)e−iHt . (3.20)

We can therefore interpret the inverse temperature as an imaginary time [117], and write,

∆eq
ab,>(x, y) =

1
Z

tr
[
φa(x0 + iβ, ~x)ei(iβ)Hφb†(y)

]
=

1
Z

tr
[
ei(iβ)Hφb†(y)φa(x0 + iβ, ~x)

]
= ∆eq

ab,<(x+ iβ, y) , (3.21)

where we have used the cyclicity property of the trace, and the simplified notation (x+ iβ) for
(x0 +iβ, ~x). The relations of the type of (3.21) among the propagators are known as the Kubo-
Martin-Schwinger (KMS) relations, and play an important role in the study of equilibrium field
theory (see e.g. [118, 119]). We will use the KMS relations in the next section to motivate
a particular ansatz. The KMS relation for fermions features an additional minus sign coming
from the definition of the Wightman propagators,

Ŝeq
> (x, y) = −Ŝeq

< (x+ iβ, y) , (3.22a)

Ŝ eq
> (x, y) = −Ŝ eq

< (x+ iβ, y) . (3.22b)

Note that the self-energies also satisfy the KMS relations in thermal equilibrium.
We derive then the Kadanoff-Baym equations from the Schwinger-Dyson equation (3.7). Let

us first focus on the Higgs field and take the convolution of (3.7a) with the full propagator ∆̂
from the right,

i2x∆̂(x, y) = δC(x, y) +
∫
C
d4zΩ̂(x, z)∆̂(z, y) , (3.23)

where we used the notation
∫
C d

4z ≡
∫
C dz

0
∫
d3~z. We insert then the statistical and spectral

decomposition of the propagator and self-energy into the above equation. On the LHS we
obtain,

i2x

(
∆̂F (x, y)− i

2
signC(x

0, y0)∆̂ρ(x, y)
)

= i2x∆̂F (x, y) +
1
2

signC(x
0, y0)2x∆̂ρ(x, y)

+ δC(x0, y0)∂x0∆̂ρ(x, y) , (3.24)

where we have used the relations (3.5). Using the canonical (equal-time) commutation relation
we write the last term in (3.24),

lim
x0→y0

∂x0∆abρ(x, y) = i lim
x0→y0

〈[∂x0φa(x), φb†(y)]−〉 = δabδ(~x− ~y) , (3.25)
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Chapter 3 Nonequilibrium quantum field theory

which exactly cancels the delta function on the RHS of (3.23). In terms of the statistical and
spectral functions the integral over the CTP on the RHS of (3.23) reads,∫
C
d4zΩ̂(x, z)∆̂(z, y) =

∫
C
d4z
[
Ω̂F (x, z)∆̂F (z, y)− i

2
signC(x

0, z0)Ω̂ρ(x, z)∆̂F (z, y)

− i

2
signC(z

0, y0)Ω̂F (x, z)∆̂ρ(z, y)− 1
4

signC(x
0, z0)signC(z

0, y0)Ω̂ρ(x, z)∆̂ρ(z, y
]
. (3.26)

The integrals over the CTP on the RHS of (3.26) together with the sign functions can be
expressed as integrals over the positive branch only,∫

C
d4z . . . = 0 ,∫
C
d4zsignC(x

0, z0) . . . = 2
∫ x0

0
d4z . . . ,∫

C
d4zsignC(z

0, y0) . . . = −2
∫ y0

0
d4z . . . ,∫

C
d4zsignC(x

0, z0)signC(z
0, y0) . . . = 2signC(x

0, y0)
∫ x0

y0

d4z . . . , (3.27)

where we have set the initial time on the CTP at t = 0. In (3.27) the ellipsis represents any
functions with time arguments living on the positive branch. Using (3.24) and (3.27) into
(3.23) we can split the equation into a “statistical” part (independent of the CTP branch) and
a “spectral” part (proportional to signC(x0, y0)),

−
(
2x + Ω̂loc(x)

)
∆̂F (x, y) =

∫ x0

0
d4zΩ̂ρ(x, z)∆̂F (z, y)−

∫ y0

0
d4zΩ̂F (x, z)∆̂ρ(z, y) , (3.28a)

−
(
2x + Ω̂loc(x)

)
∆̂ρ(x, y) =

∫ x0

y0

d4zΩ̂ρ(x, z)∆̂ρ(z, y) . (3.28b)

The above equations are known as the Kadanoff-Baym (KB) equations. We can see here that
the local self-energy acts as an effective, x−dependent mass term. The KB equations for the
statistical and spectral functions (3.28) can be expressed more conveniently using the retarded
and advanced two-point functions (3.12),

−
(
2x + Ω̂loc(x)

)
∆̂F (ρ)(x, y) =

∫
d4zθ(z0)

[
Ω̂R(x, z)∆̂F (ρ)(z, y)

+ Ω̂F (ρ)(x, z)∆̂A(z, y)
]
, (3.29)

where we extend the integration domain to the whole z plane with the help of the step function.
Similarly we find for the lepton and heavy neutrino,

i/∂xŜF (ρ)(x, y) =
∫
d4zθ(z0)

[
Σ̂R(x, z)ŜF (ρ)(z, y) + Σ̂F (ρ)(x, z)ŜA(z, y)

]
, (3.30)(

i/∂x − M̂
)

ŜF (ρ)(x, y) =
∫
d4zθ(z0)

[
Π̂R(x, z)ŜF (ρ)(z, y) + Π̂F (ρ)(x, z)ŜA(z, y)

]
. (3.31)
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3.2 Quantum kinetic equation

Instead of the spectral function it is often convenient to use as dynamical quantities the retarded
and advanced propagators which satisfy,

−
(
2x + Ω̂loc(x)

)
∆̂R(A)(x, y) = −δ(x− y)1 +

∫
d4zΩ̂R(A)(x, z)∆̂R(A)(z, y) , (3.32a)

i/∂xŜR(A)(x, y) = −δ(x− y)1 +
∫
d4zΣ̂R(A)(x, z)ŜR(A)(z, y) , (3.32b)(

i/∂x − M̂
)

ŜR(A)(x, y) = −δ(x− y)1 +
∫
d4zΠ̂R(A)(x, z)ŜR(A)(z, y) , (3.32c)

where the unit matrix is defined by,

1 =


δab for the Higgs field,
δabδ

αβPR for the lepton field,
δij for the heavy neutrino field.

(3.33)

Together with the functional form of the self-energies the coupled system of Kadanoff-Baym
equations (3.29), (3.30) and (3.31) represent the starting point for the study of a nonequilibrium
system. These equations are exact coupled integro-differential equations for the statistical
and spectral functions. They can be seen as the quantum field theory generalisation of the
Boltzmann equation. However, unlike the Boltzmann equation, they are non-Markovian, i.e.
the evolution of the propagators depends on the whole history of the system. This property
makes the KB equations extremely difficult to solve numerically [55].

Even though the KB equations are exact, the self-energies can only be computed perturba-
tively. This will give us a perturbative expansion of the RHS of the KB equations. However,
as the self-energies are functional of the full propagators, they take into account higher order
terms which have been resummed into the full propagators. This resummation is a key feature
to avoid the secular terms [107]. Note that a recent development in nonequilibrium quantum
field theory [120, 121] based on perturbation theory avoids the pinch singularity by considering
finite time effects.

3.2 Quantum kinetic equation

In this section we derive from the Kadanoff-Baym equations the quantum kinetic equations
[108–112]. They are the quantum analogue of the Boltzmann equations. The latter are equa-
tions for the one-particle distribution functions which depend on (x, ~p). We need therefore
to change the representation of the two-point functions if we want to recover the Boltzmann
limit. To this end we perform a change of the variables from (x, y) to the central coordinate
X ≡ 1

2(x+ y) and the relative coordinate s ≡ x− y,

ĜF (ρ)(x, y)→ ĜF (ρ)(X, s) , (3.34)
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Chapter 3 Nonequilibrium quantum field theory

and define the Wigner transform as a Fourrier transform with respect to the relative coordinate,

ĜF (≷,R,A,h)(X, p) ≡
∫
d4seipsĜF (≷,R,A,h)(X, s) , (3.35a)

Ĝρ(X, p) ≡ −i
∫
d4seipsĜρ(X, s) , (3.35b)

where the factor −i for the spectral function is a convention and ensures that the Wigner
transforms of the spectral and statistical functions have the same hermicity properties (see
appendix C). We use here the same notation for the propagators in the (x, y) representation
and its Wigner transform. The arguments of the two-point functions will distinguish in which
representation we are working. In Wigner space the different propagators introduced in the
previous section are related through,

Ĝ≷(X, p) = ĜF (X, p)± 1
2
Ĝρ(X, p) , (3.36a)

iĜρ(X, p) = ĜR(X, p)− ĜA(X, p) , (3.36b)

Ĝh(X, p) =
1
2
(
ĜR(X, p) + ĜA(X, p)

)
, (3.36c)

and satisfy symmetry properties different from the one in coordinate space, see appendix C.
The Wigner transforms of the self-energies are defined similarly,

Π̂F (≷,R,A,h)(X, p) ≡
∫
d4seipsΠ̂F (≷,R,A,h)(X, s) , (3.37a)

Π̂ρ(X, p) ≡ −i
∫
d4seipsΠ̂ρ(X, s) . (3.37b)

We want now to write the KB equations in Wigner space. For the sake of clarity we concentrate
on the Higgs field and neglect from now on the local self-energy. As we will see, the local self-
energy of the Higgs plays no role for the generation of the lepton asymmetry. Then the Wigner
transform of the LHS of (3.29) can be easily computed,∫

d4(x− y)eiks (−2x) ∆̂F (x, y) =
∫
d4seiks

(
−1

2
2X −2s − ∂s∂X

)
∆̂F (X, s)

=
∫
d4seiks

(
k2 + ik∂X −

1
4
2X

)
∆̂F (X, s)

=
(
k2 + ik∂X −

1
4
2X

)
∆̂F (X, k) , (3.38)

where we integrated by part to obtain the second line. It is useful to compute the Wigner
transform of a convolution product,

Â(x, y) =
∫
d4zB̂(x, z)Ĉ(z, y) , (3.39)
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3.2 Quantum kinetic equation

where Â, B̂ and Ĉ are arbitrary matrices. The Wigner transform of (3.39) can be formally
written as an infinite sum of derivatives (see appendix D),

Â(X, k) = e−
i
2�{B̂(X, k)}{Ĉ(X, k)} , (3.40)

where the diamond operator is defined as the generalised Poisson bracket,

�{B̂(X, k)}{Ĉ(X, k)} ≡ ∂XB̂(X, k)∂kĈ(X, k)− ∂kB̂(X, k)∂XĈ(X, k) . (3.41)

We assumed in (3.40) that the two-point functions transform like the statistical propagators,
i.e. without the −i factor. If any of the functions Â(X, s), B̂(X, s) or Ĉ(X, s) transform like
the spectral function, additional −i factors should be added. The diamond operator satisfies
many useful properties which can be derived from its definition (3.41). They are summarised
in appendix D.1.

We can now write the KB equations (3.29), (3.30) and (3.31) in Wigner space. We first drop
the Heaviside step function θ(z0) and extend the z0 integration over the complete real axis.
This means that we send the initial time to −∞ but we still specify the initial conditions at
some finite time, see [122] for more details about this approximation. Performing the Wigner
transform of the KB equations for the statistical and spectral Higgs functions we find,(

k2 + ik∂X −
1
4
2X

)
∆̂F (ρ)(X, k) = e−

i
2�{Ω̂F (ρ)(X, k)}{∆̂A(X, k)}

+ e−
i
2�{Ω̂R(X, k)}{∆̂F (ρ)(X, k)} . (3.42)

Similarly the advanced and causal propagators satisfy,(
k2 + ik∂X −

1
4
2X

)
∆̂R(A)(X, k) = −1 + e−

i
2�{Ω̂R(A)(X, k)}{∆̂R(A)(X, k)} . (3.43)

The Wigner transform of the KB equations of the lepton and heavy neutrino fields are computed
in the same manner,(

/p+
i

2
/∂X

)
ŜF (ρ)(X, p) = e−

i
2�{Σ̂F (ρ)(X, p)}{ŜA(X, p)}

+ e−
i
2�{Σ̂R(X, p)}{ŜF (ρ)(X, p)} , (3.44a)(

/p+
i

2
/∂X

)
ŜR(A)(X, p) = −1 + e−

i
2�{Σ̂R(A)(X, p)}{ŜR(A)(X, p)} , (3.44b)

and (
/q +

i

2
/∂X − M̂

)
ŜF (ρ)(X, q) = e−

i
2�{Π̂F (ρ)(X, q)}{ŜA(X, q)}

+ e−
i
2�{Π̂R(X, q)}{ŜF (ρ)(X, q)} , (3.45a)(

/q +
i

2
/∂X − M̂

)
ŜR(A)(X, q) = −1 + e−

i
2�{Π̂R(A)(X, q)}{ŜR(A)(X, q)} . (3.45b)
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Chapter 3 Nonequilibrium quantum field theory

For notational clarity we use in the above equations different momenta for the heavy neutrino,
lepton and Higgs fields. Here and in the rest of this work q, p and k denote the right-handed
neutrino, lepton and Higgs momenta, respectively.

Note that the above equations are local, i.e. the two-point functions are all evaluated at
the same point in Wigner space. However the product of an infinite number of derivatives
from the exponential of the diamond operator contains informations on the whole history of
the system, similarly to the memory integrals. The KB equations in Wigner space are still
exact (up to the fact that we send the initial time to −∞). However, due to the presence of
the exponential of the diamond operator, they are of no practical utility. We need therefore to
cut at a certain order the series of diamond operators. This is known as a gradient expansion.
Mathematically, it corresponds to an expansion in O(∂X∂p). Physically, it corresponds to an
expansion in slow relative to fast time-scales [72]. The slow time-scale is characterised by the
macroscopic time evolution of the system, i.e. its departure from thermal equilibrium. In the
leptogenesis scenario the macroscopic time is typically governed by the Hubble rate H or the
decay rate of the Majorana neutrino ΓNi . These rates affect mainly the central coordinate X.
We can write, schematically,

∂X ∼ H, ΓNi . (3.46)

On the other hand, the relative coordinate s is mainly associated with the hard scales, such as
the energy or momentum of the particles in the thermal bath. In leptogenesis the hard scales
correspond to the mass of the heavy neutrino Mi or the temperature T of the thermal bath.
Schematically,

∂s ∼Mi, T . (3.47)

Therefore in leptogenesis the gradient expansion corresponds to an expansion in H/T or
ΓNi/Mi,

∂X∂p ∼ ∂X/∂s ∼ H/T or ΓNi/Mi . (3.48)

In the radiation dominated epoch of the universe, H/T ∼ T/Mpl. We can therefore safely
perform a gradient expansion and only keep the first order terms in the diamond operator as
long as T � Mpl. The effects of higher order terms have been investigated in [64]. At first
order in the gradient expansion the Kadanoff-Baym equations for the Higgs, lepton and heavy
neutrino read

D̂X(p)ĜF (ρ)(X, p) = Π̂F (ρ)(X, p)ĜA(X, p) + Π̂R(X, p)ĜF (ρ)(X, p)

− i

2
�
{

Π̂F (ρ)(X, p)
}{

ĜA(X, p)
}
− i

2
�
{

Π̂R(X, p)
}{

ĜF (ρ)(X, p)
}
, (3.49)

D̂X(p)ĜR(A)(X, p) = −1 + Π̂R(A)(X, p)ĜR(A)(X, p)

− i

2
�
{

Π̂R(A)(X, p)
}{

ĜR(A)(X, p)
}
, (3.50)
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3.2 Quantum kinetic equation

where we have defined the differential operator,

D̂X(p) =


p2 + ip∂X − 1

42X for the Higgs field,

/p+ i
2
/∂X for the lepton field,

/p− M̂ + i
2
/∂X for the heavy neutrino field.

(3.51)

Equations (3.49) and (3.50) can be written more compactly. We first note that the d’Alembertian
2X in the differential operator (3.51) for the Higgs field is of second order in the diamond op-
erator,

2X∆̂F (ρ,R,A)(X, k) =
1
2
�2
{
k2
}{

∆̂F (ρ,R,A)(X, k)
}
, (3.52)

and should therefore be neglected in a consistent first order gradient approximation. Defining
the functions

ω̂R(A)(X, p) =


p2 − Ω̂R(A)(X, p) for the Higgs field,

/p− Σ̂R(A)(X, p) for the lepton field,

/p− M̂ − Π̂R(A)(X, p) for the heavy neutrino field,

(3.53)

we rewrite equations (3.49) and (3.50),

− i
2
�
{
ω̂R

}{
ĜF (ρ)

}
+ ω̂RĜF (ρ) = Π̂F (ρ)ĜA −

i

2
�
{

Π̂F (ρ)

}{
ĜA

}
, (3.54)

− i
2
�
{
ω̂R(A)

}{
ĜR(A)

}
+ ω̂R(A)ĜR(A) = −1 , (3.55)

where we have suppressed the arguments (X, p) of the two-point functions for notational con-
venience.

The hermitian and antihermitian parts of (3.54) or (3.55) are often referred to as constraint
and kinetic equations, respectively. Note that they do not feature the memory integral as
the KB equations, and are therefore local in space and time. The propagator at a space-time
coordinate X only depends on the configuration of the system infinitesimally close to X. Any
non-local behaviours have been neglected by the gradient approximation.

The equation (3.55) for the causal propagators can be solved algebraicly . Up to first order
in the gradient expansion the solutions of (3.55) are given by [123],

ĜR(A) = −ω̂−1
R(A)1−

i

2
ω̂−1
R(A) �

{
ω̂R(A)

}{
ω̂−1
R(A)

}
1

= −ω̂−1
R(A)1 +

i

2
�
{
ω̂−1
R(A)

}{
ω̂R(A)

}
ω̂−1
R(A)1 . (3.56)

It can be easily checked that (3.56) is a solution of the equations for the causal propagators
(3.55) by inserting it into (3.55) and neglecting the terms of second order in the diamond
operator. To derive the second equality in (3.56) we used the property of the diamond operator,

Â(X, p) �
{
Â−1(X, p)

}{
Â(X, p)

}
= − �

{
Â(X, p)

}{
Â−1(X, p)

}
Â(X, p) , (3.57)
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Chapter 3 Nonequilibrium quantum field theory

which holds for any invertible matrix Â(X, p). The property (3.57) can be derived by using
the matrix identity

∂XÂ
−1 = −Â−1

(
∂XÂ

)
Â−1 . (3.58)

Let us now investigate further the solutions (3.56) for the Higgs field. Since the early
universe was in a SU(2)L-symmetric state the matrix structure of the Higgs propagators and
self-energies is trivial,

∆ab(X, k) = δab∆(X, k) ,
Ωab(X, k) = δabΩ(X, k) , (3.59)

where ∆ab(X, p) (Ωab(X, k)) stands for any of the Higgs propagators (self-energies). The Higgs
two-point functions ∆(X, k) and Ω(X, k) without a hat or indices denote scalar functions
without matrix structure. Since they commute the diamond operator in (3.56) vanishes,

�
{
ωR(A)

}{
ω−1
R(A)

}
=
(
∂XωR(A)

)(
∂kω

−1
R(A)

)
−
(
∂kωR(A)

)(
∂Xω

−1
R(A)

)
(3.60)

=
(
∂XωR(A)

)(
− ω−2

R(A)∂kωR(A)

)
−
(
∂kωR(A)

)(
− ω−2

R(A)∂XωR(A)

)
= 0 .

The retarded and advanced Higgs propagators are then simply given by,

∆R(A)(X, k) = −ω−1
R(A)(X, k) =

−1
k2 − ΩR(A)(X, k)

. (3.61)

The spectral function can be computed from the causal propagators,

∆ρ = −i
(

∆R −∆R

)
=

−Ωρ(
k2 − Ωh

)2 +
(

1
2Ωρ

)2 , (3.62)

where we have suppressed the argument (X, k) for notational convenience. Note that the
solution for the spectral function (3.62) is only formal since the self-energies Ωρ(h) can be
functionals of the spectral propagator. The solution (3.62) is usefull if the back reactions
are negligible. From (3.62) we see that the hermitian self-energy Ωh can be interpreted as
an effective mass induced by the medium, and the spectral self-energy Ωρ enterpreted as an
effective thermal width. The terminology “spectral” function becomes now clear: it underlines
the fact that ∆ρ determines the spectral properties of the system at leading order in the
gradient approximation. Similarly, the hermitian propagator reads,

∆h =
1
2

(
∆R + ∆R

)
=

−
(
k2 − Ωh

)(
k2 − Ωh

)2 +
(

1
2Ωρ

)2 . (3.63)

We now turn to the lepton field. Similarly to the Higgs field the SU(2)L matrix structure
of the lepton propagators and self-energies is trivial in the early universe. However the lepton
two-point functions contain also lepton flavour indices. For simplicity we neglect here any cor-
relation between the different flavours, and assume that the lepton flavours are well-described
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3.2 Quantum kinetic equation

by only one two-point function,

Sαβab (X, p) = δabδ
αβS(X, p) , (3.64a)

Σαβ
ab (X, p) = δabδ

αβΣ(X, p) . (3.64b)

where S(X, p) and Σ(X, p) (without a hat and SU(2)L and flavour indices) are now matrices
in spinor space only. In leptogenesis the approximation (3.64) is valid if the flavour coherence
of the lepton state produced by the decay of heavy neutrino is maintained [77]. This is the case
only at high temperature, T & 1012 GeV. In general the flavour effects should not be neglected
in leptogenesis and could play an important role [26–30, 56, 124–134]. The remaining spinor
structure of the lepton two-point functions implies that they do not commute in general. The
matrix ωR(A)(X, p) can be easily inverted,

ω−1
R(A) = PL

/p− /ΣR(A)(
p− ΣR(A)

)2 + PR
/p

p2
, (3.65)

where we have used that the only spinor component of the lepton self-energy consistent with
its chiral nature is given by ΣR(A) = PR /ΣR(A)PL. Note that due to the spinor nature of the
lepton propagators the second term in (3.56) does not vanish. However, this term is subleading
and can be neglected. In this approximation the causal lepton propagators read,

SR(A) ≈ −ω
−1
R(A)PR = −

/p− /ΣR(A)(
p− ΣR(A)

)2PR . (3.66)

At leading order in the coupling the spectral function is then given by,

Sρ = −i
(
SR − SA

)
≈ −

(
/p− /Σh

)
PR

2pΣρ(
p2 − 2pΣh

)2 +
(
pΣρ

)2 + /ΣρPR
p2 − 2pΣh(

p2 − 2pΣh

)2 +
(
pΣρ

)2 . (3.67)

In the vicinity of the mass-shell, we have p2 − 2pΣh ≈ 0 and the second term in (3.67) can be
neglected,

Sρ ≈ −
(
/p− /Σh

)
PR

2pΣρ(
p2 − 2pΣh

)2 +
(
pΣρ

)2 . (3.68)

In the same approximation the hermitian propagator is given by,

Sh ≈ −
(
/p− /Σh

)
PR

p2 − 2pΣh(
p2 − 2pΣh

)2 +
(
pΣρ

)2 . (3.69)

We derive next the spectral functions of the heavy neutrino field. We assume here that the
heavy neutrino two-point functions are diagonal in flavour space, i.e.

S ij(X, q) = S ii(X, q)δij , Πij(X, q) = Πii(X, q)δij . (3.70)
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Chapter 3 Nonequilibrium quantum field theory

As we will see later this approximation is not justified in leptogenesis and completely neglect
the self-energy correction to the heavy neutrino decay amplitude. However this approximation
will be useful for the “diagonal” part of the full heavy neutrino propagator, see chapter 4. In
general the heavy neutrino propagator has a complicated spinor structure with scalar, pseu-
doscalar, vector, pseudovector and tensor components. Let us assume here that the retarded
and advanced diagonal self-energies can be decomposed into scalar and vector components
only,

Πii
R(A)(X, q) = Πs,ii

h (x, q) + /Πv,ii
h (X, q)± i

2
/Πv,ii
ρ (X, q) . (3.71)

This approximation holds at one-loop level in a CP-symmetric medium. Since the scalar part
is induced by the on-shell renormalisation procedure the spectral part, which is finite at one-
loop level, contains only a vector component. As in the lepton case we neglect the diamond
operator in (3.56) and write the causal heavy neutrino propagators as,

S ii
R(A) = −

[
/q −Mi −Πii

R(A)

]−1

≈ −
(
/q − /Πv,ii

h +Mi + Πs,ii
h ∓

i

2
/Πv,ii
ρ

) q2 −M2
i ± iqΠ

v,ii
ρ

(q2 −M2
i )2 + (qΠv,ii

ρ )2
, (3.72)

where we have neglected higher order term in the Yukawa coupling and defined an effective
q-dependent mass,

Mi(X, q) ≈Mi +
qΠv,ii

h (X, q)
Mi

+ Πs,ii
h (X, q) . (3.73)

Similarly to the lepton case the spectral function reads,

S ii
ρ =

(
/q − /Πv,ii

h +Mi + Πs,ii
h

) −2qΠv,ii
ρ

(q2 −M2
i )2 + (qΠv,ii

ρ )2
+

(q2 −M2
i )/Π

v,ii
ρ

(q2 −M2
i )2 + (qΠv,ii

ρ )2

≈
(
/q − /Πv,ii

h +Mi + Πs,ii
h

) −2qΠv,ii
ρ

(q2 −M2
i )2 + (qΠv,ii

ρ )2
, (3.74)

where the second equality holds near the mass-shell. For a hierarchical mass spectrum we can
safely neglect the thermal correction to the heavy neutrino mass, and write,

S ii
ρ ≈

(
/q +Mi

) −2qΠv,ii
ρ

(q2 −M2
i )2 + (qΠv,ii

ρ )2
. (3.75)

This approximation is valid if |Mi −Mj | �
∣∣Πh(ρ)

∣∣. For a quasidegenerate mass spectrum one
needs to take into account the thermal mass of the heavy neutrino. In the same approximation
the heavy neutrino hermitian propagator is given by,

S ii
h =

(
/q +Mi

) −
(
q2 −M2

i

)
(q2 −Mi)2 + (qΠv,ii

ρ )2
. (3.76)

The above solutions for the spectral and hermitian functions of the Higgs, lepton and Ma-
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3.3 Boltzmann limit

jorana fields are valid up to first order in the gradient expansion. The spectral functions
determine the spectrum of the theory. They incorporate thermal mass through the hermitian
self-energy and thermal width through the spectral self-energy. In general the constraint and
kinetic equations for the statistical two-point functions cannot be solved algebraically. We
will show in the next section how the Boltzmann equation can be recovered from the kinetic
equation for the statistical function.

3.3 Boltzmann limit

We derive here the Boltzmann equation from the kinetic equation for the statistical functions.
The first step is to introduce a pole approximation for the spectral functions. Expanding
(3.62), (3.68) and (3.75) around the poles and taking the limit of vanishing width (see [69] for
more details), we find,

∆ρ(X, k) = sign(k0)(2π)δ(k2 −mφ) , (3.77a)

Sρ(X, p) = PL/psign(p0)(2π)δ(p2 −m2
` ) , (3.77b)

S ii
ρ (X, q) =

(
/q +Mi

)
sign(q0)(2π)δ(q2 −M2

i ) , (3.77c)

where we have used (2.27) and the fact that the effective decay width and the zero component
of the momentum have opposite sign (hence the sign function). Here mφ and m` are the
effective thermal masses of the Higgs and lepton respectively, which are the real part of the
poles of the spectral functions. We assume here that the thermal masses are independent of
the spatial momentum of the particle. In (3.77b) we assumed that the lepton field obeys a
conventional dispersion relation, which may not be satisfied in the early universe [135–137].
The approximations (3.77) are known as the quasiparticle approximation.

Since the Boltzmann equation describes the time evolution of the distribution function we
need to express the statistical propagator in terms of the distribution function. The equilibrium
case will help us to find such an ansatz. The KMS relations (3.21) and (3.22) in Wigner space
read,

∆eq
> (k) = eβk

0
∆eq
< (k) , (3.78a)

Seq
> (p) = −eβp0

Seq
< (p) , (3.78b)

S eq,ii
> (q) = −eβq0

S eq,ii
< (q) , (3.78c)

where we used the fact that the equilibrium two-point functions are independent of the central
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coordinate X. In terms of the statistical and spectral functions the above relations read,

∆eq
F (k) =

(1
2

+
1

eβk0 − 1

)
∆eq
ρ (k)

=
(
θ(k0)

[1
2

+
1

eβ|k0| − 1

]
− θ(−k0)

[1
2

+
1

eβ|k0| − 1

])
∆eq
ρ (k) , (3.79a)

Seq
F (p) =

(1
2
− 1
eβp0 + 1

)
Seq
ρ (p)

=
(
θ(p0)

[1
2
− 1
eβ|p0| + 1

]
− θ(−p0)

[1
2
− 1
eβ|p0| + 1

])
Seq
ρ (p) , (3.79b)

S eq,ii
F (q) =

(1
2
− 1
eβq0 + 1

)
S eq,ii
ρ (q)

=
(
θ(q0)

[1
2
− 1
eβ|q0| + 1

]
− θ(−q0)

[1
2
− 1
eβ|q0| + 1

])
S eq,ii
ρ (q) , (3.79c)

where we can recognise the Bose-Einstein or Fermi-Dirac distribution functions in the square
bracket. Since the positive and negative frequencies describe respectively particle and antipar-
ticle (this can be inferred from the CP-conjugated propagators), we may rewrite the above
equations as,

∆eq
F (k) =

(
θ(k0)

[1
2

+ f eq,k
φ

]
− θ(−k0)

[1
2

+ f eq,k

φ̄

])
∆eq
ρ (k) , (3.80a)

Seq
F (p) =

(
θ(p0)

[1
2
− f eq,p

`

]
− θ(−p0)

[1
2
− f eq,p

¯̀

])
Seq
ρ (p) , (3.80b)

S eq,ii
F (q) =

(
θ(q0)

[1
2
− f eq,q

Ni

]
− θ(−q0)

[1
2

+ f eq,q
Ni

])
S eq,ii
ρ (q) , (3.80c)

with the equilibrium distribution functions,

f eq,k
φ ≡ f eq,k

φ̄
≡ 1

eβE
k
φ − 1

, (3.81a)

f eq,,p
` ≡ f eq,p

¯̀ ≡ 1

eβE
p
` + 1

, (3.81b)

f eq,q
Ni
≡ 1

e
βEqNi + 1

. (3.81c)

The equations (3.80) motivate the Kadanoff-Baym ansatz,

∆F (X, k) =
(
θ(k0)

[1
2

+ fφ(X,~k)
]
− θ(−k0)

[1
2

+ fφ̄(X,~k)
])

∆ρ(X, k) , (3.82a)

SF (X, p) =
(
θ(p0)

[1
2
− f`(X, ~p)

]
− θ(−p0)

[1
2
− f¯̀(X, ~p)

])
Sρ(X, p) , (3.82b)

S ii
F (X, q) =

(
θ(q0)

[1
2
− fNi(X, ~q)

]
− θ(−q0)

[1
2
− fNi(X, ~q)

])
S ii
ρ (X, q) , (3.82c)

where fφ (fφ̄), f` (f¯̀) and fNi are the out-of-equilibrium distribution functions of the (anti)-
Higgs, (anti)lepton and heavy neutrino respectively. Note that the distribution functions do
not depend on p0, i.e. they are on-shell functions. We do not introduce a distribution function
for the right-handed antineutrino due to its Majorana nature. This is consistent with its
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3.3 Boltzmann limit

symmetry property under transposition, see appendix C. The ansatz (3.82) assumes that the
different spin states can be well described by a single distribution function. In order to simplify
the notation we introduce the generalised distribution function for any species a,

Fa(X, p) = θ(p0)fa(X, ~p)∓ θ(−p0)
[
1± fā(X, ~p)

]
, (3.83)

where the upper (lower) sign applies to boson (fermion). The KB ansatz takes the form:

∆F (X, k) =
(1

2
+ Fφ(X, k)

)
∆ρ(X, k) , (3.84a)

SF (X, p) =
(1

2
− F`(X, p)

)
Sρ(X, p) , (3.84b)

S ii
F (X, q) =

(1
2
− FNi(X, q)

)
S ii
ρ (X, q) . (3.84c)

It is often more convenient to work with the Wightmann two-point functions. In terms of these
propagators the KB ansatz reads,

∆> =
(

1 + Fφ

)
∆ρ , ∆< = Fφ∆ρ , (3.85a)

S> =
(

1− F`
)
Sρ , S< = −F`Sρ , (3.85b)

S ii
> =

(
1− FNi

)
S ii
ρ , S ii

< = −FNiS ii
ρ . (3.85c)

We can now derive the kinetic equation for the distribution functions. We focus first on the
Higgs field. In a SU(2)L symmetric state equation (3.59) applies and the constraint and kinetic
equations read, (

k2 − Ωh

)
∆≷ = Ω≷∆h +

1
4
�
{

Ωρ

}{
∆≷
}

+
1
4
�
{

Ω≷
}{

∆ρ

}
, (3.86a)

− �
{
k2 − Ωh

}{
∆≷
}

= Ω>∆< − Ω<∆> − �
{

Ω≷
}{

∆h

}
. (3.86b)

The ansatz (3.85a) is a solution of the constraint equation when the on-shell condition is
satisfied and when the diamond operator on the RHS is neglected. In the same approximation
we also neglect the diamond operator on the RHS of the kinetic equation (3.86b). We will see
in the next section that this term contributes to the drift term on the LHS, and should not
be neglected. This contribution will be taken into account by a new quasiparticle ansatz. Let
us first neglect this term. Inserting the KB ansatz (3.85) and the quasiparticle approximation
(3.77) into (3.86b) we find,

− �
{
k2 − Ωh

}{(
1 + Fφ

)
∆ρ

}
= Ω>Fφ∆ρ − Ω<

(
1 + Fφ

)
∆ρ . (3.87)

We neglect then for simplicity the derivative of the hermitian self-energy on the LHS, and
integrate over the positive frequency,

2k∂Xfφ(X, k) = Ω>(X, k)fφ(X, k)− Ω<(X, k)
(
1 + fφ(X, k)

)
with k0 =

√
~k2 +m2

φ , (3.88)

where we have used the definition (3.83). We have worked until now in a flat space time. The
effect of a curved space time can be implemented by replacing the derivative on the LHS by
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Chapter 3 Nonequilibrium quantum field theory

the covariant derivative [138],

k∂X → kDX . (3.89)

We recover then the Boltzmann equation (2.2) if we identify the RHS of (3.88) with the collision
terms. From the factor fφ and (1 + fφ) we can infer that −Ω>fφ corresponds to the loss term
and −Ω<(1 + fφ) to the gain term.

The derivation of the Boltzmann equation for the lepton and heavy Majorana neutrino can
be performed in a similar way. We will not present this computation here, and but will derive
the Boltzmann equation for the fermions with the new quasiparticle ansatz in section 3.4.

The above derivation of the Boltzmann equation is not very satisfying [139, 140]. Neglecting
the diamond operator on the RHS of (3.86b) but keeping it on the LHS is not well justified.
Moreover the KB ansatz (3.85) together with the quasiparticle approximation (3.77) completely
neglect the off-shell part of the Wightmann propagators. In the next section we will see that
these problems are related and can be solved by introducing a new quasiparticle ansatz.

3.4 Extended quasiparticle ansatz

We have seen in the last section that the quasiparticle and the KB ansatzes are very crude
approximations even though they lead to the correct Boltzmann equation at leading order. We
will see here how this ansatz can be improved. This new ansatz is crucial in leptogenesis in
order to obtain the correct scattering amplitudes.

The basic idea is to represent the Wightman two-point functions as a sum of two terms
[123, 141–144],

∆≷(X, k) ≡ ∆̃≷(X, k) + ∆off-shell
≷ (X, k) , (3.90)

where ∆̃≷(X, k) describes the particle behaviour of the propagator, and ∆off-shell
≷ (X, k) its off-

shell part. We can derive explicitly the two terms of the propagator (3.90) by demanding that
the particle part of the propagator satisfies a transport equation. The first step is to notice
that we can rewrite the diamond operator term on the LHS of (3.86b) as,

�
{

Ω≷
}{

∆h

}
= �
{

Ω≷
}{

1
2

(
∆R + ∆A

)}
= −1

2
�
{

∆RΩ≷∆R

}{
∆−1
R

}
− 1

2
�
{

∆AΩ≷∆A

}{
∆−1
A

}
= �
{

1
2∆RΩ≷∆R + 1

2∆AΩ≷∆A

}{
k2 − Ωh

}
− i

4
�
{

∆RΩ≷∆R −∆AΩ≷∆A

}{
Ωρ

}
, (3.91)

where we have used the solution (3.61) and the identity (3.57). We can then rewrite (3.86b)
as,

− �
{
k2 − Ωh

}{
∆≷ + 1

2

(
∆RΩ≷∆R + ∆AΩ≷∆A

)}
− i

4
�
{

∆RΩ≷∆R −∆AΩ≷∆A

}{
Ωρ

}
= Ω>∆< − Ω<∆> . (3.92)

44



3.4 Extended quasiparticle ansatz

Noting that the operator �
{
k2 − Ωh

}{
·
}

gives us the LHS of the Boltzmann equation in the
on-shell limit we define the off-shell part of the Wightmann propagators as,

∆off-shell
≷ = −1

2

(
∆RΩ≷∆R + ∆AΩ≷∆A

)
. (3.93)

Inserting the decomposition (3.90) with (3.93) into the kinetic equation (3.92) we find that
only the “particle” part of the propagator enters the equation,

− �
{
k2 − Ωh

}{
∆̃≷
}
− i

4
�
{

∆RΩ≷∆R −∆AΩ≷∆A

}{
Ωρ

}
= Ω>∆̃< − Ω<∆̃> . (3.94)

We interpret ∆̃≷ as the quasiparticle part of the Wightman functions. The extra term, ∆off-shell
≷ ,

describes the off-shell part, and is completely neglected in the quasiparticle approximation
studied in the previous section. We make now an ansatz similar to KB ansatz, but only for
the quasiparticle part of the Wightmann functions,

∆̃>(X, k) =
(

1 + Fφ(X, k)
)

∆̃ρ(X, k) ,

∆̃<(X, k) = Fφ(X, k)∆̃ρ(X, k) . (3.95)

(3.96)

This ansatz is referred to as extended quasiparticle (eQP) approximation. The generalised
distribution function Fφ is defined similarly to (3.83). The eQP spectral function in (3.95) is
given by,

∆̃ρ ≡ ∆̃> − ∆̃< = ∆ρ + 1
2∆RΩρ∆R + 1

2∆RΩρ∆R . (3.97)

After some algebra we find,

∆̃ρ = −1
2

∆RΩρ∆RΩρ∆AΩρ∆A = −1
2

Ω3
ρ[(

k2 − Ωh

)2 +
(

1
2Ωρ

)2]2 . (3.98)

Finally the Wightman functions are given by,

∆> =
(

1 + Fφ

)
∆̃ρ − 1

2

(
∆RΩ>∆R + ∆AΩ>∆A

)
, (3.99a)

∆< = Fφ∆̃ρ − 1
2

(
∆RΩ<∆R + ∆AΩ<∆A

)
. (3.99b)

As in (3.77a) the extended spectral function can be approximated by a delta function in the
small width limit ,

∆̃ρ ≈ lim
Ωρ→0

(
− 1

2
) Ω3

ρ[(
k2 − Ωh

)2 +
(

1
2Ωρ

)2]2 = sign(k0)(2π)δ(k2 −mφ) , (3.100)

where we have used the representation of the delta function,

lim
ε→0+

2ε3

[ω2 + ε2]2
= πδ(ω) . (3.101)
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Chapter 3 Nonequilibrium quantum field theory

Figure 3.2: Schematic representation of the eQP spectral function (solid line) and QP spectral
function (dashed line). The eQP spectral function peaks much sharper around the pole than
the QP spectral function. Note that both spectral functions peak at the same pole.

Note that the QP and the eQP approximations pick up the same pole. However the eQP
spectral function is much sharper around the pole than the QP spectral function, see Fig. 3.2.
The difference between them, the off-pole contribution, is identified with off-shell effects and is
neglected in the QP approximation. We will see that these terms describe the Higgs-mediated
processes and |∆L| = 2 scattering processes in leptogenesis.

Inserting the ansatz (3.99) into (3.92), integrating over the positive frequency and neglecting
the momentum and time dependence of the hermitian self-energy, we find that the distribution
function satisfies exactly the same equation as in the QP approximation [145, 146],

2k∂Xfφ(X,~k) = Ω>(X, k)fφ(X,~k)− Ω<(X, k)
(
1 + fφ(X,~k)

)
with k0 =

√
~k2 +m2

φ . (3.102)

The difference between the QP and eQP approximations comes from the fact that the self-
energies on the RHS of (3.102) and (3.88) are functional of the propagators which are given
by different expressions in the QP or eQP approximations. The difference between the two
ansatzes only arises at next-to-leading order in the coupling.

In [146] it has been shown that the constraint equation (3.86a) is automatically satisfied if
the kinetic equation holds. Therefore the eQP ansatz is consistent with the first order gradient
expansion.

We can similarly derive the eQP ansatz for the fermion field. We focus here only on the
heavy neutrino field since the lepton eQP can be obtained in the same manner. The kinetic
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3.4 Extended quasiparticle ansatz

equation for the heavy neutrino reads,

− i
2
�
{
ω̂R

}{
Π̂≷
}

+
i

2
�
{

Ŝ≷

}{
ω̂A

}
+ ω̂RŜ≷ − Ŝ≷ω̂A =Π̂≷ŜA − ŜRΠ̂≷

− i

2
�
{

Π̂≷
}{

ŜA

}
+
i

2
�
{

ŜR

}{
Π̂≷
}
. (3.103)

Due to the matrix structure of the right-handed neutrino two-point functions many terms in
(3.103) do not cancel with each other. We approximate here the two-point functions by their
diagonal components,

S ij ≈ S iiδij , Πij ≈ Πiiδij . (3.104)

We stress here again that this approximation is not suitable for leptogenesis. This computation
will however be useful later. Since we are only interested in the total particle number, and
not in the spin distribution, we take the trace over the spinor indices in the kinetic equation.
Using the identities of the diamond operator given in appendix D.1 we rearrange the terms in
the kinetic equations similarly to the scalar case and obtain,

tr
[
− �
{
/q −Πii

h

}{
S ii
≷ + 1

2

(
S ii
RΠii
≷S ii

R + S ii
AΠii
≷S ii

A

)}]
− tr

[ i
4
�
{

S ii
RΠii
≷S ii

R −S ii
AΠii
≷S ii

A

}{
Πii
ρ

}]
= tr

[
Πii
>S ii

< −Πii
<S ii

>

]
. (3.105)

We define then the eQP ansatz for the heavy neutrino,

S ii
> =

(
1− FNi

)
S̃ ii
ρ − 1

2

(
S ii
RΠii

>S ii
R + S ii

AΠii
>S ii

A

)
, (3.106a)

S ii
< = −FNiS̃ ii

ρ − 1
2

(
S ii
RΠii

<S ii
R + S ii

AΠii
<S ii

A

)
, (3.106b)

with the generalised distribution function FNi given by (3.83) and the eQP spectral function,

S̃ ii
ρ = −1

2
Πii
RS ii

ρ Πii
RS ii

ρ Πii
AS ii

ρ Πii
A . (3.107)

Inserting the self-energy (3.71) and the causal propagators (3.72) into the eQP spectral function
we find at leading order in the coupling,

S̃ ii
ρ ≈

(
/q − /Πv,ii

h +Mi + Πs,ii
h

) −4(qΠv,ii
ρ )3[

(q2 −M2
i )2 + (qΠv,ii

ρ )2
]2

≈
(
/q +Mi

)
sign(q0)(2π)δ(q2 −M2

i ) , (3.108)

where we have neglected contributions which are tiny on the mass-shell. To obtain the second
equality we have neglected the thermal correction to the mass and taken the limit of vanishing
width. The transport equation for the right-handed neutrino distribution function is obtained
by substituting the eQP ansatz (3.106) into the kinetic equation (3.105) and performing the
same step as in the scalar case,

2q∂XfNi =
1
2

tr
[
Πii
>

(
/q +Mi

)
fNi + Πii

<

(
/q +Mi

)(
1− fNi

)]
. (3.109)
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When the spinor decomposition of the Wightman self-energy has only a vector component,
Πii
≷ = /Πv,ii

≷ , which is the case at one-loop level in a CP-symmetric medium, the equation
(3.109) simplifies to,

2q∂XfNi = 2qΠv,ii
> fNi + 2qΠv,ii

<

(
1− fNi

)
. (3.110)

For completeness we write the eQP approximation for the lepton field in the unflavoured
approximation which is obtained in complete analogy with the heavy neutrino case,

S> =
(
1− F`

)
S̃ρ −

1
2
(
SRΣ>SR + SRΣ>SR

)
, (3.111a)

S< = −F`S̃ρ −
1
2
(
SRΣ<SR + SRΣ<SR

)
, (3.111b)

and the eQP spectral function,

S̃ρ = −PL
(
/p− /Σh

) 4
(
pΣρ

)3[(
p2 − 2pΣh

)2 +
(
pΣρ

)2]2 ≈ PL/psign(p0)(2π)δ(p2 −m2
` ) , (3.112)

where the second equality is valid for conventional dispersion relation and for vanishing width.

Figure 3.3: Diagrammatic representation of the eQP approximation. The full Wightmann
propagators, G≷, are splitted into an on-shell part, G̃≷, which describes the particle behaviour
of the propagator, and an off-shell part, −1

2

(
GRΠ≷GR + GAΠ≷GA

)
. The usual KB ansatz

completely neglects the off-shell term.

The eQP approximation for bosons or fermions is diagrammatically represented in Fig. 3.3.
The first term, G̃≷, describes on-shell particles. Due to the delta-function in G̃ρ the on-shell
term can be interpreted as “cut-propagator” which describes on-shell particles created from
or absorbed by the medium [112]. The off-shell term, −1

2

(
GRΠ≷GR + GAΠ≷GA

)
, describes

intermediate off-shell particles. In leptogenesis this term is needed to describe the |∆L| = 2
scattering processes mediated by the heavy neutrino and the |∆L| = 1 processes mediated
by the Higgs. We will see that the intermediate propagator, which results from the eQP
approximation, is automatically RIS-subtracted.
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Chapter 4

Nonequilibrium approach to leptogenesis

In this section we apply to leptogenesis the formalism of NEQFT discussed in the previous
chapter. This framework has been shown recently to be suitable for the derivation of quantum
dynamic equations for the lepton asymmetry within a first-principle approach, and capable
of incorporating medium, off-shell, coherence and possibly further quantum effects in a self-
consistent way [54–71]. This chapter is based on work presented in [72] and on work in
preparation [73].

4.1 Lepton asymmetry

The lepton asymmetry is given by the µ = 0-component of the expectation value of the lepton-
current operator:

jµL(x) =
∑
α,a

〈 ¯̀a
α(x)γµ`aα(x)

〉
. (4.1)

It can be expressed in terms of the lepton two-point function introduced in chapter 3,

jµL(x) = −
∑
α,a

tr
[
γµSαα<,aa(x, x)

]
, (4.2)

where the trace is over the spinor indices only. The minus sign in (4.2) comes from the definition
of the lepton Wightman function,

Sαβ<,ab(x, y) = −〈¯̀βb (y)`αa (x)〉 . (4.3)

An equation of motion for the lepton asymmetry can be derived by considering the divergence
of the lepton current DµjµL(x), where Dµ is the covariant derivative. Using the KB equations
for the lepton field (3.30) one obtains:

DµjµL(x) = −
∑
α,a

tr
[(
Dxµ +Dyµ

)
γµSαα<,aa(x, y)

]∣∣∣
x=y

= −i
∑
α,β,a,b

∫
D4zθ(z0)tr

[
Σαβ
R,ab(x, z)S

βα
<,ba(z, x) + Σαβ

<,ab(x, z)S
βα
A,ba(z, x)

− Sαβ<,ab(x, z)Σ
βα
A,ba(z, x)− SαβR,ab(x, z)Σ

βα
<,ba(z, x)

]
. (4.4)

We assume here that in a FRW space-time the effects of the universe expansion can be captured,
to the required accuracy, by introducing the invariant integration measure D4z ≡

√
−gd4z and
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Chapter 4 Nonequilibrium approach to leptogenesis

using the covariant derivative Dµ. As has been demonstrated in [138], this is the case for
scalar fields. A manifestly covariant generalisation of center and relative coordinates X and s
to curved space-time can be found in [147].

The equation (4.4) represents the quantum field theory generalisation of the Boltzmann
equation for the lepton asymmetry. Thus, it may be considered as the master equation for a
quantum field theoretical treatment of leptogenesis [54, 56].

Following the discussion above (3.49) we perform a leading order gradient expansion of the
time evolution equation for the lepton asymmetry,

DµjµL(X) =
∑
α,β,a,b

∫
d4p

(2π)4
tr
[
Σαβ
<,ab(X, p)S

βα
>,ba(X, p)− Σαβ

>,ab(X, p)S
βα
<,ba(X, p)

]
, (4.5)

where p corresponds to the physical momentum [138]. In a homogeneous and isotropic medium,
which the early universe was to a very good approximation, the two-point functions depend
only on the time coordinate X0 = t and on the momentum p = (p0, |~p|),

DµjµL(t) = gw
∑
α,β

∫
d4p

(2π)4
tr
[
Σαβ
< (t, p)Sβα> (t, p)− Σαβ

> (t, p)Sβα< (t, p)
]
, (4.6)

where we have used the fact the early universe was in a SU(2)L symmetric state and explicitly
performed the summation over the SU(2)L indices (hence the factor gw = 2). The physical
meaning of the above equation becomes clear when we write it as an integral over positive
frequency only,

DµjµL(t) = gw
∑
α,β

∫ ∞
0

dp0

(2π)

∫
d3~p

(2π)3
tr
[(

Σαβ
< (t, p)Sβα> (t, p)− Σαβ

> (t, p)Sβα< (t, p)
)

−
(
Σ̄αβ
< (t, p)S̄βα> (t, p)− Σ̄αβ

> (t, p)S̄βα< (t, p)
)]
, (4.7)

where the bar over the two-point functions denotes CP-conjugation, see appendix C. It is clear
that (4.7) is the difference of the Boltzmann equation for leptons and the one for antileptons.
Even if the physical meaning of (4.7) is clearer it is more convenient to work with (4.6).

It can be easily seen that the time evolution equation for the lepton asymmetry is auto-
matically consistent with the third Sakharov condition by inserting the KMS relations for the
lepton Wightman propagators and self-energies,

Ŝeq
> (X, p) = eβp

0
Ŝeq
< (X, p) ,

Σ̂eq
> (X, p) = eβp

0
Σ̂eq
< (X, p) . (4.8)

We expect therefore that no need of RIS-subtraction will arise in the NEQFT approach. We
will see in the following sections that this is indeed the case.

In the unflavoured regime considered here, the lepton propagators are proportional to the
unit matrix in flavour space, Sαβ = δαβS . It is then convenient to perform the summation over
the flavour indices of the self-energy, δαβΣαβ ≡ Σ. We use the eQP ansatz for the unflavoured
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4.1 Lepton asymmetry

Wightman propagators (3.111),

S> =
(
1− F`

)
S̃ρ −

1
2
(
SRΣ>SR + SRΣ>SR

)
, (4.9a)

S< = −F`S̃ρ −
1
2
(
SRΣ<SR + SRΣ<SR

)
, (4.9b)

(4.9c)

with the eQP spectral function,

S̃ρ = PL/pPRsign(p0)(2π)δ(p2 −m2
` ) ≡ PL/pPRS̃ρ , (4.10)

where we have defined the “scalar” part of the spectral propagator S̃ρ. We refer the reader
to appendix A, where the numerous propagators used in this chapter and their definition
are summarised. Inserting the eQP ansatz (4.9) with (4.10) into the equation for the lepton
asymmetry (4.6), we find,

DµjµL(t) = gw

∫
d4p

(2π)4

(
tr
[
Σ<PL/pPR

]
(1− F`)− tr

[
Σ>PL/pPR

]
(−F`)

)
S̃ρ , (4.11)

where we have suppressed the argument (t, p) of the two-point functions for notational con-
venience. As expected the off-shell part of the lepton propagator, which is lepton number
conserving, cancels out on the RHS of the above equation.

Figure 4.1: Two- and three-loop contributions to the 2PI effective action.

We need now to specify the Wightman component of the lepton self-energy. They are
computed by functional differentiation of the 2PI effective action (see Fig. 4.1) with respect
to the lepton propagator, see appendix (E). Loosely speaking, it corresponds to “cutting” a
lepton line in the 2PI diagrams. At one loop-level, in Wigner space they read, (see Fig. 4.2),

Σ(1)
≷ (t, p) = −

∫
dΠ4

qk(2π)4δ(q − p− k)(h†h)jiPRS ij
≷ (t, q)PL∆≶(t, k) , (4.12)

where we have performed a summation over the lepton flavour indices, and defined the integral
measure dΠ4

papb...
≡ d4pa

(2π)4
d4pb
(2π)4 . . .. The explicit expression for the two-loop contribution, Fig.

4.3, is rather lengthy and it is convenient to split it into three distinct terms:

Σ(2)
≷ = Σ(2.1)

≷ + Σ(2.2)
≷ + Σ(2.3)

≷ . (4.13)
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Figure 4.2: One-loop lepton self-energy.

The first term on the right-hand side reads

Figure 4.3: Two-loop lepton self-energy.

Σ(2.1)
≷ (t, p) =

∫
dΠ4

qk(2π)4δ(p+ k − q)
[
(h†h)in(h†h)jmΛmn(t, q, k)PLCS ij

≷ (t, q)PL∆≶(t, k)

+ (h†h)ni(h†h)mjPRS ji
≷ (t, q)CPRVnm(t, q, k)∆≶(t, k)

]
, (4.14)

where we have introduced two functions containing loop corrections:

Λmn(t, q, k) ≡
∫
dΠ4

k1p1q1(2π)4δ(q + k1 + p1) (2π)4δ(k + p1 − q1)

×
[
PRSmn

R (t,−q1)CPRSTF (t, p1)∆A(t, k1) + PRSmn
F (t,−q1)CPRSTR(t, p1)∆A(t, k1)

+ PRSmn
R (t,−q1)CPRSTA(t, p1)∆F (t, k1)

]
, (4.15)

and Vnm(t, q, k) ≡ γ0 Λ†nm(t, q, k) γ0 to shorten the notation. Comparing (4.12) and (4.14) we
see that they have a very similar structure. First, the integration is over momenta of the
Higgs and right-handed neutrino and the delta-function contains the same combination of the
momenta. Second, both self-energies include one Wightman propagator of the Higgs field and
one Wightman propagator of the Majorana field. Therefore the one-loop correction (4.14)
describe the same processes as the tree-level self-energy (4.12).

The second term in (4.13) is given by,

Σ(2.2)
≷ (t, p) =

∫
dΠ4

p1k1k2
(2π)4δ(p+ k1 − p1 − k2)(h†h)ni(h†h)mj (4.16)

× PRS ij
R (t, p1 + k2)CPRST≶(t,−p1)PLCSmn

A (t, p1 − k1)PL∆≶(t, k1)∆≶(t,−k2) .
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4.2 Heavy neutrino decay

Since it contains the causal propagators S ij
R(A)(t, q) it describes scattering processes mediated

by the right-handed neutrino. Finally the last term in (4.13) reads,

Σ(2.3)
≷ (t, p) =

∫
dΠ4

p1q1q2(2π)4δ(p+ q1 − p1 − q2)(h†h)ij(h†h)lk (4.17)

×PRS jk
≷ (t,−q1)CPRST≷(t, p1)PLCS li

≷ (t, q2)PL∆A(t,−p1 − q2)∆R(t, q1 − p1) .

This term describes lepton number conserving processes and does not contribute to the diver-
gence of the lepton current.

4.2 Heavy neutrino decay

We investigate here the contribution to the lepton asymmetry coming from the heavy neutrino
decay, i.e. we consider the case where Mi > m` + mφ. As m` ≈ 0.2T and mφ ≈ 0.4T the
right-handed neutrino decay is kinematically allowed if Mi/T & 0.6. At higher temperature
the heavy neutrino decay is forbidden, and the Higgs decay becomes kinematically allowed
when mφ > Mi +m`. The Higgs decay is studied in the next section.

4.2.1 Tree-level contribution

We consider first the leading order contribution to the decay amplitude. As the CP-violation
only arises at one-loop level we expect that no asymmetry is produced in that case. Let us
check that this is indeed the case.

The leading order contribution to the RHS of (4.11) comes from the one-loop lepton self-
energy (4.12). For the Higgs Wightman propagators we use the eQP approximation (3.99) and
neglect its off-shell part, which is formally of higher order in the coupling,

∆≷(t, k) ≈ F≷φ (t, k)∆̃ρ(t, k) = F
≷
φ (t, k)sign(k0)(2π)δ(k2 −m2

φ) , (4.18)

where we have introduced the generalised Wightman distribution function,

F>a ≡ 1± Fa , F<a ≡ ±Fa , (4.19)

where the upper (lower) sign refers to bosons (fermions). At leading order in the Yukawa
coupling the heavy neutrino propagator is diagonal in flavour space. Assuming the eQP ap-
proximation (3.106) for the diagonal components of the right-handed neutrino propagator and
keeping only its on-shell part,

S ij
≷ (t, q) ≈ δijF≷NiS̃

ii
ρ (t, q) = δijF

≷
Ni

(
/q +Mi

)
sign(q0)(2π)δ(q2 −M2

i )

≡ δijF≷Ni
(
/q +Mi

)
S̃SS

ii

ρ (t, p) , (4.20)

we write the one-loop lepton self-energy as,

Σ(1)
≷ (t, p) = −(h†h)ii

∫
dΠ4

qp(2π)4δ(q − p− k)S̃SS
ii

ρ (t, q)∆̃ρ(t, k)F≷Ni(t, q)F
≶
φ (t, k)PR/q , (4.21)

where the “scalar” part of the heavy Majorana propagator S̃SS
ii

ρ is defined by (4.20). Inserting
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(4.21) into the time evolution equation for the lepton asymmetry (4.11) we find the tree-level
contribution,

DµjµL(t)
∣∣
(T )

=
∑
i

(h†h)ii
∫
dΠ4

pqk(2π)4δ(q − p− k)S̃SS
ii

ρ (t, q)S̃ρ(t, p)∆̃ρ(t, k)2gwpq

× (−1)
[
F<Ni(t, q)F

>
` (t, p)F>φ (t, k)− F>Ni(t, q)F

<
` (t, p)F<φ (t, k)

]
. (4.22)

The eQP spectral functions are given by a sum of two delta functions, one with positive and one
with negative frequency. Therefore the product of the heavy neutrino, lepton and Higgs eQP
spectral functions in (4.22) gives raise to 8 terms, but only two of them satisfy the remaining
delta function ensuring energy conservation. The generalised distribution functions F<a (p),
when evaluated on positive (negative) frequency, give the particle (antiparticle) distribution
functions fa(~p) (fā(~p)), see (3.83),

F<a (p)
∣∣∣
p0>0

= ±fa(~p) ≡ ±fpa , (4.23a)

F<a (p)
∣∣∣
p0<0

= −(1± fā(~p)) ≡ −(1± fpā ) . (4.23b)

Similarly, F>a (p) satisfies,

F>a (p)
∣∣∣
p0>0

= 1± fa(~p) ≡ 1± fpa , (4.24a)

F>a (p)
∣∣∣
p0<0

= ∓fā(~p) ≡ ∓fpā . (4.24b)

Note that the particle and antiparticle distribution functions fpa and fpā , unlike the generalised
distribution function Fa(p), do not depend on p0. Performing the frequency integrals we find,

DµjµL(t)
∣∣
(T )

=
∑
i

∫
dΠqpk

Ni`φ

[
Ξ(T )
Ni↔`φF

q;pk
Ni↔`φ − Ξ(T )

Ni↔¯̀φ̄
Fq;pk
Ni↔¯̀φ̄

]
, (4.25)

where we have defined the effective tree-level amplitudes (squared) summed over all internal
degrees of freedom,

Ξ(T )
Ni↔`φ ≡ 2gw(h†h)iipq , (4.26a)

Ξ(T )

Ni↔¯̀φ̄
≡ 2gw(h†h)iipq , (4.26b)

and a combination of distribution functions,

Fpapb...;pipj ...ab...↔ij... ≡ (2π)4δ
(∑

a

pa −
∑
i

pi
)[∏

a

fpaa
∏
i

(1± fpii )−
∏
i

fpii
∏
a

(1± fpaa )
]
. (4.27)

Note that in (4.25) and (4.26) the momenta are evaluated on the mass-shell of their correspond-
ing particle. The first and second terms in square bracket of (4.25) describe decay and inverse
decay of a right-handed neutrino into a lepton-Higgs pair and into a antilepton-antiHiggs pair,
respectively.

At tree-level the amplitude (4.26a) and its CP-conjugate (4.26b) are equal. This implies that
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4.2 Heavy neutrino decay

the RHS of (4.25) is identically zero when the lepton and Higgs are in thermal equilibrium.
Therefore no asymmetry is produced at tree-level, which is in agreement with the vacuum
computation. In the presence of a nonzero lepton asymmetry f` 6= f¯̀ and fφ 6= fφ̄. In that
case Fq;pkNi↔`φ 6= F

q;pk

Ni↔¯̀φ̄
and this leads to a washout of the asymmetry.

Note that the effective amplitudes (4.26) obtained within NEQFT and the corresponding
amplitudes in the S-matrix formalism are equal at tree-level. The difference between the two
approaches appears at NLO.

4.2.2 Equilibrium solution for the heavy neutrino propagator

As has been demonstrated in [60] for a toy-model, it is important to take the matrix structure in
flavour space of the right-handed neutrino propagator into account. In the computation at tree-
level we have completely neglected the off-diagonal components in flavour space of the heavy
neutrino propagator, see (4.20). We want here to take into account the off-diagonal components
by performing a resummation of the full propagator, and express the full propagator in flavour
space as a function of the “diagonal” propagator and off-diagonal self-energy. Our starting
point is the Schwinger-Dyson equation (3.7) for the heavy neutrino two-point function:

Ŝ −1(x, y) = Ŝ −1
0 (x, y)− Π̂(x, y) . (4.28)

Let us split the self-energy into its diagonal Π̂d(x, y) and off-diagonal Π̂od(x, y) components.
We introduce then a new heavy neutrino propagator Ŝ−1(x, y) defined by,

Ŝ−1(x, y) = Ŝ −1
0 (x, y)− Π̂d(x, y) . (4.29)

Note that Ŝ−1(x, y) is diagonal in flavour space since both Ŝ −1
0 (x, y) and Π̂d(x, y) are diagonal.

For a hierarchical mass spectrum the poles of the full propagator Ŝ are well approximated
by the poles of the “diagonal” propagator Ŝ . This means that in this regime the “diagonal”
propagator describes the quasiparticle excitations. If the mass splitting is of the same order as
the self-energy, i.e. in the case of a quasidegenerate mass spectrum, the “diagonal” propagator
does not provide a good approximation for the poles of the full propagator.

In terms of the propagator (4.29) the Schwinger-Dyson equation reads,

Ŝ −1(x, y) = Ŝ−1(x, y)− Π̂od(x, y) . (4.30)

Multiplying the Schwinger-Dyson equation (4.30) by Ŝ −1 from the left and by Ŝ−1(x, y) from
the right and integrating over the CTP, we obtain a formal solution for the full nonequilibrium
propagator,

Ŝ (x, y) = Ŝ (x, y) +
∫
C
D4uD4vŜ (x, u)Π̂od(u, v)Ŝ (u, y) . (4.31)

After decomposing the propagators and self-energies into their Wightman components, we

55



Chapter 4 Nonequilibrium approach to leptogenesis

rewrite (4.31) in the form,

Ŝ≷(x, y) = Ŝ≷(x, y)−
∫

D4uD4vθ(u0)θ(v0)
[
ŜR(x, u)Π̂od

R (u, v)Ŝ≷(u, y)

+ ŜR(x, u)Π̂od
≷ (u, v)ŜA(u, y) + Ŝ≷(x, u)Π̂od

A (u, v)ŜA(u, y)
]
, (4.32)

where we have used the causal two-point functions to extend the integration over the whole
uv plane. Similarly, the retarded and advanced propagators satisfy,

ŜR(A)(x, y) = ŜR(A)(x, y)−
∫

D4uD4vθ(u0)θ(v0)ŜR(A)(x, u)Π̂od
R(A)(u, v)Ŝ(A)(u, y) . (4.33)

We perform next a Wigner transform of (4.32) and (4.33). Analogously to the derivation of
the KB equations in Wigner space we drop the Heaviside step function. At leading order in
the gradient expansion the Wigner transforms of (4.32) and (4.33) read,

Ŝ≷(X, q) = Ŝ≷(X, q)− ŜR(X, q)Π̂od
R (X, q)Ŝ≷(X, q)− ŜR(X, q)Π̂od

≷ (X, q)ŜA(X, q)

− Ŝ≷(X, q)Π̂od
A (X, q)ŜA(X, q) , (4.34a)

ŜR(A)(X, q) = ŜR(A)(X, q)− ŜR(A)(X, q)Π̂
od
R(A)(X, q)Ŝ(A)(X, q) . (4.34b)

Strictly speaking the above equations are only valid in equilibrium since we neglect any X-
dependence by cutting the gradient expansion at zeroth order. We assume however that the
equations (4.34) are also valid close-to-equilibrium. The equation for the Wightman two-point
functions (4.34a) can be solved algebraicly for the full propagator in terms of the “diagonal”
one, and off-diagonal self-energy,

Ŝ≷(X, q) = Θ̂R(X, q)
[
Ŝ≷(X, q)− ŜR(X, q)Π̂od

≷ (X, q)ŜA(X, q)
]
Θ̂A(X, q) , (4.35)

where we have defined the functions Θ̂R(A)(X, q),

Θ̂R(X, q) ≡
(
1 + ŜR(X, q)Π̂od

R (X, q)
)−1

, (4.36a)

Θ̂A(X, q) ≡
(
1 + Π̂od

A (X, q)ŜA(X, q)
)−1

. (4.36b)

Here 1 corresponds to the unit matrix in flavour and spinor space. The two matrices Θ̂R(X, q)
and Θ̂A(X, q) are related by,

Θ̂A(X, q) = γ0Θ̂A(X, q)†γ0 , (4.37)

which is a consequence of the symmetry properties of the heavy neutrino two-point functions,
see appendix C.

For the diagonal propagator Ŝ≷(X, q) we use the eQP approximation,

Sii≷(X, q) =F≷Ni(X, q)S̃
ii
ρ (X, q)

− 1
2

(
SiiR(X, q)Πii

≷(X, q)SiiR(X, q) + SiiA(X, q)Πii
≷(X, q)SiiA(X, q)

)
, (4.38)
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with the eQP spectral function given by,

S̃iiρ (X, q) =
(
/q +Mi

)
sign(q0)(2π)δ(q2 −M2

i ) ≡
(
/q +Mi

)
S̃ii
ρ (X, q) . (4.39)

Similarly to the lepton case we have extracted the “scalar” part S̃ii
ρ (X, q) of the right-handed

neutrino propagator. Putting (4.35) and (4.38) together we find,

Ŝ≷ = Θ̂R

[
F̂
≷
N

ˆ̃Sρ −
1
2

(
ŜRΠ̂d

≷ŜR + ŜAΠ̂d
≷ŜA

)
− ŜRΠ̂od

≷ ŜA
]
Θ̂A (4.40)

≈ F̂≷N
ˆ̃Sρ − ŜRΠ̂od

R F̂
≷
N

ˆ̃Sρ − F̂
≷
N

ˆ̃SρΠ̂od
A ŜA −

1
2

(
ŜRΠ̂d

≷ŜR + ŜAΠ̂d
≷ŜA

)
− ŜRΠ̂od

≷ ŜA ,

where we have suppressed the argument (X, q) of the two-point functions and used a matrix
notation for the distribution function F̂

≷
N ≡ diag(F≷Ni). In the second line of (4.40) we have

approximated the matrices Θ̂R(A) by

Θ̂R ≈ 1− ŜRΠ̂od
R , Θ̂R ≈ 1− Π̂od

A ŜA , (4.41)

and only kept terms of leading order in the Yukawa coupling.
The solution (4.35) represents the starting point for the study of the self-energy correction

to the decay amplitude. As mentionned below (4.34) the solution is valid only in thermal
equilibrium. We assume however that it is also valid close to thermal equilibrium.

We have already seen that the first term in the second line of (4.40), Ŝ
(T )
≷ ≡ F̂

≷
N

ˆ̃Sρ gives
the tree-level decay amplitude when inserted into the one-loop lepton self-energy. The second
and third terms,

Ŝ
(SE)
≷ ≡ −ŜRΠ̂od

R F̂
≷
N

ˆ̃Sρ − F̂
≷
N

ˆ̃SρΠ̂od
A ŜA , (4.42)

give the self-energy contribution to the decay amplitude, see subsection 4.2.3. The remaining
terms,

Ŝ
(Sc)
≷ ≡ −1

2

(
ŜRΠ̂d

≷ŜR + ŜAΠ̂d
≷ŜA

)
− ŜRΠ̂od

≷ ŜA , (4.43)

describe the |∆L| = 2 scattering processes mediated by the Higgs and are analysed in section
4.5.

4.2.3 Self-energy contribution

We investigate here the self-energy correction to the decay amplitude. As mentionned above
this contribution comes from the term Ŝ

(SE)
≷ of the heavy neutrino propagator. Inserting the

one-loop lepton self-energy (4.12) with (4.42) into the lepton current (4.11), we find after some
algebra:

DµjµL(t)
∣∣
(S)

=
∑
i,j

∫
dΠ4

qpk(2π)4δ(q − p− k)2gwRe
[
(h†h)jitr

[
PR(/q +Mi)Π

od,ij
A (q)SjjA (q)PL/p

]]
× ˆ̃S

ii

ρ (q)S̃ρ(p)∆̃ρ(k)
[
F<Ni(q)F

>
` (p)F>φ (k)− F>Ni(q)F

<
` (p)F<φ (k)

]
, (4.44)
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where we have suppressed the time argument on the RHS. We integrate then over the frequency
using the delta-functions from the spectral functions as explained above (4.25) and find an
equation similar to the tree-level case,

DµjµL(t)
∣∣
(S)

=
∑
i

∫
dΠqpk

Ni`φ

[
Ξ(S)
Ni↔`φF

q;pk
Ni↔`φ − Ξ(S)

Ni↔¯̀φ̄
Fq;pk
Ni↔¯̀φ̄

]
(4.45)

but with the tree-level amplitudes replaced by the self-energy correction,

Ξ(S)
Ni↔`φ ≡ −2gw

∑
j 6=i

Re
[
(h†h)jitr

[
PR(/q +Mi)Π

od,ij
A (q)SjjA (q)/p

]]
, (4.46a)

Ξ(S)

Ni↔¯̀φ̄
≡ −2gw

∑
j 6=i

Re
[
(h†h)jitr

[
PR(−/q +Mi)Π

od,ij
A (−q)SjjA (−q)(−/p)

]]
, (4.46b)

= −2gw
∑
j 6=i

Re
[
(h†h)jitr

[
/pSjjR (q)Πod,ji

R (q)(/q +Mi)PR
]]
.

In the second line of (4.46b) we have used the symmetry properties of the Majorana two-point
functions (see appendix C) to rewrite the amplitude with positive momenta. Note that in the
self-energy corrections to the effective amplitudes (4.46) the momenta of the lepton and heavy
neutrino are evaluated on-shell. In particular the momentum of the right-handed neutrino is
evaluated on the mass-shell of the i-particle, q2 = M2

i . For a hierarchical mass spectrum this
implies that we can approximate the causal propagators of the heavy neutrino by its hermitian
part,

SjjR(A)(q) ≈ S
jj
h (q) at q2 = M2

i , i 6= j . (4.47)

We need then to specify the heavy neutrino self-energy. At one-loop level in a CP-symmetric
medium the spectral part is given by (see appendix E.3),

Πij
ρ (t, q) = − gw

16π
[
(h†h)ijPL + (h†h)∗ijPR

]
Lρ(t, q) , (4.48)

with,

Lρ(t, q) = 16π
∫
dΠ4

pk(2π)4δ(q − p− k)
[
S>(t, p)∆>(t, k)− S<(t, p)∆<(t, k)

]
/p . (4.49)

Inserting the leading order term of the eQP approximation for the lepton and Higgs propagators
into the loop integral (4.49) and integrating over the frequencies we find (assuming q2 > 0 and
q0 > 0),

Lρ(t, q) = 16π
∫
dΠ`φ

pk(2π)4δ(q − p− k)
[
1− f eq,p

` + f eq,k
φ

]
/p , (4.50)

where we have used the equilibrium distribution functions for the lepton and Higgs. The
function Lρ encodes the medium corrections to the decay width. We do not need to specify
the hermitian self-energy as it does not enter the CP-violating parameter. Similarly to the
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vacuum case the self-energy CP-violating parameter is defined as,

ε
(S)
i ≡

Ξ(S)
Ni↔`φ − Ξ(S)

Ni↔¯̀φ̄

Ξ(T )
Ni↔`φ + Ξ(T )

Ni↔¯̀φ̄

. (4.51)

Using (4.46a) with (4.47) and (4.48) we find for the CP-violating parameter,

ε
(S)
i ≡

∑
j 6=i

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓNj
(M2

i −M2
j )2 + (ΓNj/MjqLρ)2

pLρ
pq

, (4.52)

where we have introduced the vacuum total decay width in the rest frame of the decaying
particle, ΓNi ≡ gw(h†h)iiMi/(16π). In vacuum, Lµρ = θ(q2)sign(q0)qµ and the CP-violating
parameter takes the form,

ε
(S),vac
i ≡

∑
j 6=i

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓNj
(M2

i −M2
j )2 + (ΓNjM

2
i /Mj)2

. (4.53)

The ‘regulator’ in the denominator of (4.53) differs from the result MiΓj found in [31, 36]
by the ratio of the masses. For a hierarchical neutrino mass spectrum the ‘regulator’ term
is subdominant and this difference is numerically small. Note also that although (4.52) does
not diverge in the limit of vanishing mass difference the approximations made in the course
of its derivation are not applicable for a quasidegenerate mass spectrum [60]. For a consistent
treatment of resonant enhancement within NEQFT we refer to [148].

4.2.4 Vertex contribution

We have so far only used the one-loop lepton self-energy. We investigate here contribution
coming from the two-loop correction. We consider in particular the first term in (4.13),

Σ(2.1)
≷ (p) =

∫
dΠ4

qk(2π)4δ(p+ k − q)
[
(h†h)in(h†h)jmΛmn(q, k)PLCS ij

≷ (q)PL∆≶(k)

+ (h†h)ni(h†h)mjPRS ji
≷ (q)CPRVnm(q, k)∆≶(k)

]
, (4.54)

where we have suppressed the time argument. Since the above self-energy contribution is
already of the fourth order in the Yukawa we can approximate the heavy neutrino propagator
by its leading order term, Ŝ

(T )
≷ ≡ F̂≷N

ˆ̃Sρ. Inserting it in the lepton two-loop self-energy (4.54)
with the leading order eQP approximation for the Higgs field we find,

Σ(2.1)
≷ (p) =

∫
dΠ4

qk(2π)4δ(p+ k − q)S̃iiρ (q)∆̃ρ(k)F≷Ni(q)F
≶
φ (k)

×Mi

[
(h†h)2

ijΛjj(q, k)PLC + (h†h)2
jiCPRVjj(q, k)

]
, (4.55)
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with the “diagonal” loop function given by,

Λjj(q, k) ≡
∫
dΠ4

k1p1q1(2π)4δ(q + k1 + p1) (2π)4δ(k + p1 − q1)

×
[
PRSjjR (−q1)CPRSTF (p1)∆A(k1) + PRSjjF (−q1)CPRSTR(p1)∆A(k1)

+ PRSjjR (−q1)CPRSTA(p1)∆F (k1)
]
, (4.56)

and Vjj(t, q, k) ≡ γ0Λ†jj(t, q, k) γ0 to shorten the notation. The vertex correction to the decay
amplitudes are found by inserting the two-loop self-energy (4.54) into the lepton current (4.11)
and integrating over the frequencies,

Ξ(V )
Ni↔`φ = −2gwMi

∑
j

Re
[
tr
[
(h†h)2

ijΛjj(q, k)CPL/p
]]
, (4.57a)

Ξ(V )

Ni↔¯̀φ̄
= −2gwMi

∑
j

Re
[
tr
[
(h†h)2

ijΛjj(−q,−k)CPL(−/p)
]]
, (4.57b)

where the momenta q, p and k are evaluated on the mass-shell of the ith heavy neutrino,
lepton and Higgs, respectively. Since we assume the medium to be almost CP-symmetric we
can use, at leading order, CP-symmetric two-point functions in the loop integral Λjj . Then, at
leading order in the Yukawa couplings, we find for the vertex contribution to the CP-violating
parameter:

ε
(V )
i = −

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii

MiMj

pq

∫
dΠ4

q1p1k1
(2π)4δ(q + k1 + p1)(2π)4δ(k + p1 − q1)pp1[

Sjj
h (q1)SF (p1)∆ρ(k1) + Sjj

h (q1)Sρ(p1)∆F (k1)

− Sjj
F (q1)Sρ(p1)∆h(k1) + Sjj

ρ (q1)SF (p1)∆h(k1)

+ Sjj
F (q1)Sh(p1)∆ρ(k1) + Sjj

ρ (q1)Sh(p1)∆F (k1)
]
. (4.58)

At leading order in the coupling we can replace the statistical and spectral two-point functions
by their on-shell term of the eQP approximation. Therefore two of the three propagators in
each term in square brackets in (4.58) correspond to on-shell particles. Each line in (4.58) can
therefore be interpreted as cut through lines of the vertex diagram.

The first line corresponds to a cut through the lepton and Higgs propagators and reads,

ε
(V,1)
i = − 1

gw

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

MiΓNj
M2
j

pK
(1)
j (q, k)
pq

, (4.59)

where we introduced the loop function,

K
(1)µ
j (q, k) ≡ 16π

∫
dΠ`φ

p1k1
(2π)4δ(q − k1 − p1)pµ1

M2
j

M2
j − (k − p2)2

[
1− f eq,p1

` + f eq,k1

φ

]
. (4.60)

In vacuum Kj can be computed explicitly (see appendix B) and we recover the well-known
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result [25]:

ε
(V ),vac
i =

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

ΓNj
Mi

[
1−

(
1 +

M2
j

M2
i

)
ln
(
1 +

M2
i

M2
j

)]
. (4.61)

Adding up (4.61) and (4.53) we obtain the canonical expression for the vacuum CP-violating
parameter, (2.16). The two other cuts in (4.58) take the same form as (4.59) but with a
different loop function,

K
(2)µ
j (q, k) ≡ 16π

∫
dΠNj`

q1p1(2π)4δ(q1 − k − p1)pµ1
M2
j

m2
φ − (q + p1)2

[
f q1Nj − f

eq,p1

`

]
, (4.62a)

K
(3)µ
j (q, k) ≡ 16π

∫
dΠNjφ

q1k1
(2π)4δ(q + k1 − q1 − k)(q + k1)µ

×
M2
j

m2
` − (q + k1)2

[
f q1Nj + f eq,k1

φ

]
. (4.62b)

Since they are proportional to (fNj −f
eq
` ) and (fNj +f eq

φ ), respectively, they vanish in the zero
temperature limit. At finite temperature they are usually Boltzmann-suppressed, but can be
relevant in specific cases [66].

We finally obtain the heavy neutrino decay amplitude at one-loop by adding up the tree-level
(4.26a), the self-energy (4.46) and vertex correction (4.57),

Ξ(T+S+V )
Ni↔`φ = Ξ(T )

Ni↔`φ + Ξ(S)
Ni↔`φ + Ξ(V )

Ni↔`φ , (4.63a)

Ξ(T+S+V )

Ni↔¯̀φ̄
= Ξ(T )

Ni↔¯̀φ̄
+ Ξ(S)

Ni↔¯̀φ̄
+ Ξ(V )

Ni↔¯̀φ̄
, (4.63b)

which give the decay contribution to the lepton asymmetry,

DµjµL(t)
∣∣
(D)

=
∑
i

∫
dΠqpk

Ni`φ

[
Ξ(T+S+V )
Ni↔`φ Fq;pkNi↔`φ − Ξ(T+S+V )

Ni↔¯̀φ̄
Fq;pk
Ni↔¯̀φ̄

]
. (4.64)

Equations of the type of the above equation, which are derived from first principles, will be
referred to as quantum-corrected Boltzmann equations. Although the equation (4.64) looks very
similar to the Boltzmann equations (2.17) and (2.18), there is a fundamental difference between
them. Due to the fact that the decay (Ni → `φ) and inverse decay (`φ → Ni) amplitudes in
(4.64) are equal (hence the double arrow in the definition of the effective amplitudes (4.63)),
they both multiply the same combination of distribution functions, namely,

Fq;pkNi↔`φ = (2π)4δ(q − p− k)
[
f qNi(1− f

p
` )(1 + fkφ)− fp` f

k
φ(1− f qNi)

]
. (4.65)

In equilibrium the Bose-Einstein and Fermi-Dirac distribution functions satisfy the important
identity,

1± f eq,pa
a = 1± 1

eβE
pa
a ∓ 1

=
eβE

pa
a

eβE
pa
a ∓ 1

= eβE
pa
a f eq,pa

a , (4.66)

which implies that the product of distribution function (4.65) exactly vanishes in thermal
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equilibrium,

(2π)4δ(q − p− k)
[
f eq,q
Ni

(1− f eq,p
` )(1 + f eq,k

φ )− f eq,p
` f eq,k

φ (1− f eq,q
Ni

)
]

= (2π)4δ(q − p− k)f eq,q
Ni

(1− f eq,p
` )(1 + f eq,k

φ )
[
1− eβ(EqNi

−Ep`−Ekφ)] = 0 , (4.67)

where we have used the energy conserving delta-function in the second line. Therefore the
Boltzmann equation (4.64) obtained within NEQFT does not suffer from the double-counting
problem, and is automatically consistent with the third Sakharov condition.

4.3 |∆L| = 2 scattering processes

In the canonical approach the inclusion of modified |∆L| = 2 scattering amplitudes is required
in order to obtain a Boltzmann equation which is consistent with the third Sakharov condition.
The modifications of the vacuum amplitudes can be recast into a RIS-subtracted propagator
(2.34),

P2
ij(q

2) =

{
P ∗i (q2)Pj(q2) for i 6= j ,

|Pi(q)|2 − π
MiΓNi

δ(q2 −M2
i ) for i = j ,

(4.68)

where Pi(q2) = [q2 −M2
i + iθ(q2)MiΓNi ]

−1 is the heavy neutrino Feynman propagator. The
Boltzmann equation (4.64) obtained within NEQFT is consistent with equilibrium considera-
tion and there is no need to include the |∆L| = 2 scattering processes. It is however interesting
to compute the scattering amplitudes using NEQFT technique to check if the vacuum RIS pro-
cedure is valid, and to determine to what extend thermal and nonequilibrium effects affect the
vacuum RIS procedure.

In the previous section we have disregarded the off-shell contributions to the resummed
heavy neutrino propagator, (4.43),

Ŝ
(Sc)
≷ ≡ −1

2

(
ŜRΠ̂d

≷ŜR + ŜAΠ̂d
≷ŜA

)
− ŜRΠ̂od

≷ ŜA , (4.69)

and the second term in the lepton two-loop self-energy (4.13),

Σ(2.2)
≷ (t, p) =

∫
dΠ4

p1k1k2
(2π)4δ(p+ k1 − p1 − k2)(h†h)ni(h†h)mj (4.70)

× PRS ij
R (t, p1 + k2)CPRST≶(t,−p1)PLCSmn

A (t, p1 − k1)PL∆≶(t, k1)∆≶(t,−k2) .

These two terms involve the retarded and advanced heavy neutrino propagators, which repre-
sent off-shell state. Therefore they describe the |∆L| = 2 scattering processes mediated by the
heavy neutrino, see Figs. 2.2 and 2.3.

We first investigate the consequence of the off-shell heavy neutrino propagator (4.69). It
contains the Wightman self-energies, which read, at one-loop level (see appendix E.3),

Πij
≷(q) = −gw

∫
dΠ4

pk(2π)4δ(q − p− k)

×
[
(h†h)ijPLS≷(p)PR∆≷(k) + (h†h)∗ijPRPS̄≷(p̄)PPL∆̄≷(k̄)

]
, (4.71)
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where we have suppressed the time argument for notational convenience, and S̄≷ and ∆̄≷ are
the CP-conjugated propagators of the lepton and Higgs fields, respectively. Inserting into (4.71)
the on-shell term of the eQP approximation for the lepton and Higgs Wightman propagators,
we find,

Πij
≷(q) = −gw

∫
dΠ4

pk(2π)4δ(q − p− k)S̃ρ(p)∆̃ρ(k)

×
[
(h†h)ijPL/pPRF

≷
` (p)F≷φ (k) + (h†h)∗ijPR/pPLF

≷
¯̀ (p)F≷

φ̄
(k)
]
, (4.72)

where we have used the fact that the distribution functions and the eQP spectral functions do
not depend on the spatial direction of the momentum due to isotropy and rewritten P /̄pP = /p
in the second term in square bracket. We also assume that particle and its corresponding
antiparticle share the same eQP spectral function. Substituting (4.72) into the heavy neutrino
off-shell propagator (4.69) we can split it into lepton number conserving (LC) and lepton
number violating (LV) terms,

S
(Sc),ij
≷ =

∫
dΠ4

pk(2π)4δ(q − p− k)S̃ρ(p)∆̃ρ(k)

×
[
F
≷
` (p)F≷φ (k)S ij

LC(p, q) + F
≷
¯̀ (p)F≷

φ̄
(k)S ij

LV (p, q)
]
, (4.73)

where we have defined,

S ij
LC(p, q) ≡ (h†h)ij

[
(1− δij)SiiR(q)PL/pPRSjjA (q)

+
1
2
δij
(
SiiR(q)PL/pPRSjjR (q) + SiiA(q)PL/pPRSjjA (q)

)]
, (4.74a)

S ij
LV (p, q) ≡ (h†h)ji

[
(1− δij)SiiR(q)PR/pPLSjjA (q)

+
1
2
δij
(
SiiR(q)PR/pPLSjjR (q) + SiiA(q)PR/pPLSjjA (q)

)]
. (4.74b)

Substituting the heavy neutrino propagator (4.73) with the lepton one-loop self-energy into
the divergence of the lepton current (4.11), we find,

DµjµL(t)
∣∣
(Sc1)

=
∑
i

∫
dΠ4

pkqp′k′(2π)4δ(q − k − p)(2π)4δ(q − k′ − p′)S̃ρ(p)S̃ρ(p′)∆̃ρ(k)∆̃ρ(k
′)

× g2
w(h†h)ji

([
F<` (p)F<φ (k)F>` (p′)F>φ (k′)− F>` (p)F>φ (k)F<` (p′)F<φ (k′)

]
tr
[
S ij
LC(p, q′)PL/p

]
+
[
F<` (p)F<φ (k)F>¯̀ (p′)F>

φ̄
(k′)− F>` (p)F>φ (k)F<¯̀ (p′)F<

φ̄
(k′)

]
tr
[
S ij
LV (p, q′)PL/p

])
. (4.75)

It is convenient to factor out the “spinor” structure of the right-handed neutrino causal prop-
agator, see (3.72),

SiiR(A)(q) =
(
/q +Mi

)
Sii
R(A)(q) , (4.76)
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with

Sii
R(A)(q) ≡

−1

q2 −M2
i − 2qΠv,ii

R(A)(q)
. (4.77)

Here Πv,ii
R(A)(q) corresponds to the vector part of the self-energy. At one-loop level the scalar

part of the heavy neutrino self-energy is induced by on-shell renormalisation scheme and is
negligible. The traces in (4.75) are easily evaluated by using the decomposition (4.76),

tr
[
S ij
LC(p, q′)PL/p

]
= 2(h†h)ijP2

ji(q)
(
2(qp′)(qp)− q2(pp′)

)
, (4.78a)

tr
[
S ij
LV (p, q′)PL/p

]
= 2(h†h)jiP2

ji(q)MiMj(pp′) , (4.78b)

where we defined a “RIS-subtracted” propagator analogously to the vacuum case,

P2
ij(q) ≡ Sii

A(q)Sjj
R (q)− 1

2
δijSii

ρ (q)Sii
ρ (q) , (4.79)

with Sii
ρ (q) = −i

(
Sii
R(q) − Sii

A(q)
)
. Note that the above “RIS-subtracted” propagator is not

obtained by any ad-hoc RIS-subtraction procedure, but automatically results from the heavy
neutrino propagator (4.69).

The symmetry of the traces (4.78) under the exchange of the lepton momenta p ↔ p′

implies that the lepton conserving term in (4.75) vanishes since the combination of distribution
functions,

F<` (p)F<φ (k)F>` (p′)F>φ (k′)− F>` (p)F>φ (k)F<` (p′)F<φ (k′) , (4.80)

is antisymmetric under the exchange p ↔ p′. These terms correspond to scattering processes
such as `¯̀↔ φφ̄ which do not contribute to the Boltzmann equation for the lepton asymmetry
since they conserve lepton number.

Many integrals in (4.75) can be performed using the momentum-energy conserving delta-
functions and the one in the spectral functions. We first integrate over the heavy neutrino
momentum using the first delta-function in (4.75). The integrals over the frequencies of the
lepton and Higgs fields are performed similarly to the decay amplitude. We have here four
eQP spectral functions, each of them consisting of a sum of two delta-functions, which give
raise to 24 terms with different sign assignments for the frequencies. Only six terms satisfy the
remaining delta-function, they read,

DµjµL(t)
∣∣
(Sc1)

= 2
∫
dΠpp′kk′

``φφ

[(
Ξ(s×s)

¯̀φ̄↔`φ + Ξ(t×t)
¯̀φ̄↔`φ

)
Fpk;p′k′

¯̀φ̄↔`φ +
(
Ξ(t×t)

¯̀̀̄↔φφ + Ξ(u×u)
¯̀̀̄↔φφ

)
Fpp

′;kk′
¯̀̀̄↔φφ

+
(
Ξ(t×t)
φ̄φ̄↔`` + Ξ(u×u)

φ̄φ̄↔``
)
Fkk

′;pp′
φ̄φ̄↔``

]
, (4.81)

where we have defined the effective scattering amplitudes (squared) depending on the momen-
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tum transfer,

Ξ(s×s)
¯̀φ̄↔`φ + Ξ(t×t)

¯̀φ̄↔`φ = 2g2
w(pp′)

∑
i,j

(h†h)2
ijMiMj

(
P2
ij(qs) + P2

ij(qt)
)
, (4.82a)

Ξ(t×t)
¯̀̀̄↔φφ + Ξ(u×u)

¯̀̀̄↔φφ =
g2
w

2
(pp′)

∑
i,j

(h†h)2
ijMiMj

(
P2
ij(qt) + P2

ij(qu)
)
, (4.82b)

Ξ(t×t)
φ̄φ̄↔`` + Ξ(u×u)

φ̄φ̄↔`` =
g2
w

2
(pp′)

∑
i,j

(h†h)2
ijMiMj

(
P2
ij(qt) + P2

ij(qu)
)
. (4.82c)

Here the intermediate heavy neutrino momenta are given by qs ≡ p + k, qt ≡ p − k′ and
qu ≡ p− k. In (4.81) the overall factor 2 comes from the fact that the processes (4.82) violate
lepton number by two units. From (4.82) we see that the obtained amplitudes contain only
s × s and t × t interference terms. Indeed, in the products of the Majorana propagators in
(4.79) both of them depend on the same momentum.

The missing terms, s × t and u × t interference channels, come from the two-loop lepton
self-energy, (4.70). Since it is already of the fourth order in the Yukawa we use the tree-level
approximation for the heavy neutrino propagator. Substituting it into the lepton current (4.11)
we find,

DµjµL(t)
∣∣
(Sc2)

= 2
∑
i

∫
dΠ4

pkp′k′(2π)4δ(p+ k − p′ − k′)S̃ρ(p)S̃ρ(p′)∆̃ρ(k)∆̃ρ(k
′)

× gw(h†h)2
jiMiMj(pp′)SiiR(p′ + k′)SjjA (p′ − k)

× (−1)
[
F<¯̀ (p′)F<

φ̄
(k′)F>` (p)F>φ (k)− F<` (p)F<φ (k)F>¯̀ (p′)F>

φ̄
(k′)

]
. (4.83)

We integrate then over the frequencies as explained above (4.81) and obtain,

DµjµL(t)
∣∣
(Sc2)

= 2
∫
dΠpp′kk′

``φφ

[(
Ξ(s×t)

¯̀φ̄↔`φ + Ξ(t×s)
¯̀φ̄↔`φ

)
Fpk;p′k′

¯̀φ̄↔`φ +
(
Ξ(t×u)

¯̀̀̄↔φφ + Ξ(u×t)
¯̀̀̄↔φφ

)
Fpp

′;kk′
¯̀̀̄↔φφ

+
(
Ξ(t×u)

φ̄φ̄↔`` + Ξ(u×t)
φ̄φ̄↔``

)
Fkk

′;pp′
φ̄φ̄↔``

]
, (4.84)

where we defined the s× t and t× u interference amplitudes,

Ξ(s×t)
¯̀φ̄↔`φ + Ξ(t×s)

¯̀φ̄↔`φ = 2gw(pp′)
∑
i,j

(h†h)2
ijMiMj

(
SiiA(qs)SjjR (qt) + SiiA(qt)SjjR (qs)

)
, (4.85a)

Ξ(t×u)
¯̀̀̄↔φφ + Ξ(u×t)

¯̀̀̄↔φφ =
gw
2

(pp′)
∑
i,j

(h†h)2
ijMiMj

(
SiiA(qt)SjjR (qu) + SiiA(qu)SjjR (qt)

)
, (4.85b)

Ξ(t×u)

φ̄φ̄↔`` + Ξ(u×t)
φ̄φ̄↔`` =

gw
2

(pp′)
∑
i,j

(h†h)2
ijMiMj

(
SiiA(qt)SjjR (qu) + SiiA(qu)SjjR (qt)

)
. (4.85c)
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Combining (4.82) and (4.85) we obtain for the effective scattering amplitudes:

Ξ¯̀φ̄↔`φ = 2gw(pp′)
∑
i,j

(h†h)2
ijMiMj

(
gwP2

ij(qs) + gwP2
ij(qt)

+ SiiA(qs)SjjR (qt) + SiiA(qt)SjjR (qs)
)
, (4.86a)

Ξ ¯̀̀̄↔φφ = Ξφ̄φ̄↔`` =
gw
2

(pp′)
∑
i,j

(h†h)2
ijMiMj

(
gwP2

ij(qt) + gwP2
ij(qu)

+ SiiA(qt)SjjR (qu) + SiiA(qu)SjjR (qt)
)
. (4.86b)

Comparing (4.86) with the vacuum amplitudes (2.33) and (2.35) we see that they have a very
similar structure. The vacuum amplitudes can be recovered from the one obtained within
NEQFT in the zero temperature limit. In vacuum Lρ(q) = θ(q2)sign(q0)/q, and the retarded
and advanced heavy neutrino propagators reads (assuming q0 > 0),

SiiR(A)(q) =
−1

q2 −M2
i − 2qΠii

R(A)(q)
≈ −1
q2 −M2

i ± iθ(q2)ΓNi/Miq2
, (4.87)

where we have neglected the dispersive self-energy in the second equality. In the vicinity of
the mass-shell of the respective heavy neutrino, q2 ≈M2

i , we find,

SiiR(q) = −Pi(q) , SiiA(q) = −P ∗i (q) , (4.88)

where Pi(q) is the vacuum Feynman propagator, see (2.25). Therefore the terms off-diagonal
in flavour space (i 6= j) in the scattering amplitudes (4.86) exactly coincide with the vacuum
results, (2.33) and (2.35). For the diagonal terms we rewrite P2

ii(q) as,

P2
ii(q) = SiiA(q)SiiR(q)− 1

2
Siiρ (q)Siiρ (q) =

1
2

(
SiiR(q)SiiR(q) + SiiA(q)SiiA(q)

)
. (4.89)

In vacuum we find,

P2
ii(q) ≈

(
q2 −M2

i

)2 − (θ(q2)sign(q0)q2/MiΓNi
)2[(

q2 −M2
i

)2 +
(
θ(q2)sign(q0)q2/MiΓNi

)2]2 . (4.90)

In the t- and u-channel, q2
t < 0 and q2

u < 0 and the propagator (4.90) coincides with the
vacuum one,

P2
ii(qt) =

1(
q2
t −M2

i

)2 =
∣∣Pi(qt)∣∣2 , P2

ii(qu) =
1(

q2
u −M2

i

)2 =
∣∣Pi(qu)

∣∣2 . (4.91)

In the s-channel, in the vicinity of the mass-shell, q2
s ≈M2

i , and the “RIS-propagator” obtained
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within NEQFT is given by

P2
ii(qs) =

(
q2
s −M2

i

)2 − (MiΓNi
)2[(

q2
s −M2

i

)2 +
(
MiΓNi

)2]2

=
1(

q2
s −M2

i

)2 +
(
MiΓNi

)2 − 1
MiΓNi

2
(
MiΓNi

)3[(
q2
s −M2

i

)2 +
(
MiΓNi

)2]2 . (4.92)

The first term in the second line correspond to the product of Feynman propagator
∣∣Pi(qs)∣∣2.

The second term can be identified with the eQP spectral function (3.108) that we approximated
by a delta-function in the limit of vanishing width. In this approximation the diagonal “RIS-
propagator” (4.92) reads,

P2
ii(qs) ≈

∣∣Pi(qs)∣∣2 − π

MiΓNi
δ(q2

s −M2
i ) , (4.93)

where we used the following representation of the delta-function,

lim
ε→0+

2ε3

[ω2 + ε2]2
= πδ(ω) . (4.94)

In this limit the effective amplitudes (4.86) exactly coincide with the vacuum result.
At finite temperatures Lρ(t, q) is non zero even for t- and u-channels. In other words, the

medium effects induce additional contributions to the effective decay amplitudes. However,
these contributions are suppressed by the small Yukawa couplings since they are proportional
to ΓNi/Mi = (h†h)ii/(8π). Numerical analysis shows that the additional correction typically
do not have any sizable impact on the lepton production.

4.4 Higgs decay

At high temperature the phase-space of the decay of the heavy neutrino into a lepton-Higgs
pair is suppressed due to thermal masses of the final states. At even higher temperature, when
the thermal Higgs mass is large enough, the decay channel of the Higgs into a lepton and a
right-handed neutrino becomes allowed. In the SM a rough estimate of the lepton and Higgs
thermal masses are given by [136],

m`(T ) ≈ 0.2T , mφ(T ) ≈ 0.4T . (4.95)

Therefore the decay of the heavy neutrino Ni is forbidden at T & 1.3Mi and the Higgs decay
is possible at temperature T & 5Mi.

Similarly to the heavy neutrino decay the Higgs decay violates CP at one-loop level, see
Fig. 4.4. Even if the decaying particle, the Higgs field, is very close to thermal equilibrium, a
deviation from equilibrium is provided by the right-handed neutrino. The Sakharov conditions
are therefore satisfied and a lepton asymmetry can be produced by the Higgs decay.

In this section we derive the tree-level Higgs decay amplitude and the corresponding self-
energy and vertex corrections within NEQFT. Since this computation is quite similar to the
one in the previous section we do not show the details of the derivation.
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Figure 4.4: Tree-level and one-loop contributions to the decay amplitude φ̄ → Ni`. The
second and third diagrams are the self-energy or wave-function diagrams, and the last one is
the vertex diagram. Note that the second diagram is CP-conserving and does not contribute
to the production of the total lepton asymmetry.

4.4.1 Tree-level amplitude

The leading order contribution to the Higgs decay amplitude is obtained by inserting the one-
loop lepton self-energy (4.12) into the divergence of the lepton current (4.11). It is convenient
to rewrite the lepton self-energy as,

Σ(1)
≷ (t, p) = −

∫
dΠ4

qk(2π)4δ(k − p− q)(h†h)jiPRC
(
S ji
≶

)T (t, q)C−1PL∆̄≷(t, k) , (4.96)

where we have used a symmetry property of the Majorana propagator (see appendix C),
S ij
≶ (t,−q) = C

(
S ji
≷

)T (t, q)C−1 and replaced the Higgs propagator by the CP-conjugated one,
∆≶(t,−k) = ∆̄≷(t, k), see appendix C. In (4.96) we have renamed the momenta of the Higgs
and heavy neutrino so that the delta-function reflects the kinematics of a Higgs decay.

Substituting (4.96) into the divergence of the lepton current (4.11) with the leading order
term of the eQP approximation for the Higgs and heavy neutrino propagators, we find,

DµjµL(t)
∣∣
(φ,T )

=
∑
i

∫
dΠ4

qpk(2π)4δ(k − p− k)S̃ii
ρ (q)S̃ρ(p)∆̃ρ(k) (4.97)

× 2gw(h†h)iipq
[
F<
φ̄

(k)F>Ni(q)F
>
` (p)− F<Ni(q)F

<
` (p)F>

φ̄
(k)
]
.

Similarly to the heavy neutrino decay, we perform the integrals over the frequencies using the

68



4.4 Higgs decay

delta-functions in the eQP spectral functions, and find,

DµjµL(t)
∣∣
(φ,T )

=
∑
i

∫
dΠNi`φ

qpk

[
Ξ(T )

φ̄↔Ni`F
k;qp

φ̄↔Ni` − Ξ(T )

φ↔Ni ¯̀F
k;qp

φ↔Ni ¯̀
]
, (4.98)

where we have defined the tree-level Higgs decay amplitudes,

Ξ(T )

φ̄↔Ni` = 2gw(h†h)iipq , (4.99a)

Ξ(T )

φ↔Ni ¯̀ = 2gw(h†h)iipq . (4.99b)

As expected, the Higgs decay amplitudes are CP-even at tree-level. Therefore the amplitudes
(4.99) do not contribute to the production of the lepton asymmetry but only to the washout
of a preexisting asymmetry.

4.4.2 Self-energy contribution

In complete analogy with the heavy neutrino decay computation, the self-energy correction
to the decay amplitude is obtained by using the off-diagonal terms of the heavy neutrino
propagator (4.42),

Ŝ
(SE)
≷ ≡ −ŜRΠ̂od

R F̂
≷
N

ˆ̃Sρ − F̂
≷
N

ˆ̃SρΠ̂od
A ŜA . (4.100)

Substituting the lepton one-loop self-energy with the propagator (4.100) into the lepton current
(4.11), we find,

DµjµL(t)
∣∣
(φ,S)

=
∑
i,j

∫
dΠ4

qpk(2π)4δ(k − p− q)S̃ii
ρ (q)S̃ρ(p)∆̃ρ(k)

× (−2gw)Re
[
(h†h)ijtr

[
(/q +Mi)Π

od,ij
A (q)SjjA (q)PR/p

]]
×
[
F<
φ̄

(k)F>Ni(q)F
>
` (p)− F<Ni(q)F

<
` (p)F>

φ̄
(k)
]
. (4.101)

Similarly to the tree-level computation the frequency integrals are performed by using the eQP
spectral functions, and we find an equation similar to (4.98) but with the tree-level amplitudes
replaced by the one-loop corrected ones,

Ξ(S)

φ̄↔Ni` = −2gw
∑
j 6=i

Re
[
(h†h)ijtr

[
(/q +Mi)Π

od,ij
A (q)SjjA (q)PR/p

]]
, (4.102a)

Ξ(S)

φ↔Ni ¯̀ = −2gw
∑
j 6=i

Re
[
(h†h)ijtr

[
(−/q +Mi)Π

od,ij
A (−q)SjjA (−q)PR(−/p)

]]
. (4.102b)

The CP-violating parameter is defined similarly to the heavy neutrino decay (4.51),

ε
(S)
φ,i =

Ξ(S)

φ̄↔Ni` − Ξ(S)

φ↔Ni ¯̀

Ξ(T )

φ̄↔Ni` + Ξ(T )

φ↔Ni ¯̀
. (4.103)
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For a hierarchical mass spectrum we can approximate the causal heavy neutrino propagator
in (4.102) by its hermitian part and neglect its spectral part. In this approximation the CP-
violating parameter for the Higgs decay (4.103) takes the same form, up to the sign, as the
one for the right-handed neutrino decay (4.52),

ε
(S)
φ,i ≡ −

∑
j 6=i

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓNj
(M2

i −M2
j )2 + (ΓNj/MjqLρ)2

pLρ
pq

. (4.104)

However, they don’t have the same magnitude since the function Lρ depends on the kinematics
and is therefore different for the Higgs and heavy neutrino decays. In the regime mφ > Mi+m`,
the loop function Lρ reads (see appendix E),

Lρ(t, q) = 16π
∫
dΠ`φ

pk(2π)4δ(k − q − p)
[
f eq,p
` (t) + f eq,k

φ (t)
]
/p . (4.105)

Note that the above result is different from the one presented in [75, 136, 149]. Instead of the
f eq
φ − f

eq
` − 2f eq

φ f
eq
` dependence, it is proportional to a sum, f eq

φ + f eq
` , of the two distribution

functions. This dependence can also be obtained in the framework of real time thermal field
theory using causal n-point functions, see [62].

4.4.3 Vertex contribution

In the preceding computation we only considered the one-loop lepton self-energy. We compute
here the vertex correction to the Higgs decay amplitude, which results from the two-loop lepton
self-energy (4.14),

Σ(2.1)
≷ (p) =

∫
dΠ4

qk(2π)4δ(k − q − p)
[
(h†h)2

ijΛjj(−q,−k)PLS ii
≶ (t, q)CPL∆̄≷(k)

+ (h†h)2
jiPRCS ii

≶ (t, q)PRVjj(−q,−k)∆̄≷(k)
]
, (4.106)

where the “diagonal” loop functions Λjj and Vjj are given by (4.56). In (4.106) we neglected
the off-diagonal components of the heavy neutrino propagator, which are of higher order in
the Yukawa couplings. Inserting the two-loop lepton self-energy (4.106) into the divergence of
the lepton current (4.11) and substituting the eQP approximation for the heavy neutrino and
Higgs propagators, we find an equation similar to (4.98) but with the tree-level amplitudes
replaced by the vertex corrections,

Ξ(V )

φ̄↔Ni` = −gwMi

∑
j

Re
[
(h†h)ijtr

[
Λjj(−q,−k)CPL/p

]]
, (4.107a)

Ξ(V )

φ↔Ni ¯̀ = −gwMi

∑
j

Re
[
(h†h)ijtr

[
Λjj(q, k)CPL(−/p)

]]
. (4.107b)
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The vertex CP-violating parameter is then given by,

ε
(V )
φ,i =

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii

MiMj

pq

∫
dΠ4

q1p1k1
(2π)4δ(q − k1 − p1)(2π)4δ(k − p1 − q1)[

Sjj
h (q1)SF (p1)∆ρ(k1) + Sjj

h (q1)Sρ(p1)∆F (k1)

− Sjj
F (q1)Sρ(p1)∆h(k1)− Sjj

ρ (q1)SF (p1)∆h(k1)

+ Sjj
F (q1)Sh(p1)∆F (k1)− Sjj

ρ (q1)Sh(p1)∆F (k1)
]
. (4.108)

The three lines in square bracket of (4.108) correspond to the three possible cuts of the vertex
graph. The relative magnitude of the different cuts depends on the kinematic regime. For
definiteness, let us assume a strongly hierarchical mass spectrum, Mj � mφ > Mi. In that
case the contribution of the two last lines are strongly Boltzmann suppressed. Integrating out
the delta-functions we find for the contribution of the first line,

ε
(V,1)
φ,i =

1
gw

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

MiΓNj
M2
j

pKφ
j (q, k)
pq

, (4.109)

where the loop function Kφ,µ
j (q, k) is defined as,

Kφ,µ
j (q, k) = 16π

∫
dΠ`φ

p1k1
(2π)4δ(k1 − q − p1)

M2
j

M2
j − (k − p1)2

[
f eq,p2

` + f eq,k2

φ

]
pµ1 . (4.110)

Note that the vertex CP-violating parameter (4.109) has an opposite sign relative to that for
the right-handed neutrino decay. Similarly to the self-energy contribution we observe that the
1− f eq

` + f eq
φ combination is replaced in (4.110) by f eq

` + f eq
φ . For a milder mass hierarchy the

two other cuts can become important. Their contributions are proportional to 1 − f eq
` − fNj

and f eq
φ + fNj respectively.

4.5 Higgs mediated scattering processes

We have so far only used the on-shell part of the Higgs propagator and neglected the off-shell
contribution. The off-shell part of the Wightman Higgs propagators is proportional to its
self-energy,

∆off-shell
≷ (t, k) = −1

2
(
∆2
R(t, k) + ∆2

A(t, k)
)
Ω≷(t, k) . (4.111)

Due to the gauge interactions and the large top Yukawa coupling the Higgs self-energy can
potentially receive a large contribution. Therefore the off-shell part (4.111) is not suppressed
by any small couplings compared to the on-shell part, ∆̃≷(t, k), and should not be disregarded
for a consistent treatment of leptogenesis.

In this work we only consider the contribution to the Higgs Wightman self-energy coming
from the top quark, and do not study the gauge interactions. The treatment of gauge inter-
actions is more involved since multiple soft scatterings could give leading order contributions,
as argued in [100, 101]. Here we take the gauge interactions into account only in the form of
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the thermal masses of the SM particles. However, for a consistent treatment of leptogenesis,
gauge interactions should also be included in the production and washout of the asymmetry,
and in the production of the right-handed neutrino.

The causal propagators in the above expression indicate that this term describes processes
with the Higgs field as an intermediate state. As we will see in this section the inclusion of the
off-shell Higgs propagator (4.111) gives raise to the |∆L| = 1 top scattering processes mediated
by the Higgs, and to the |∆L| = 1 decay of the heavy neutrino into a lepton, top quark and
quark doublet.

Quark propagators

We introduce here notation for the quark fields. The quark propagators are defined similarly
to the lepton two-point functions,

St
AB(x, y) = 〈TCtA(x)t̄B(y)〉 , (4.112a)

SQ
AB
ab (x, y) = 〈TCQAb (x)Q̄Bb (y)〉 , (4.112b)

where A, B are colour indices, and a, b SU(2)L indices. Since the top quark singlet is right-
handed, its propagator satisfies,

Ŝt(x, y) = PRŜt(x, y)PL . (4.113)

Similarly to the notation introduced in chapter 3 the hat over a quark two-point function
denotes a matrix in colour, spinor and potentially SU(2)L space. The quark doublet is left-
handed and satisfies the same symmetry property as the lepton doublet,

ŜQ(x, y) = PLŜQ(x, y)PR . (4.114)

Since we are working in a SU(2)L symmetric state the propagators (4.112) are proportional to
the identity in SU(2)L space. The matrix structure in colour space is also trivial, and therefore
the propagators (4.112) read,

St
AB(x, y) ≡ δABSt(x, y) , (4.115a)

SQ
AB
ab (x, y) ≡ δabδABSQ(x, y) , (4.115b)

where St(x, y) and SQ(x, y) are now matrices in spinor space only. Up to the left- and right-
handed projectors the above propagators satisfy the Schwinger-Dyson and Kadanoff-Baym
equations similar to the lepton field. We can therefore use for the Wightman quark propagators
an eQP approximation similar to the one for the leptons, see (3.111). We disregard its off-shell
part since it is lepton number conserving at leading order, and only take into account the
on-shell part of the quark two-point functions,

St≷(t, pt) ≈ S̃t≷(t, pt) = F
≷
t (t, pt)S̃tρ(t, pt) , (4.116a)

SQ≷(t, pQ) ≈ S̃Q≷(t, pQ) = F
≷
Q (t, pQ)S̃Qρ(t, pQ) , (4.116b)
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where the eQP spectral functions are given by a delta-function in the limit of a vanishing
width,

S̃tρ = PR/ptPLsign(p0
t )(2π)δ(p2

t −m2
t ) ≡ PR/ptPLS̃tρ , (4.117a)

S̃Qρ = PL/pQPRsign(p0
Q)(2π)δ(p2

Q −m2
Q) ≡ PL/pQPRS̃Qρ . (4.117b)

Here mt and mQ are the thermal masses of the quarks. They are approximatively given by
mt ≈ mQ ≈ 0.4T [51]. Similarly to the lepton and heavy neutrino case we have factored out
the “scalar” part of the quark propagators.

4.5.1 Tree-level amplitude

The leading contribution comes from the one-loop lepton self-energy,

Σ(1)
≷ (t, p) = −

∫
dΠ4

qk(2π)4δ(q − p− k)(h†h)jiPRS ij
≷ (t, q)PL∆≶(t, k) , (4.118)

with the Higgs propagator replaced by its off-shell part (4.111). The latter is proportional to
the Higgs Wightman self-energy. At one-loop level, in Wigner space, it reads (see appendix
E),

Ω≷(t, k) = gq|λt|2
∫
dΠ4

pQpt
(2π)4δ(k + pQ − pt)tr

[
SQ≶(t, pQ)PRSt≷(t, pt)PL

]
, (4.119)

where the factor gq = 3 comes from summation over the colour indices. Inserting the eQP
ansatz (4.116) for the quarks we find,

Ω≷(k) = gq|λt|2
∫
dΠ4

pQpt
(2π)4δ(k + pQ − pt)S̃tρ(pt)S̃Qρ(pQ)2ptpQF

≷
t (pt)F

≶
Q (pQ) , (4.120)

where we have suppressed the time argument for notational convenience. At leading order in the
Yukawa couplings the right-handed neutrino propagator is diagonal, S ij

≷ ≈ S̃
ii
≷δ

ij = F
≷
Ni
S̃iiρ δij ,

and the one-loop lepton self-energy (4.118) reads,

Σ(1)
≷ (p) = gq(h†h)ii|λt|2

∫
dΠ4

qpQpt
(2π)4δ(q + pQ − p− pt)S̃

i
ρ(q)S̃tρ(pt)S̃Qρ(pQ)

× F≷Ni(q)F
≷
Q (pQ)F≶t (pt)∆2

R+A(p− q)(2ptpQ)PR/q , (4.121)

where we have defined the Higgs propagators,

∆2
R+A(k) ≡ 1

2
(
∆2
R(k) + ∆2

A(k)
)

= ∆R(k)∆A(k)− 1
4

∆ρ(k)∆ρ(k) . (4.122)

Note the resemblance of the intermediate Higgs propagators (4.122) and the “RIS-subtracted”
heavy neutrino propagator (4.89). They both describe an intermediate state and feature a RIS-
subtraction. In a CP-symmetric, homogeneous and isotropic medium the propagator (4.122)
is an even function of the momentum,

∆2
R+A(−k) = ∆2

R+A(k) . (4.123)
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The tree-level contribution is obtained by substituting the one-loop lepton self-energy (4.118)
with the off-shell Higgs propagator into the divergence of the lepton current (4.11),

DµjµL(t)
∣∣
(t,T )

=
∑
i

∫
dΠ4

qpptpQ
(2π)4δ(q + pQ − p− pt)S̃

i
ρ(q)S̃tρ(pt)S̃Qρ(pQ)S̃ρ(p)

× gqgw(h†h)ii|λt|2(2pq)(2ptpQ)∆2
R+A(pQ − pt)

×
[
F<Ni(q)F

<
Q (pQ)F>` (p)F>t (pt)− F<` (p)F<t (pt)F>Ni(q)F

>
Q (pQ)

]
. (4.124)

Similarly to the heavy neutrino decay we perform then the trivial integration over the frequen-
cies by using the delta-functions in the eQP spectral functions. The product of the four eQP
spectral functions gives raise to 24 terms which correspond to 2 ↔ 2 scattering, 1 ↔ 3 (in-
verse)decay and unphysical 0↔ 4 processes. An additional constraint comes from the overall
delta-function ensuring momentum-energy conservation. In the regime Mi > m` + mt + mQ

only 8 terms satisfy the energy conservation and read,

DµjµL(t)
∣∣
(t,T )

=
∑
i

∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q + pQ − p− pt)

×
[
Ξ(T )
NiQ↔`tF

qpQ;ppt
NiQ↔`t − Ξ(T )

NiQ̄↔ ¯̀̄t
FqpQ;ppt
NiQ̄↔ ¯̀̄t

+ Ξ(T )

Ni t̄↔`Q̄F
qpt;ppQ
Ni t̄↔`Q̄ − Ξ(T )

Nit↔¯̀Q
Fqpt;ppQ
Nit↔¯̀Q

+ Ξ(T )
t̄Q↔`NiF

ptpQ;qp

t̄Q↔`Ni − Ξ(T )

tQ̄↔¯̀Ni
FptpQ;qp

tQ̄↔¯̀Ni

+ Ξ(T )

Ni↔`t̄Q̄F
q;pptpQ
Ni↔`t̄Q̄ − Ξ(T )

Ni↔¯̀tQ
Fq;pptpQ
Ni↔¯̀tQ

]
, (4.125)

where the tree-level amplitudes are given by,

Ξ(T )
NiQ↔`t = Ξ(T )

NiQ̄↔ ¯̀̄t
= Ξ(T )

Ni↔`φ∗∆
2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.126a)

Ξ(T )

Ni t̄↔`Q̄ = Ξ(T )

Nit↔¯̀Q
= Ξ(T )

Ni↔`φ∗∆
2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.126b)

Ξ(T )
t̄Q↔`Ni = Ξ(T )

tQ̄↔¯̀Ni
= Ξ(T )

φ∗↔`Ni∆
2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t , (4.126c)

Ξ(T )

Ni↔`t̄Q̄ = Ξ(T )

Ni↔¯̀tQ
= Ξ(T )

Ni↔`φ∗∆
2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t . (4.126d)

We have factored the amplitudes (4.126) into a top contribution, Ξ(T )
φ∗Q↔t, and the heavy

neutrino contribution, Ξ(T )
Ni↔`φ∗ or Ξ(T )

φ∗↔`Ni . They correspond to the tree-level (inverse) decay
amplitudes with an off-shell Higgs, denoted by φ∗, and read,

Ξ(T )
Ni↔`φ∗ = Ξ(T )

φ∗↔`Ni = 2gw(h†h)ii pq , (4.127a)

Ξ(T )
φ∗Q↔t = 2gq|λt|2ptpQ . (4.127b)

We have written (4.125) in such a way that each line in square brackets corresponds to the
difference of a process and its CP-conjugate. They are equal at tree-level, see (4.126). There-
fore the RHS of (4.125) vanishes when the SM particles are in thermal equilibrium and no
asymmetry can be produced at tree-level.
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The intermediate Higgs propagator reads,

∆2
R+A(k) =

1
(k2 −m2

φ)2 + (1
2Ωρ(k))2

− 1
4

(Ωρ(k))2(
(k2 −m2

φ)2 + (1
2Ωρ(k))2

)2 . (4.128)

In the regime mφ < mt + mQ the on-shell condition for the Higgs is never satisfied, and the
second term in (4.128) is negligible. We can also neglect the “regulator” in the first term.
Then the intermediate Higgs propagator reads,

∆2
R+A(k) ≈ 1

(k2 −m2
φ)2

. (4.129)

In that limit the tree-level amplitudes (4.126) obtained within NEQFT and the ones computed
in vacuum are equal.

4.5.2 Self-energy contribution

Similarly to the decay of heavy neutrino, the self-energy corrections to the amplitudes (4.126)
are obtained by using the off-diagonal right-handed neutrino propagator (4.42), Ŝ

(SE)
≷ ≡

−ŜRΠ̂od
R F̂

≷
N

ˆ̃Sρ − F̂
≷
N

ˆ̃SρΠ̂od
A ŜA, instead of the leading order approximation. Performing the

same steps as above we find the self-energy corrections to the scattering and three-body decay
amplitudes,

Ξ(S)
NiQ↔`t = Ξ(S)

Ni↔`φ∗∆
2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.130a)

Ξ(S)

Ni t̄↔`Q̄ = Ξ(S)
Ni↔`φ∗∆

2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.130b)

Ξ(S)
t̄Q↔`Ni = Ξ(S)

φ∗↔`Ni∆
2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t , (4.130c)

Ξ(S)

Ni↔`t̄Q̄ = Ξ(S)
Ni↔`φ∗∆

2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t , (4.130d)

where the corrections to the decay amplitudes Ξ(S)
Ni↔`φ∗ and Ξ(S)

φ∗↔`Ni are given by the same
expression as in the heavy neutrino decay process since they do not depend on the momentum
of the Higgs,

Ξ(S)
Ni↔`φ∗ = Ξ(S)

φ∗↔`Ni = −2gw
∑
j 6=i

Re
[
(h†h)jitr

[
PR(/q +Mi)Π

od,ij
A (q)SjjA (q)/p

]]
. (4.131)

The CP-conjugate of the amplitudes (4.130) are obtained from (4.130) by replacing the ampli-
tude Ξ(S)

Ni↔`φ∗ (Ξ(S)
φ∗↔`Ni) by its CP-conjugate Ξ(S)

Ni↔¯̀φ̄∗ (Ξ(S)

φ̄∗↔¯̀Ni
),

Ξ(S)

Ni↔¯̀φ̄∗ = Ξ(S)

φ̄∗↔¯̀Ni
= −2gw

∑
j 6=i

Re
[
(h†h)jitr

[
/pSjjR (q)Πod,ji

R (q)(/q +Mi)PR
]]
. (4.132)

Since the top-quark contributions to the amplitudes (4.130) factor out, it cancels out in the
CP-parameters. Therefore, only one CP-parameter is needed to characterise the self-energy
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correction to the Higgs-mediated processes. It is given by,

ε
(S)
t,i ≡

Ξ(S)
NiQ↔`t − Ξ(S)

NiQ̄↔ ¯̀̄t

Ξ(T )
NiQ↔`t − Ξ(T )

NiQ̄↔ ¯̀̄t

=
∑
j 6=i

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓNj
(M2

i −M2
j )2 + (ΓNj/MjqLρ)2

pLρ
pq

, (4.133)

and takes the same form as the corresponding CP-parameter of the heavy neutrino decay
(4.52). However, since the kinematics of the two processes are different, they are not evaluated
at the same momenta. In particular, pq 6= 1

2M
2
i for the CP-violating parameter (4.133).

4.5.3 Vertex contribution

In complete analogy with the right-handed neutrino decay the two-loop lepton self-energy (4.14)
together with the off-shell Higgs propagator (4.111) and on-shell heavy neutrino propagators
gives the vertex correction to the amplitudes (4.126). After some algebra we find,

Ξ(V )
NiQ↔`t =

∑
j 6=i

Ξ(V )
Ni↔`φ∗∆

2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.134a)

Ξ(V )

Ni t̄↔`Q̄ =
∑
j 6=i

Ξ(V )
Ni↔`φ∗∆

2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t , (4.134b)

Ξ(V )
t̄Q↔`Ni =

∑
j 6=i

Ξ(V )
φ∗↔`Ni∆

2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t , (4.134c)

Ξ(V )

Ni↔`t̄Q̄ =
∑
j 6=i

Ξ(V )
Ni↔`φ∗∆

2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t , (4.134d)

with

Ξ(V )
Ni↔`φ∗ ≡ −2gwMi

∑
j

Re
[
tr
[
(h†h)2

ijΛjj(q, q − p)CPL/p
]]
, (4.135a)

Ξ(V )
φ∗↔`Ni ≡ −2gwMi

∑
j

Re
[
tr
[
(h†h)2

ijΛjj(q, q + p)CPL/p
]]
. (4.135b)

Since the two above amplitudes are not equal due to the sign difference of the lepton mo-
mentum, we can define two inequivalent CP-parameters [102], ε(V

−)
t,i , which corresponds to the

amplitudes (4.134a), (4.134b) and (4.134d), and ε
(V +)
t,i , which corresponds to the amplitude
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(4.134c). The two vertex CP-violating parameters read,

ε
(V ∓)
t,i = −

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii

MiMj

pq

∫
dΠ4

q1p1k1
(2π)4δ(q + k1 + p1)(2π)4δ(q ∓ p+ p1 − q1)pp1

×
[
Sjj
h (q1)SF (p1)∆ρ(k1) + Sjj

h (q1)Sρ(p1)∆F (k1)

− Sjj
F (q1)Sρ(p1)∆h(k1) + Sjj

ρ (q1)SF (p1)∆h(k1)

+ Sjj
F (q1)Sh(p1)∆ρ(k1) + Sjj

ρ (q1)Sh(p1)∆F (k1)
]

≡ − 1
gw

∑
j

Im
[
(h†h)2

ij

]
(h†h)ii(h†h)jj

MiΓNj
M2
j

pK
(∓1)
t,j (q, p) + pK

(∓2)
t,j (q, p) + pK

(∓3)
t,j (q, p)

pq
, (4.136)

where we have defined three loop functions for each CP-parameter which correspond to the
three lines in square brackets. Inserting the on-shell term of the eQP approximation into
(4.136) we find for the loop functions of ε(V

−)
t,i ,

K
(−1),µ
t,j (q, p) ≡ 16π

∫
dΠp1k1

`φ (2π)4δ(q − p1 − k1)pµ1
M2
j

M2
j − (k1 − p)2

[
1− fp1

` + fk1
φ

]
, (4.137a)

K
(−2),µ
t,j (q, p) ≡ 16π

∫
dΠq1p1

Nj`
(2π)4δ(q + p1 − q1 − p)pµ1

M2
j

m2
φ − (q + p1)2

[
f q1Nj − f

p1

`

]
(4.137b)

+ 16π
∫
dΠq1p1

Nj`
(2π)4δ(q + q1 − p− p1)pµ1

M2
j

m2
φ − (q + p1)2

[
f q1Nj − f

p1

`

]
,

K
(−3),µ
t,j (q, p) ≡ 16π

∫
dΠq1k1

Njφ
(2π)4δ(q1 − p− k1)(q + k1)µ

M2
j

m2
` − (q + k1)2

[
f q1Nj + fk1

φ

]
. (4.137c)

The loop functions for the second CP-parameter are given by,

K
(+1),µ
t,j (q, p) ≡ 16π

∫
dΠp1k1

`φ (2π)4δ(q − p1 − k1)pµ1
M2
j

M2
j − (k1 + p)2

[
1− fp1

` + fk1
φ

]
, (4.138a)

K
(+2),µ
t,j (q, p) ≡ 16π

∫
dΠq1p1

Nj`
(2π)4δ(q + p+ p1 − q1)pµ1

M2
j

m2
φ − (q + p1)2

[
f q1Nj − f

p1

`

]
(4.138b)

− 16π
∫
dΠq1p1

Nj`
(2π)4δ(q + p− q1 − p1)pµ1

M2
j

m2
φ − (q − p1)2

[
1− f q1Nj − f

p1

`

]
,

K
(+3),µ
t,j (q, p) ≡ 16π

∫
dΠq1k1

Njφ
(2π)4δ(q1 − p− k1)(k1 − q)µ

M2
j

m2
` − (q − k1)2

[
f q1Nj + fk1

φ

]
. (4.138c)

Similarly to the heavy neutrino decay case only the cut through `φ gives a contribution to the
CP-parameter ε(V

−)
t,i in the vacuum limit. The other CP-parameter, ε(V

+)
t,i , which corresponds to

the t̄Q↔ `Ni scattering processes, receives two vacuum contributions [102]. One contribution
comes from the cut through `φ, (4.138a), and the other one corresponds to the cut through
Nj`. The kinematics of the second contribution is the one of a Ni`↔ Nj` scattering process.
Therefore, in the divergence of the lepton current, the vacuum contribution coming from the
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second cut is suppressed for a hierarchical mass spectrum since it requires the center-of-mass
energy to be greater than Mj +m` �Mi +m`. For a mildly degenerate mass spectrum both
contributions should be taken into account [102].

4.6 Heavy neutrino number density

We have for now only derived a quantum-corrected Boltzmann equation for the lepton asym-
metry, see (4.64) (heavy neutrino decay contribution) and (4.125) (top quark contribution).
These equations contain the heavy neutrino distribution function fNi . The latter satisfies the
Boltzmann-like equation (see (3.109)),

DtfNi(t, q) =
1

4q0
tr
[
Πii
>(t, q)

(
/q +Mi

)
fNi(t, q) + Πii

<(t, q)
(
/q +Mi

)(
1− fNi(t, q)

)]
, (4.139)

with the diagonal self-energy given by (see appendix E),

Πii
≷(t, q) = −gw(h†h)ii

∫
dΠ4

pk(2π)4δ(q − p− k)
[
PLS≷(t, p)PR∆≷(t, k)

+ PRPS̄≷(t, p̄)PPL∆̄≷(t, k̄)
]
. (4.140)

On the LHS of (4.139) we take into account the expansion of the universe by using the covariant
derivative. The number density nNi is found by integrating the distribution function over the
momentum and summing over the internal degrees of freedom,

nNi(t) ≡ 2
∫

d3~q

(2π)3
fNi(t, q) , (4.141)

where the overall factor 2 comes from the summation over the helicity state. Similarly to the
lepton asymmetry the time evolution of the heavy neutrino number density can be split between
the contributions from the heavy neutrino decay and from the Higgs mediated processes,

DtnNi(t) = DtnNi(t)
∣∣
(D)

+DtnNi(t)
∣∣
(t)
. (4.142)

We only need to consider the tree-level processes for the production or destruction of the heavy
neutrino number.

Heavy neutrino decay

We first consider the contribution from the heavy neutrino decay. Substituting the on-shell
term of the eQP approximation for the lepton and Higgs in the heavy neutrino self-energy, we
find for the heavy neutrino decay contribution,

DtnNi(t)
∣∣
(D)

= −
∫
dΠqpk

Ni`φ

[
Ξ(T )
Ni↔`φF

q;pk
Ni↔`φ + Ξ(T )

Ni↔¯̀φ̄
Fq;pk
Ni↔¯̀φ̄

]
, (4.143)

where the tree-level amplitude Ξ(T )
Ni↔`φ and its CP-conjugate Ξ(T )

Ni↔¯̀φ̄
are equal and given by,

Ξ(T )
Ni↔`φ = Ξ(T )

Ni↔¯̀φ̄
= 2gw(h†h)iipq . (4.144)
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Top quark contribution
The top quark contributions are found by substituting the on-shell lepton and off-shell Higgs
propagators into the one-loop heavy neutrino self-energy,

DtnNi(t) = −
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q + pQ − p− pt)

×
[
Ξ(T )
NiQ↔`tF

qpQ;ppt
NiQ↔`t + Ξ(T )

NiQ̄↔ ¯̀̄t
FqpQ;ppt
NiQ̄↔ ¯̀̄t

+ Ξ(T )

Ni t̄↔`Q̄F
qpt;ppQ
Ni t̄↔`Q̄ + Ξ(T )

Nit↔¯̀Q
Fqpt;ppQ
Nit↔¯̀Q

− Ξ(T )
t̄Q↔`NiF

ptpQ;qp

t̄Q↔`Ni − Ξ(T )

tQ̄↔¯̀Ni
FptpQ;qp

tQ̄↔¯̀Ni

+ Ξ(T )

Ni↔`t̄Q̄F
q;pptpQ
Ni↔`t̄Q̄ + Ξ(T )

Ni↔¯̀tQ
Fq;pptpQ
Ni↔¯̀tQ

]
, (4.145)

where the tree-level amplitudes are given by (4.126).
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Chapter 5

Comparison of the Boltzmann and
nonequilibrium approaches

In this chapter we compare the amplitudes and CP-parameters obtained within NEQFT and
the ones obtained in the conventional approach. However these quantities cannot be directly
compared since the former depend on the momenta of the initial and final states in a non-trivial
way. Therefore, we first obtain rate equations from the Boltzmann equations derived within
NEQFT and from the conventional ones. These rate equations are governed by few averaged
quantities, called reaction densities, which depend only on the temperature of the medium.
The reaction densities can then be used to compare the NEQFT and conventional approaches.
This chapter is based on the work presented in [72] and work in preparation [73].

5.1 Rate equations

Solving a system of Boltzmann equations in general requires the use of numerical codes capable
of treating large systems of differential equations for the different momentum modes. This is a
difficult task if one wants to study a wide range of model parameters. A commonly employed
simplification is to approximate the Boltzmann equations by the corresponding system of rate
equations for the abundances Ya. In [150] it was shown that the two approaches, Boltzmann
and the rate equations, give approximately equal result for the final asymmetry, up to 10%
correction.

We first derive the rate equations from the Boltzmann equations obtained within NEQFT.
They incorporate quantum statistical factors, which are usually neglected in the conven-
tional approach for consistency with the RIS-subtraction procedure. The rate equations with
Maxwell-Boltzmann statistics are derived for comparison with the improved result.

Rate equations from NEQFT

In the previous chapter we have derived from NEQFT an equation for the divergence of the
lepton current. Its right-hand side can be represented as a combination of processes involving
the right-handed neutrinos as initial or final states (e.g. heavy neutrino (inverse) decay Ni ↔
`φ) and processes with SM particles only (e.g. two-body scattering ¯̀φ̄↔ `φ),

Dµjµ =
∑

i,{a},{j}
Dµjµ

∣∣
Niab...↔jk... +

∑
{a},{j}

Dµjµ
∣∣
ab...↔jk... , (5.1)

where the sum runs over all lepton number violating processes Niab . . .↔ jk . . . and ab . . .↔
jk . . . . The contributions of the various processes can be generally represented in the form
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(see (4.64) or (4.81)),

Dµjµ
∣∣
Niab...↔jk... = ±

∫
dΠqpapb...pjpk...

Niab...jk...

[
Fqpapb...;pjpk...Niab...↔jk... ΞNiab...↔jk...

−Fqpapb...;pjpk...
Niāb̄...↔j̄k̄... ΞNiāb̄...↔j̄k̄...

]
, (5.2a)

Dµjµ
∣∣
ab...↔jk... = ±

∫
dΠpapb...pjpk...

ab...jk...

[
Fpapb...;pjpk...ab...↔jk... Ξab...↔jk...

−Fpapb...;pjpk...
āb̄...↔j̄k̄... Ξāb̄...↔j̄k̄...

]
, (5.2b)

where the plus sign applies if ` ∈ {jk . . .} and the minus sign if ` ∈ {ab . . .}. In a homogeneous
and isotropic universe, the only non-trivial component of the lepton current is its zeroth entry,
which is equal to the lepton number density: jµ = (nL,~0). The LHS of (5.1) is conveniently
written in terms of the lepton asymmetry abundance YL ≡ nL/s (where s is the comoving
entropy density, see above (2.10)),

Dµjµ(t) = s
dYL(t)
dt

. (5.3)

The time argument is usually traded for the dimensionless inverse temperature z ≡ M1
T (M1 is

the lightest right-handed neutrino mass),

s
dYL
dt

=
sH
z

dYL
dz

, (5.4)

where H ≡ H(T = M1) is the Hubble rate evaluated at T = M1.
We also derived an equation for the heavy neutrino number density, see (4.143) and (4.145).

Similarly to (5.1) it can be written as a sum over the different processes. In terms of the
right-handed neutrino abundance YNi ≡ nNi/s, it reads,

sH
z

dYNi
dz

= −
∑
{a},{j}

∫
dΠqpapb...pjpk...

Niab...jk...

[
Fqpapb...;pjpk...Niab...↔jk... ΞNiab...↔jk...

+ Fqpapb...;pjpk...
Niāb̄...↔j̄k̄... ΞNiāb̄...↔j̄k̄...

]
. (5.5)

The system of differential equations for the lepton asymmetry (5.1) and for the heavy neutrino
abundance (5.5) does not form a closed set of differential equations since they are equations
for the number density whereas their RHS depend on the full momentum dependence of the
distribution functions fa(t, pa) of the different species. Therefore, the distribution functions
fa(t, pa) must be expressed in terms of the lepton asymmetry and heavy neutrino abundance
in order to close the system of differential equations (5.1) and (5.5). This can only be done by
assuming a particular shape for the distribution functions. We assume that the SM particles
are maintained in kinetic equilibrium by the fast gauge interactions. This means that their
distribution function takes the simple form:

fa(t, pa) =
1

eβ(Epaa −µa) ∓ 1
, (5.6)

with a time- (or equivalently temperature-) dependent chemical potential µa = µa(t). Here the
upper (lower) sign corresponds to bosons (fermions). It is also useful to define the equilibrium
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distribution function,

f eq,pa
a =

1
eβE

pa
a ∓ 1

. (5.7)

The fast SM interactions and the sphalerons relate the chemical potentials of the leptons,
quarks and Higgs fields, such that only one of them is independent. We can therefore express
the chemical potential of the Higgs and quarks as a function of the lepton chemical potential
[151–153],

µφ =
4
7
µ` ≡ cφ`µ` , (5.8a)

µt =
5
21
µ` ≡ ct`µ` , (5.8b)

µQ = −1
3
µ` ≡ cQ`µ` . (5.8c)

The chemical potential of an antiparticle is related to the one of the corresponding particle,
µā = −µa. Therefore, under the assumption of kinetic equilibrium, the distribution functions
of the SM particles at a particular time are completely determined by a single parameter,
which we choose to be the chemical potential of the lepton. The latter is related to the lepton
asymmetry abundance by,

µ`
T
≈ c`

YL
2Y eq

`

, (5.9)

where Y eq
` is the equilibrium lepton abundance and c` is a numerical parameter which depends

on the temperature and thermal mass of the lepton. For m`/T ≈ 0.2 it can be very well
approximated by the zero mass limit, c` ≈ 9ζ(3)/π2 ≈ 1.1 (ζ is the Euler-Riemann zeta
function).

Using the identity 1 ± fpaa = e(Ea−µa)/T fpaa and energy conservation we can rewrite the
combinations of distribution functions appearing in (5.2a) and (5.5) as:

Fqpapb...;pjpk...Niab...↔jk... = (2π)4δ
(
q +

∑
apa −

∑
jpj

) ∏
a f

pa
a
∏
j(1± f

pj
j )

1− f eq,q
Ni

×
[
f qNi − f

eq,q
Ni
− f eq,q

Ni
(1− f qNi){e

P
j µj/T−

P
a µa/T − 1}

]
. (5.10)

Since the lepton chemical potential normalised to the temperature is of the order of the lepton
asymmetry, the ratio µ`

T ∼ YL ∼ 10−10 is typically tiny during leptogenesis and we can safely
expand (5.10) in the small chemical potentials. Assuming the Majorana neutrino to be close
to equilibrium, f qNi − f

eq,q
Ni
∼ O(µa), we see that the term in square bracket in (5.10) is already

of the first order in the chemical potential. We can therefore replace the distribution functions
in the first line of (5.10) by the equilibrium ones:∏

a f
pa
a
∏
j(1± f

pj
j )

1− f eq,q
Ni

≈
∏
a f

eq,pa
a

∏
j(1± f

eq,pj
j )

1− f eq,q
Ni

=
∏
a

f eq,pa
a

∏
j

(1± f eq,pj
j )

+
∏
j

f
eq,pj
j

∏
a

(1± f eq,pa
a ) , (5.11)
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where we have used the energy conservation to obtain the second equality. Expanding in the
small chemical potentials the square bracket in the second line of (5.10) and keeping only the
leading order terms, we find,[

f qNi − f
eq,q
Ni
−f eq,q

Ni
(1− f qNi){e

P
j µj/T−

P
a µa/T − 1}

]
≈
[
f qNi − f

eq,q
Ni
− f eq,q

Ni
(1− f eq,q

Ni
){
∑
j

µj/T −
∑
a

µa/T}
]
. (5.12)

It is useful to introduce another combination of equilibrium distribution functions,

F̃eq, pXpapb...;pjpk...

(X)ab...↔jk... ≡ (2π)δ(pX +
∑
a

pa −
∑
j

pj)

×
[∏

a

f eq,pa
a

∏
j

(1± f eq,pj
j ) +

∏
j

f
eq,pj
j

∏
a

(1± f eq,pa
a )

]
, (5.13)

and the numerical factor,

cab...↔jk... ≡
∑

j µj −
∑

a µa

µ`
=
∑
j

cj` −
∑
a

ca` , (5.14)

where the quantities cj` and ca` are given in (5.8) for the Higgs and quark fields. Then, up to
first order in the chemical potential, (5.10) takes the simple form,

Fqpapb...;pjpk...Niab...↔jk... ≈ F̃
eq, qpapb...;pjpk...

(Ni)ab...↔jk...
[
f qNi − f

eq,q
Ni
− f eq,q

Ni
(1− f eq,q

Ni
)c`

YL
2Y eq

`

cab...↔jk...
]
. (5.15)

The corresponding equation for the CP-conjugate process is obtained from the above one by
replacing µa → −µa,

Fqpapb...;pjpk...Niab...↔jk... ≈ F̃
eq, qpapb...;pjpk...

(Ni)ab...↔jk...
[
f qNi − f

eq,q
Ni

+ f eq,q
Ni

(1− f eq,q
Ni

)c`
YL

2Y eq
`

cab...↔jk...
]
. (5.16)

The last step is to assume that the distribution function of the right-handed neutrino is pro-
portional to the equilibrium one,

f qNi ≈
YNi(t)
Y eq
Ni

(t)
f eq,q
Ni

. (5.17)

Putting everything together we get the conventional form of the rate equation (compare with
[31, 75, 76, 136, 154]),

sH
z

dYL
dz

∣∣
Niab...↔jk... = ±〈εNiab...jk... γNiab...jk... 〉

(YNi
Y eq
Ni

− 1
)

−〈γNiab...jk... 〉
W c`(±cab...↔jk...)

YL
2Y eq

`

, (5.18)

where we have defined the CP-violating 〈εNiab...jk... γNiab...jk... 〉 and washout 〈γNiab...jk... 〉
∣∣
W

reaction den-
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sities,

〈εNiab...jk... γNiab...jk... 〉 ≡
∫
dΠqpapb...pjpk...

Niab...jk...
F̃eq, qpapb...;pjpk...

(Ni)ab...↔jk... f eq,q
Ni

× εNiab...↔jk...
(

ΞNiab...↔jk... + ΞNiāb̄...↔j̄k̄...
)
, (5.19a)

〈γNiab...jk... 〉
∣∣
W
≡
∫
dΠqpapb...pjpk...

Niab...jk...
F̃eq, qpapb...;pjpk...

(Ni)ab...↔jk... f eq,q
Ni

(1− f eq,q
Ni

)

×
(

ΞNiab...↔jk... + ΞNiāb̄...↔j̄k̄...
)
. (5.19b)

Note that the reaction densities defined in the above equations depend only on the temperature
of the medium since they are thermally averaged quantities. The CP-violating parameter
εNiab...↔jk... in (5.19a) is defined in the usual way (see (4.52)),

εNiab...↔jk... ≡
ΞNiab...↔jk... − Ξ

Niāb̄...↔j̄k̄...
ΞNiab...↔jk... + Ξ

Niāb̄...↔j̄k̄...
. (5.20)

The physical interpretation of the rate equation (5.18) is straightforward. The term propor-
tional to

(YNi
Y eq
Ni

− 1
)

is the production term. It describe the out-of-equilibrium production of

lepton or antilepton, and vanishes when the right-handed neutrinos are in thermal equilibrium.
The second term in (5.18) does not depend on the heavy neutrino abundance. It is proportional
to YL

2Y eq
`

and therefore vanishes in absence of any preexisting asymmetry. Since it is negative it
leads to a washout of the lepton asymmetry.

The terms without the right-handed neutrino in the initial or final states are treated similarly.
Up to first order in the chemical potential, the combination of the distribution functions
appearing in (5.2b) reads,

Fpapb...;pjpk...ab...↔jk... ≈ −(2π)4δ(
∑
a

pa −
∑
j

pj)
∏
a

f eq,pa
a

∏
j

(1± f eq,pj
j )c`

YL
2Y eq

`

cab...↔jk... , (5.21)

and a similar expression but with an opposite sign for the CP-conjugated process. Then
equation (5.2b) takes the simple form,

Dµjµ
∣∣
ab...↔jk... = −〈γab...jk...〉c`

YL
2Y eq

`

(±cab...↔jk...) , (5.22)

where we have defined the reaction density,

〈γab...jk...〉 ≡
∫
dΠpapb...pjpk...

ab...jk... (2π)4δ(
∑
a

pa −
∑
j

pj)
∏
a

f eq,pa
a

∏
j

(1± f eq,pj
j )

×
(

Ξab...↔jk... + Ξāb̄...↔j̄k̄...
)
. (5.23)

Therefore the RHS of (5.22) only contributes to the washout of the asymmetry.
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Similarly the right-handed neutrino abundance satisfies,

sH
z

dYNi
dz

= −
∑
{a},{j}

〈γNiab...jk... 〉
∣∣
P

(YNi
Y eq
Ni

− 1
)
, (5.24)

where the production reaction density is defined by,

〈γNiab...jk... 〉
∣∣
P
≡
∫
dΠqpapb...pjpk...

Niab...jk...
F̃eq, qpapb...;pjpk...
Niab...↔jk... f eq,q

Ni

(
ΞNiab...↔jk... + ΞNiāb̄...↔j̄k̄...

)
. (5.25)

Rate equations from classical Boltzmann equations

The Boltzmann equation for the lepton asymmetry obtained in the conventional approach can
be splitted in a similar way as the one obtained within NEQFT (5.1). However the expressions
for the various contributions take a different form,

sH
z

dYL
dz

∣∣
Niab...↔jk... = ±

∫
dΠqpapb...pjpk...

Niab...jk...
(2π)4δ(q +

∑
a

pa −
∑
j

pj)

×
[
f qNi

∏
a

fpaa ΞNiab...→jk... −
∏
j

f
pj
j Ξjk...→Niab...

− f qNi
∏
a

fpaā ΞNiāb̄...→j̄k̄... +
∏
j

f
pj
j̄

Ξj̄k̄...→Niāb̄...
]
, (5.26a)

sH
z

dYL
dz

∣∣
ab...↔jk... = ±

∫
dΠpapb...pjpk...

Niab...jk...
(2π)4δ(

∑
a

pa −
∑
j

pj) (5.26b)

×
[∏

a

fpaa Ξab...→jk... −
∏
j

f
pj
j Ξjk...→ab... −

∏
a

fpaā Ξāb̄...→j̄k̄... +
∏
j

f
pj
j̄

Ξj̄k̄...→āb̄...
]
,

where the plus sign applies if ` ∈ {jk . . .} and the minus sign if ` ∈ {ab . . .}. Note that the
amplitudes do not feature the double arrow as in the NEQFT approach. We first focus on the
processes involving the right-handed neutrino as initial and final state, (5.26a). We can write
it as a term similar to the one obtained within NEQFT and an extra term,

sH
z

dYL
dz

∣∣
Niab...↔jk... =

sH
z

dYL
dz

∣∣extra

Niab...↔jk... ±
∫
dΠqpapb...pjpk...

Niab...jk...
(2π)4δ(q +

∑
a

pa −
∑
j

pj)

×
[(
f qNi

∏
a

fpaa −
∏
j

f
pj
j

)
ΞNiab...→jk... −

(
f qNi

∏
a

fpaā −
∏
j

f
pj
j̄

)
ΞNiāb̄...→j̄k̄...

]
. (5.27)

The extra term does not appear in the NEQFT and reads,

sH
z

dYL
dz

∣∣extra

Niab...↔jk... =±
∫
dΠqpapb...pjpk...

Niab...jk...
(2π)4δ(q +

∑
a

pa −
∑
j

pj)

×
(

ΞNiab...→jk... − Ξjk...→Niab...
)(∏

j

f
pj
j +

∏
j

f
pj
j̄

)
, (5.28)

where we use the CPT symmetry to rewrite the amplitudes. In the canonical approach the
assumption of kinetic equilibrium means that the distribution functions take the shape of a
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Maxwell-Boltzmann distribution functions,

fpaa = e−β(Epaa −µa) , (5.29)

with a time-dependent chemical potential µa = µa(t). Similarly to (5.7) it is convenient to
define the equilibrium distribution, f eq,pa

a = e−βE
pa
a . Note that we are using the same notation

for the Maxwell-Boltzmann distribution function and for the Bose-Einstein or Fermi-Dirac
ones. Inserting the ansatz (5.29) into (5.27) we write the distribution functions as,(

f qNi

∏
a

fpaa −
∏
j

f
pj
j

)
=
∏
a

fpaa
[
f qNi − f

eq,q
Ni
− f eq,q

Ni

(
eβ(

P
j µj−

P
a µa) − 1

)]
≈
∏
a

f eq,pa
a

[
f qNi − f

eq,q
Ni
− f eq,q

Ni
βµ`cab...↔jk...

]
. (5.30)

In the second line we have assumed the heavy neutrino to be close to equilibrium and expanded
to first order in the small chemical potential. Similarly to (5.17) we make the assumption that
the right-handed neutrino distribution function is proportional to the equilibrium one. Then,
(5.27) takes the same form as (5.18),

sH
z

dYL
dz

∣∣
Niab...↔jk... =± 〈εNiab...jk... γNiab...jk... 〉MB

(YNi
Y eq
Ni

− 1
)
− 〈γNiab...jk... 〉MB (±c`cab...↔jk...)

YL
2Y eq

`

+
sH
z

dYL
dz

∣∣extra

Niab...↔jk... , (5.31)

but with different reactions densities (in particular, the equilibrium distribution functions are
the Maxwell-Boltzmann ones),

〈εNiab...jk... γNiab...jk... 〉MB ≡
∫
dΠqpapb...pjpk...

Niab...jk...
(2π)4δ(q +

∑
a

pa −
∑
j

pj)
∏
a

f eq,pa
a f eq,q

Ni

× εNiab...→jk...
(
ΞNiab...→jk... + ΞNiāb̄...→j̄k̄...

)
, (5.32a)

〈γNiab...jk... 〉MB ≡
∫
dΠqpapb...pjpk...

Niab...jk...
(2π)4δ(q +

∑
a

pa −
∑
j

pj)
∏
a

f eq,pa
a f eq,q

Ni

×
(
ΞNiab...→jk... + ΞNiāb̄...→j̄k̄...

)
. (5.32b)

The CP-violating parameter in (5.32a) is defined similarly to (5.20). The extra term (5.28)
gives a contribution similar to the washout reaction density (5.32b) but is suppressed by an
additional factor εNiab...→jk... and can therefore be neglected.

The processes which do not involve the right-handed neutrino in the initial or final states
are treated in a similar way,

sH
z

dYL
dz

∣∣
ab...↔jk... =− 〈γab...jk...〉MB c`(±cab...↔jk...)

YL
2Y eq

`

+
sH
z

dYL
dz

∣∣extra

ab...↔jk... (5.33)

where the washout reaction density is given by an expression similar to (5.32b),

〈γab...jk...〉MB ≡
∫
dΠpapb...pjpk...

ab...jk... (2π)4δ(
∑
a

pa −
∑
j

pj)
∏
a

f eq,pa
a

(
Ξab...→jk... + Ξāb̄...→j̄k̄...

)
. (5.34)
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The extra term in (5.33) is suppressed by the CP-violating parameter and can be neglected.

In the canonical approach the heavy neutrino satisfies the Boltzmann equation (2.37),

s
dYNi
dt

= −
∑
{a},{j}

∫
dΠqpapb...pjpk...

Niab...jk...

[
f qNi

∏
a

fpaa ΞNiab...→jk... −
∏
j

f
pj
j Ξjk...→Niab...

+ f qNi

∏
a

fpaā ΞNiāb̄...→j̄k̄... −
∏
j

f
pj
j̄

Ξj̄k̄...→Niāb̄...
]
. (5.35)

Proceding as above we find,

sH
z

dYNi
dz

= −
∑
{a},{j}

〈γNiab...jk... 〉MB

(YNi
Y eq
Ni

− 1
)
, (5.36)

where the reaction density 〈γNiab...jk... 〉MB is given by (5.32b).

5.2 Numerical comparison

To perform the quantitative analysis we need to specify the Yukawa couplings and masses
of the right-handed neutrinos. For simplicity we only consider the case of a very heavy third
Majorana neutrino M3 �M2 > M1. In that case the contribution from the third right-handed
neutrino to the lepton asymmetry generation is completely negligible. In this limit the Yukawa
couplings can be expressed in terms of the observed active neutrino masses, the mixing angles
and only one complex additional free parameter ω. In the Casas-Ibarra parameterisation [155–
158] the Yukawa couplings are given by,

(h†h)11 =
M1

v2
(m2|1− ω2|+m3|ω2|) , (5.37a)

(h†h)22 =
M2

v2
(m3|1− ω2|+m2|ω2|) , (5.37b)

(h†h)12 =
√
M1M2

v2
(m2 ω

√
1− ω2 ∗ −m3 ω

∗√1− ω2) , (5.37c)

where v ≈ 174 GeV is the Higgs vev and we have assumed normal hierarchy. In this case the
physical neutrino masses are given by

m2 = (∆m2
sol)

1
2 ≈ 8.71 · 10−12 GeV , (5.38)

m3 = (∆m2
sol + ∆m2

atm)
1
2 ≈ 5.0 · 10−11 GeV . (5.39)

For illustration we choose the benchmark points ω = exp(−0.01 · i) and ω = exp(−0.5 · i)
denoted by BM1 and BM2 in the plots. As masses of the right-handed neutrinos we choose
M1 = 109 GeV and M2 =

√
10M1, respectively. This choice of parameters is such that effects

related to the resonant enhancement will be unimportant but contributions from both heavy
neutrinos, N1 and N2, can be relevant.

The so-called washout parameters play an important role for the generation of the asymme-
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try. They are defined by,

Ki ≡
ΓNi
H

, (5.40)

where H is the Hubble rate evaluated at T = M1, see (5.4). They are often written in terms
of the effective neutrino mass m̃i and equilibrium neutrino mass m∗ [76],

Ki =
m̃i

m∗
, (5.41)

with

m̃i ≡ (h†h)ii
v2Mi

M2
1

, (5.42a)

m∗ ≡ 32
gw

√
π5g∗
45

M2
1

Mpl
. (5.42b)

If K1 � 1 we are in the so-called strong washout regime. Since ΓN1 � H the lightest right-
handed neutrino reaches thermal equilibrium at T > M1 and therefore washes out any preex-
isting lepton asymmetry. An asymmetry is then produced by its subsequent decay. In the weak
washout regime K1 � 1 and the heavy neutrinos never enter thermal equilibrium, meaning that
the value of the final asymmetry depends on the initial condition. Note that this classification
is too simplistic and not realistic since it does not incorporate flavour effects. A lepton asym-
metry can be protected from N1-washout when it is stored in the lepton flavour perpendicular
to the state which interacts with N1. Since we are only considering non-flavoured leptogen-
esis we are not concerned with the aforementionned subtlety. Our choice of the parameters
corresponds to the strong washout regime with the washout parameter given by

K1

∣∣
BM1
≈ 47 , (5.43a)

K1

∣∣
BM2
≈ 55 , (5.43b)

for the two benchmark sets. In that case the lepton asymmetry is typically produced at
z ∼ lnK1 ≈ 4.

The SM particles acquire thermal mass from the fast SM interactions. In this work we only
consider conventional dispersion relation for the fermion fields, see [135, 136, 159–161] for more
details about modified dispersion relations. The thermal masses of the SM particles depend
on the SM couplings which are itself temperature dependent. The lepton and Higgs masses
are given by [162],

m2
` =

( 3
16
g2

2 +
1
16
g′2 +

1
4
λ2
t +

1
2
λ
)
T 2 , (5.44a)

m2
φ =

( 3
32
g2

2 +
1
32
g′2
)
T 2 , (5.44b)

where g2 and g′ are the SU(2)L and U(1) gauge couplings, λ is the Higgs self-coupling and
λt is the top Yukawa coupling. A very useful approximation for the SM thermal masses reads
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[136],

m` ≈ 0.2T , (5.45a)
mφ ≈ mt ≈ mQ ≈ 0.4T . (5.45b)

For simplicity we use the approximation (5.45) to estimate the contributions of the Higgs
mediated processes. The more involved expressions (5.44) are used for the heavy neutrino
decay.

5.2.1 Heavy neutrino decay

We focus here on the contribution of the heavy neutrino decay to the reaction densities. The
CP-violating and production reaction densities are given by (see (5.19a) and (5.25)),

〈εNi`φ γ
Ni
`φ 〉 =

∫
dΠNi`φ

qpk (2π)4δ(q − p− k)f eq,q
Ni

(
1− f eq,p

` + f eq,k
φ

)
εi

(
ΞNi↔`φ + ΞNi↔¯̀φ̄

)
, (5.46a)

〈γNi`φ 〉
∣∣
P

=
∫
dΠNi`φ

qpk (2π)4δ(q − p− k)f eq,q
Ni

(
1− f eq,p

` + f eq,k
φ

)(
ΞNi↔`φ + ΞNi↔¯̀φ̄

)
. (5.46b)

Here the equilibrium distribution functions f eq
a denote Bose-Einstein or Fermi-Dirac distribu-

tion functions. The phase-space integral can be further simplified, see appendix B for more
details. In the conventional approach the decay amplitudes do not depend on the momenta
and the phase-space integration can be performed analytically. The corresponding reaction
densities with amplitudes computed in the S-matrix formalism are given by,

〈εNi`φ γ
Ni
`φ 〉MB =

εi
π2
M2
i ΓNiTK1

(Mi

T

)
, (5.47a)

〈γNi`φ 〉MB =
1
π2
M2
i ΓNiTK1

(Mi

T

)
, (5.47b)

where εi is the vacuum CP-violating parameter (2.16) and K1 is the modified Bessel function
of the second kind, see appendix B.

In Fig. 5.1 we show the ratio of the reaction densities (5.46) with the one in the conventional
approach (5.47) as a function of the inverse temperature z. In order to identify separately the
effects of the thermal masses we plot the reaction densities (5.46) without thermal masses
(denoted by 〈·〉m=0 in the plot) but with quantum statistical effects taken into account and
the full results (〈·〉 in the plot), including the thermal masses and quantum statistics. We plot
these reaction densities for the two right-handed neutrinos (the red lines correspond to the
lightest right-handed neutrino N1 and the green ones to N2). We observe as expected that
both ratios (with or without thermal masses) approach unity at low temperature (high z).
When the thermal masses are neglected the CP-violating and production reaction densities
grow with the temperature. The inclusion of the thermal masses leads to a suppression of the
available phase-space, which reduces the reaction densities. At higher temperature the increase
due to the thermal corrections are overcompensated by the shrinking of the phase-space, and
the ratios decrease and reach zero at a certain temperature. This temperature can be extracted
from the equation Mi = m`(T ) + mφ(T ). The asymmetry is typically produced at T . M1.
In that range of temperature we observe an enhancement of the CP-violating and production
reaction densities up to 20%.
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Figure 5.1: CP-violating and production reaction densities for the two heavy neutrinos nor-
malised by the conventional ones. The red lines correspond to the lightest right-handed neu-
trino N1 and the green ones to N2. Plotted are the CP-violating reaction densities with thermal
masses (solid lines) and without thermal masses (short dashed lines), the production reaction
densities with thermal mass (long dashed lines) and without thermal masses (dotted lines).
We only consider the self-energy contribution to the CP-violating parameter. Benchmark set
of parameters: BM1.

The (inverse) decay of the heavy neutrino also contributes to the washout of the asymmetry.
The washout reaction density is given by (see (5.19b)),

〈γNi`φ 〉
∣∣
W

=
∫
dΠNi`φ

qpk (2π)4δ(q − p− k)
(
1− f eq,p

` + f eq,k
φ

)
(1− f eq,q

Ni
)f eq,q
Ni

×
(

ΞNi↔`φ + ΞNi↔¯̀φ̄

)
. (5.48)

This contribution is analysed in the next subsection together with the |∆L| = 2 scattering
processes since they both wash out the asymmetry.

5.2.2 |∆L| = 2 scattering processes

At O(h4) two different processes contribute to the washout of the asymmetry, namely the heavy
neutrino (inverse) decay and the scattering processes mediated by the right-handed neutrinos.
The latter violate lepton number by two units but is CP-conserving at O(h4). Therefore
they only contribute to the washout term. The reaction densities for the |∆L| = 2 scattering
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Figure 5.2: Washout reaction densities for the scattering processes `φ ↔ ¯̀φ̄ (orange lines)
and `` ↔ φ̄φ̄ (blue lines). The thick lines correspond to the reaction densities with quantum
statistical factors, and the thin line to the one with Maxwell-Boltzmann statistics. The thermal
masses are neglected. Benchmark set of parameters: BM1.

processes read (see (5.23)),

〈γ′`φ¯̀φ̄
〉 =

∫
dΠ`φ`φ

p1k1p2k2
(2π)4δ(p1 + k1 − p2 − k2)

× f eq,p1

` f eq,k1

φ (1− f eq,p2

` )(1 + f eq,k2

φ )Ξ¯̀φ̄↔`φ , (5.49a)

〈γ``φ̄φ̄〉 =
∫
dΠ``φφ

p1p2k1k2
(2π)4δ(p1 + p2 − k1 − k2)

× f eq,p1

` f eq,p2

` (1 + f eq,k1

φ )(1 + f eq,k2

φ )
(

Ξ ¯̀̀̄↔φφ + Ξφ̄φ̄↔``
)
, (5.49b)

with the amplitudes given by (4.86). In (5.49a) we have written the reaction density with
a prime to underline the fact that the amplitude is RIS-subtracted by construction. The
corresponding reaction densities in the S-matrix formalism are given by,

〈γ′`φ¯̀φ̄
〉MB =

T

64π4

∫ ∞
smin

ds
√
sK1

(√s
T

)
σ̂′`φ¯̀φ̄

(s) , (5.50a)

〈γ``φ̄φ̄〉MB =
T

64π4

∫ ∞
smin

ds
√
sK1

(√s
T

)
σ̂``φ̄φ̄(s) , (5.50b)
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where σ̂′`φ¯̀φ̄
(s) and σ̂``

φ̄φ̄
(s) are the so-called reduced cross-section (the integration limits can be

found in appendix B),

σ̂abij (s) ≡ 1
8π

2π∫
0

dϕai
2π

t+∫
t−

dt

s

(
Ξab→ij + Ξāb̄→īj̄

)
. (5.51)

Explicitly, they read,

σ̂′`φ¯̀φ̄
(s) =

1
4πx

∑
i,j

Re
[
(h†h)2

ij

]√
aiaj

{
x2 (x− ai)(x− aj) + (1− 2δij)aiajcicj

[(x− ai)2 + (aici)2] [(x− aj)2 + (ajcj)2]
(5.52a)

+ 2
x+ ai
aj − ai

ln
(
x+ ai
ai

)
+

x− ai
(x− ai)2 + (aici)2

[
x− (x+ aj) ln

(
x+ aj
aj

)]
+ 2

x+ aj
ai − aj

ln
(
x+ aj
aj

)
+

x− aj
(x− aj)2 + (ajcj)2

[
x− (x+ ai) ln

(
x+ ai
ai

)]}
,

σ̂``φ̄φ̄(s) =
1

2π

∑
i,j

Re
[
(h†h)2

ij

]√
aiaj

{
1

ai − aj
ln
(
ai(x+ aj)
aj(x+ ai)

)
(5.52b)

+
1
2

1
x+ ai + aj

ln
(

(x+ ai)(x+ aj)
aiaj

)}
.

In (5.52) we have introduced the dimensionless quantities x ≡ s/M2
1 , ai ≡ M2

i /M
2
1 and ci ≡

ΓNi/Mi. The case i = j is included in the expressions (5.52) in the limiting sense aj → ai.

In Figs. 5.2 and 5.3 we plot the quantities z〈γ′`φ¯̀φ̄
〉/(Hs) and z〈γ``

φ̄φ̄
〉/(Hs) as functions of

the inverse temperature z for the benchmark points 1 and 2. The thick lines correspond
to the reaction density computed with quantum statistical factors, and the thin lines with
Maxwell-Boltzmann statistics. In both cases thermal masses are neglected. We observe that
for the scattering process `φ↔ ¯̀φ̄ the reaction density with quantum statistics (thick lines) is
negative in the temperature range 2 . z . 3 for BM1 and 0.5 . z . 1 for BM2. This behaviour
originates from the fact that the effective amplitude Ξ

`φ↔¯̀φ̄
(4.92) is negative in the vicinity

of the mass-shell of the intermediate neutrino. Since the amplitude is RIS-subtracted by
construction it does not correspond to a transition probability and is therefore not constrained
to be positive. For BM2 point the reaction density with Maxwell-Boltzmann statistics is also
negative for some temperature range, whereas for BM1 it is positive at all temperatures. We
would like to stress that this is merely a numerical coincidence. The vacuum effective amplitude
Ξ
′
`φ↔¯̀φ̄

is also negative in the vicinity of the intermediate mass-shell since it is RIS-subtracted.
Therefore the reaction density, which corresponds to the “integrated” amplitude weighted by
the distribution functions, can be positive or negative depending on the precise numerical
value of the amplitude. This is the reason why the reaction densities for the two choices of
parameters show a different behaviour. Note that a similar behaviour has been observed in
[31]. The effective amplitude for the other scattering process, ``↔ φ̄φ̄, is always positive since
it is not RIS-subtracted. At high temperature we observe a difference up to 50% between
the reaction densities with quantum statistics and with Maxwell-Boltzmann statistics . As
expected, the two results coincide at low temperature.

Thermal masses of the leptons and Higgs have been neglected in Figs. 5.2 and 5.3. The effects
of thermal masses can be estimated from Fig. 5.4 where we plot the reaction density 〈γ``

φ̄φ̄
〉 with
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Figure 5.3: Washout reaction densities for the scattering processes `φ↔ ¯̀φ̄ (orange lines) and
``↔ φ̄φ̄ (blue lines). The thick lines correspond the reaction densities with quantum statistical
factors, and the thin lines to the ones with Maxwell-Boltzmann statistics. The thermal masses
are neglected. Benchmark set of parameters: BM2.

thermal mass normalised by the conventional one (without thermal mass and with Maxwell-
Boltzmann statistics) for the two benchmark points. We observe that the decrease of the
reaction density due to the thermal masses is almost completely compensated by the increase
due to quantum statistics. The full computation, with quantum statistics and thermal mass,
differs from the conventional one, which uses Maxwell-Boltzmann statistics without thermal
masses, by a factor of ∼ 5% at high temperature.

The |∆L| = 2 scattering processes are not the only processes responsible for the washout of
the asymmetry. Decay and inverse decay of heavy neutrinos also contribute to the washout
with the reaction density given by (5.48). The total washout term reads,

sH
z

dYL
dz

= . . .− YL
2Y eq

`

c`(1 + cφ`)
(∑

i

〈γNi`φ 〉
∣∣
W

+ 4〈γ′`φ¯̀φ̄
〉+ 4〈γ``φ̄φ̄〉

)
. (5.53)

The factors of 4 in front of the scattering reaction densities come from the different combina-
tions of chemical potentials,

cφ̄φ̄↔`` = c¯̀φ̄↔`φ = 2c↔`φ = 2(1 + cφ`) , (5.54)

and from the factor of 2 in front of the scattering amplitudes, see (4.81). To compare the
relative importance of each terms in (5.53) we plot them separately in Figs. 5.5 and 5.6 as a
function of the inverse temperature z for the benchmark points BM1 and BM2. We observe
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Figure 5.4: Washout reaction densities for the scattering processes `` ↔ φ̄φ̄ with thermal
masses normalized by the one without thermal masses and with Maxwell-Boltzmann statistics.
The thick lines correspond to the reaction densities with quantum statistical (QS) factors, and
the thin line to the one with Maxwell-Boltzmann (MB) statistics. Red lines: BM1. Green
lines: BM2.

that the reaction densities for the decay of N1 and N2 (red and green lines) are larger than
the one for the scattering processes (yellow and blue lines) by a few orders of magnitude in
the whole range of temperature. As expected, the total washout term (black dashed-dotted
line) for both benchmark points is always positive, i.e. it only depletes the asymmetry (note
the overall minus sign in (5.53) in front of the washout term). Note that the normalisation of
the reaction densities in Figs. 5.5 and 5.6, which is temperature independent, is different from
the one in Figs. 5.2 and 5.3.

5.2.3 Higgs decay

At high temperature the process Ni ↔ `φ becomes kinematically forbidden due to the large
thermal masses of the lepton and Higgs . At even higher temperature, when mφ > Mi + m`,
the Higgs can decay into an antilepton and a heavy neutrino. The temperature at which the
Higgs decay becomes kinematically allowed can be estimated from the relation (5.45) and is
approximately given by z ≈ 0.2 for the lightest right-handed neutrino. The reaction densities
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Figure 5.5: Comparison of the washout reaction densities for the scattering processes `φ↔ ¯̀φ̄
(orange lines), ``↔ φ̄φ̄ (blue dash lines) and for the N1 (green line) and N2 (red line) decays.
For the scatterings the thick (thin) lines correspond to the reaction densities computed with
quantum (Maxwell-Boltzmann) statistics. Thermal masses are neglected. The total washout
reaction density (black dash-dotted line) is well approximated by the decay reaction densities.
Note that the normalisation is different from the one in Figs. 5.2 and 5.3. Benchmark set of
parameters: BM1.

for the Higgs decay are obtained from (5.19a), (5.19b) and (5.25),

〈εNi`
φ̄
γNi`
φ̄
〉 =

∫
dΠNi`φ

qpk (2π)4δ(k − q − p)f eq,q
Ni

(f eq,p
` + f eq,k

φ )εφ,i
(
ΞNi`↔φ̄ + ΞNi ¯̀↔φ

)
, (5.55a)

〈γNi`
φ̄
〉
∣∣
W

=
∫
dΠNi`φ

qpk (2π)4δ(k − q − p)f eq,q
Ni

(1− f eq,q
Ni

)(f eq,p
` + f eq,k

φ )

×
(
ΞNi`↔φ̄ + ΞNi ¯̀↔φ

)
, (5.55b)

〈γNi`
φ̄
〉
∣∣
P

=
∫
dΠNi`φ

qpk (2π)4δ(k − q − p)feq,qNi
(f eq,p
` + f eq,k

φ )
(
ΞNi`↔φ̄ + ΞNi ¯̀↔φ

)
, (5.55c)

where εφ,i is the CP-violating parameter for the Higgs decay, see (4.104) and (4.108). As
pointed out above (4.104), the CP-violating parameters for the Higgs decay and for the heavy
neutrino decay have opposite sign. However this sign difference is compensated by the minus
sign in the rate equation for the Higgs decay, see (5.18). Therefore, the asymmetries produced
by both processes have the same sign. In order to compare the Higgs and heavy neutrino
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Figure 5.6: Comparison of the washout reaction densities for the scattering processes `φ↔ ¯̀φ̄
(orange lines), ``↔ φ̄φ̄ (blue dash lines) and for the N1 (green line) and N2 (red line) decays.
For the scatterings the thick (thin) lines correspond to the reaction densities computed with
quantum (Maxwell-Boltzmann) statistics. Thermal masses are neglected. The total washout
reaction density (black dash-dotted line) is well approximated by the decay reaction densities.
Note that the normalisation is different from the one in Figs. 5.2 and 5.3. Benchmark set of
parameters: BM2.

decays we define the averaged CP-violating parameters by,

〈εi〉 ≡


〈εNi`φ γ

Ni
`φ 〉

〈γNi`φ 〉
∣∣
P

, when the heavy neutrino decay is possible,

〈εNi`
φ̄

γ
Ni`

φ̄
〉

〈γNi`
φ̄
〉
∣∣
P

, when the Higgs decay is possible.
(5.56)

The average CP-violating parameter (5.56) is equal to the CP-violating parameter if the latter
is momentum independent. In particular, in the conventional approach this is the case for the
heavy neutrino decay,

〈εi〉MB ≡
〈εNi`φ γ

Ni
`φ 〉MB

〈γNi`φ 〉MB

= εNi`φ . (5.57)

We plot in Figs. 5.7 and 5.8 the average CP-violating parameters 〈ε1〉 (red dash line) and
〈ε2〉 (green solid line) as well as the vacuum ones (thin lines) as a function of the inverse
temperature z for the two benchmark points. Note that we plot only the self-energy CP-
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Figure 5.7: Averaged CP-violating parameter as given in (5.56) for N1 (red thick line) and
N2 (green thick line). The corresponding thin lines are the vacuum CP-violating parameters.
Only the self-energy contribution to the CP-violating parameters are plotted. Benchmark set
of parameters: BM1.

violating parameters. At low temperature the average CP-violating parameter converges to
the conventional one. At higher temperature the heavy neutrino decay is replaced the Higgs
decay, and the averaged CP-violating parameter changes sign. We observe that averaged CP-
violating parameter for the Higgs decay is a few orders of magnitude larger than the one for
the heavy neutrino decay.

5.2.4 Higgs mediated processes

We focus now on the Higgs mediated processes. In order to simplify the numerical analysis we
consider here only the case of a hierarchical mass spectrum, i.e. M1 � M2. In that case the
self-energy CP-violating parameter (4.133) is given by,

ε
(S)
t,i ≈ ε

vac,(S)
t,i

pLρ
pq

, (5.58)

where ε
vac,(S)
t,i is the vacuum CP-violating parameter. In this subsection we only take into

account the contribution to Lρ from the right-handed neutrino decay, see subsection 5.2.5 for
the inclusion of the Higgs mediated processes. The reaction densities for the Higgs mediated
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Figure 5.8: Averaged CP-violating parameter as given in (5.56) for N1 (red thick line) and
N2 (green thick line). The corresponding thin lines are the vacuum CP-violating parameters.
Only the self-energy contribution to the CP-violating parameters are plotted. Benchmark set
of parameters: BM2.

scattering processes are given by (see (5.19a), (5.19b) and (5.25)),

〈εNiQ`t γNiQ`t 〉 =
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q + p− pt − pQ)εt,i

(
ΞNiQ↔`t + ΞNiQ̄↔ ¯̀̄t

)
(5.59a)

× f eq,q
Ni

[
f

eq,pQ
Q (1− f eq,p

` )(1− f eq,pt
t ) + f eq,p

` f eq,pt
t (1− f eq,pQ

Q )
]
,

〈γNiQ`t 〉
∣∣
W

=
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q + p− pt − pQ)

(
ΞNiQ↔`t + ΞNiQ̄↔ ¯̀̄t

)
(5.59b)

× f eq,q
Ni

(1− f eq,q
Ni

)
[
f

eq,pQ
Q (1− f eq,p

` )(1− f eq,pt
t ) + f eq,p

` f eq,pt
t (1− f eq,pQ

Q )
]
,

〈γNiQ`t 〉
∣∣
P

=
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q + p− pt − pQ)

(
ΞNiQ↔`t + ΞNiQ̄↔ ¯̀̄t

)
(5.59c)

× f eq,q
Ni

[
f

eq,pQ
Q (1− f eq,p

` )(1− f eq,pt
t ) + f eq,p

` f eq,pt
t (1− f eq,pQ

Q )
]
,

and similar expressions for the scattering processes Nit̄↔ `Q̄ and Ni
¯̀↔ tQ̄. Numerically the

reaction densities for NiQ ↔ `t and Nit̄ ↔ `Q̄ are equal since the thermal masses of the top
quark and quark doublet are both given by mt ≈ mQ ≈ 0.4T . The three-body decay reaction
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densities read,

〈εNi
`tQ̄
γNi
`tQ̄
〉 =

∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q − p− pt − pQ)εt,i

(
ΞNi↔`tQ̄ + ΞNi↔ ¯̀̄tQ

)
(5.60a)

× f eq,q
Ni

[
(1− f eq,p

` )(1− f eq,pt
t )(1− f eq,pQ

Q ) + f eq,p
` f eq,pt

t f
eq,pQ
Q

]
,

〈γNi
`tQ̄
〉
∣∣
W

=
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q − p− pt − pQ)

(
ΞNi↔`tQ̄ + ΞNi↔ ¯̀̄tQ

)
(5.60b)

× f eq,q
Ni

(1− f eq,q
Ni

)
[
(1− f eq,p

` )(1− f eq,pt
t )(1− f eq,pQ

Q ) + f eq,p
` f eq,pt

t f
eq,pQ
Q

]
,

〈γNi
`tQ̄
〉
∣∣
P

=
∫
dΠqpptpQ

Ni`tQ
(2π)4δ(q − p− pt − pQ)

(
ΞNi↔`tQ̄ + ΞNi↔ ¯̀̄tQ

)
(5.60c)

× f eq,q
Ni

[
(1− f eq,p

` )(1− f eq,pt
t )(1− f eq,pQ

Q ) + f eq,p
` f eq,pt

t f
eq,pQ
Q

]
.

At leading order the thermal effects are negligible in the total effective amplitudes
(
ΞNiQ↔`t +

Ξ
NiQ̄↔ ¯̀̄t

)
and

(
Ξ
Ni↔`tQ̄ + Ξ

Ni↔ ¯̀̄tQ

)
. The thermal corrections only appear in the intermediate

Higgs propagator, ∆2
R+A. In the kinematic region of interest the intermediate Higgs is never

close to its mass-shell. Therefore the effective width of the Higgs is negligible and the thermal
propagator can be safely replaced by the vacuum (time-ordered) one, ∆2

R+A → ∆2
φ,F . Note

that the above integrals can be further simplified, see appendix B for more details.

If one uses Maxwell-Boltzmann statistics then the reaction densities for the Higgs mediated
scattering processes take the a form,

〈γNiajk 〉MB =
T

64π4

∞∫
smin

dsK1

(√s
T

)
σ̂Niajk (s) , (5.61)

where smin = max
(
(Mi +ma)2, (mj +mk)2

)
and σ̂Niajk (s) is the reduced cross-section,

σ̂Niajk (s) =
1

8π

2π∫
0

dϕai
2π

t+∫
t−

dt

s

(
ΞNia↔jk + ΞNiā↔j̄k̄

)
. (5.62)

The integration limits can be found in appendix B. Neglecting the thermal masses of the initial
and final SM particles but retaining the one of the intermediate Higgs (which must be kept
to avoid infrared divergences) we obtain the standard expressions (see, e.g. [163, 164]) for the
reduced cross sections,

σ̂NiQ`t = σNi t̄
`Q̄

=
gwgq
4π

(h†h)ii|λt|2
x− ai
x

×
[
x− 2ai + 2aφ
x− ai + aφ

+
ai − 2aφ
x− ai

ln
(
x− ai + aφ

aφ

)]
, (5.63a)

σ̂Ni
¯̀

Q̄t
=
gwgq
4π

(h†h)ii|λt|2
(x− ai)2

(x− aφ)2
. (5.63b)

We plot in Fig. 5.9 the washout (thick lines) and production (thin lines) reaction densities
for the scattering processes normalised by the conventional one (without thermal masses and
with Maxwell-Boltzmann statistics). The blues lines correspond to the scattering NiQ ↔ `t
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Figure 5.9: Production and washout reaction densities with thermal masses and Maxwell-
Boltzmann statistics (dashed lines) and with thermal masses and quantum statistics (solid
lines) normalised by the conventional ones (without thermal masses and with Maxwell-
Boltzmann statistics). The blue lines correspond to the NiQ ↔ `t scattering and the red
ones to Ni

¯̀↔ tQ̄. The reaction densities for the process Nit̄ ↔ `Q̄ are equal to the ones for
the process NiQ ↔ `t. Thick lines: washout reaction density (5.59b). Thin lines: production
reaction density (5.59c).

and the red ones to Ni
¯̀↔ tQ̄. Interestingly enough, the washout and production reaction

densities for the process NiQ↔ `t do not approach the conventional one at low temperature.
This counterintuitive result can be understood as follows. The reaction density can be roughly
approximated by evaluating them at the thermally averaged momenta. The ratio of reaction
densities is then simply given by,

〈γNiQ`t 〉MB,m 6=0

〈γNiQ`t 〉MB,m=0

∼ e−〈ENi 〉/T e−〈EQ〉/T

e−〈ENi 〉/T e−〈|~pQ|〉/T
∼ e
−
s

1+
m2
Q

〈|~pQ|〉2 . (5.64)

The thermally averaged momentum is proportional to the temperature 〈pQ〉 ∼ T . Since
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mQ ≈ 0.4T the ratio (5.64) is independent of the T and does not approach unity at low
temperature. For the process Ni

¯̀↔ tQ̄ we obtain a similar result, but with mQ replaced
by m`. Since m` ≈ 0.2T < mQ the Boltzmann suppression is less effective and the ratio
〈γNi ¯̀
tQ̄
〉MB,m6=0/〈γNi

¯̀

tQ̄
〉MB,m=0 gets closer to unity at low temperature. Note that for a (relatively)

strong washout regime the asymmetry is typically produced at z . 10. Therefore the low
temperature behaviour of the reaction densities does not affect significantly the production of
the lepton asymmetry.

The dashed lines in Fig. 5.9 correspond to the reactions densities computed taking into ac-
count the thermal masses and Maxwell-Boltzmann statistics. The inclusion of thermal masses
leads to an enhancement of the reaction density for the t-channel scattering (NiQ ↔ `t) at
high temperature. For the s-channel scattering (Ni

¯̀↔ tQ̄) thermal masses decrease the reac-
tion density in the whole range of temperature. Since the particles involved in the scattering
processes are all fermions the reaction density with quantum statistics are smaller than with
Maxwell-Boltzmann statistics due to Pauli blocking.
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Figure 5.10: CP-violating reaction density (with thermal masses and quantum statistics) for
the scattering processes Ni

¯̀ ↔ tQ̄ (red line) and NiQ ↔ `t (blue line) normalised by the
conventional one (without thermal masses and with Maxwell-Boltzmann statistics). Only the
self-energy CP-violating parameters are shown.
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In Fig. 5.10 we plot the CP-violating reaction density for the scattering processes Ni
¯̀↔ tQ̄

(red line) and NiQ ↔ `t (blue line) normalised by the conventional one as a function of the
inverse temperature z. Only the self-energy CP-violating parameters are plotted. Similarly
to the Ni decay the thermal corrections lead to an enhancement of the CP-violating reaction
density at high temperature. However, in the case of the scattering processes, this enhance-
ment is not overcompensated by the thermal masses. Therefore the resulting reaction densities
(thermal masses plus quantum statistics) are increased by approximately 25% for the process
Ni

¯̀↔ tQ̄ (50% for NiQ↔ `t) at z ∼ 1 in comparison with the conventional one (without ther-
mal masses and with Maxwell-Boltzmann statistics). Note that similarly to the washout and
production reaction densities, the ratio of the CP-violating reaction densities do not approach
unity at low temperature.

z

〈

γNi

ℓQ̄t

〉
∣

∣

P,W
/
〈

γNi

ℓQ̄t

〉

MB,m6=0

1
0.35

0.45

0.55

0.65

0.75

0.85

10

Figure 5.11: Production (thin line) and washout (thick line) reaction densities (with ther-
mal masses and quantum statistics) for the three-body decay Ni ↔ `tQ̄ normalised by the
conventional ones (without thermal masses and with Maxwell-Boltzmann statistics).

We plot next the reaction densities for the three-body decay process Ni ↔ `tQ̄. This decay
is kinematically allowed at z . 1. The production (thin line) and washout (thick line) reaction
densities monotonicly increase with the inverse temperature and approach the conventional
one at low temperature, see Fig. 5.11. The CP-violating reaction density (Fig. 5.12) shows
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a similar behaviour, except at high temperature where the thermal correction to the CP-
parameter become important.

z

〈

ǫNi

ℓQ̄u
γNi

ℓQ̄t

〉

/
〈

ǫNi

ℓQ̄t
γNi

ℓQ̄u

〉

MB,m6=0

1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

10

Figure 5.12: CP-violating reaction density (with thermal masses and with quantum statistics)
for the three-body decay Ni ↔ `tQ̄ normalised by the conventional one (without thermal
masses and with Maxwell-Boltzmann statistics). Only the self-energy CP-violating parameter
is shown.

5.2.5 Heavy neutrino decay versus Higgs mediated processes

It is interesting to compare the relative importance of both processes. To this end we plot the
reaction densities for the Higgs mediated processes divided by the ones for the heavy neutrino
decay as a function of the inverse temperature z, see Fig. 5.13. The thick lines correspond
to the reaction densities computed with thermal masses and quantum statistics, the thin lines
assume thermal masses and Maxwell-Boltzmann statistics, and the dashed lines neglect thermal
masses and take into account Maxwell-Boltzmann statistics. Plotted are the reaction densities
for the scattering processes Ni

¯̀↔ tQ̄ (red lines) and NiQ ↔ `t (blue line) and three-body
decay Ni ↔ `tQ̄ (green lines). We observe that the three-body decay is subdominant in the
whole range of temperature. At z ∼ 1 the scattering reaction densities are about 10% of the
one for the right-handed neutrino decay. For the processes with the heavy neutrino in the
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Figure 5.13: Higgs mediated reaction densities normalised by the ones for the heavy neutrino
decay as a function of the inverse temperature z. Plotted are the reaction densities for the
scattering processes Ni

¯̀↔ tQ̄ (red lines) and NiQ ↔ `t (blue line) and three-body decay
Ni ↔ `tQ̄ (green lines). The Higgs mediated processes are subdominant at low temperature.
In the numerics we approximate the Yukawa coupling of the top quark by λt = 1.

initial or final states the inclusion of thermal masses has a similar effect on the scattering
and two-body decay reaction densities in the temperature range considered here. Therefore
the ratios plotted in Fig. 5.13 are not very sensitive to the thermal masses. The quantum
statistics have much stronger effects on the scattering processes than on the two-body decay
since the reaction densities for the latter involves boson and fermion distribution functions
which partially cancel with each other. At higher temperature (T & 1.6Mi, not shown in Fig.
5.13) the decay of the heavy neutrino into a lepton-Higgs pair becomes forbidden, and the
Higgs mediated processes remain the only CP-violating source. At even higher temperature
the Higgs decay becomes kinematically allowed and also contributes to the CP-violation.

So far we have only considered the heavy neutrino decay contribution to Lρ,

Lρ(t, q) = 16π
∫
dΠ`φ

pk(2π)4δ(q − p− k)
[
1− f eq,p

` + f eq,k
φ

]
/p . (5.65)
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Figure 5.14: Thermally averaged CP-violating parameter for the heavy neutrino decay nor-
malised by the vacuum one. The blue line includes only the heavy neutrino contributions to
Lρ, the red dashed line takes into account in addition the Higgs mediated scattering processes,
and the red solid line corresponds to the full computation (heavy neutrino decay plus Higgs
mediated scattering processes plus three-body decay). Thermal masses are neglected. In the
numerics we approximate the Yukawa coupling of the top quark by λt = 1.

The contribution of the Higgs mediated processes to Lρ can be found by substituting the off-
shell Higgs propagator into (4.49). Integrating out the frequencies as usual we find (assuming
q0 > 0),

Ltρ(t, q) =16π
∫
dΠpptpQ

`tQ

[
F̃qpQ;ppt

(Ni)Q↔`t∆
2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t + F̃qpt;ppQ
(Ni)t̄↔`Q̄∆2

R+A(pt − pQ)Ξ(T )
φ∗Q↔t

+ F̃qp;ptpQ
(Ni)¯̀↔tQ̄∆2

R+A(pt + pQ)Ξ(T )
φ∗Q↔t + F̃q;pptpQ

(Ni)↔`tQ̄∆2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t
]
/p , (5.66)

see appendix E. The first three terms correspond to the scattering processes and the last
one to the three-body decay. In the vacuum limit only the last term survives. In order to
show the effects of the Higgs mediated processes on Lρ we plot in Fig. 5.14 the thermally
averaged CP-violating parameter for the heavy neutrino decay normalised by the vacuum one
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including in Lρ the heavy neutrino decay only (blue line), the heavy neutrino decay plus the
three scattering processes (red dashed line) and the heavy neutrino decay plus all the Higgs
mediated contributions (red solid line). The ratios plotted in Fig. 5.14 correspond to 〈pLρ〉

〈pLρ+pLtρ〉
as the vacuum CP-violating parameters cancel out. For simplicity we neglect thermal masses
here. We observe that the full result (red solid line) does not approach unity at low temperature
since the three-body decay contribution does not vanish in vacuum. The latter process gives
sizable contribution only at low temperature. At z ∼ 1 the full and the one-loop results differ
by approximately ∼ 10%.
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Chapter 6

Conclusion

Explaining the matter-antimatter asymmetry of the universe is one of the biggest challenge of
modern physics. The Standard Model of particle physics and the concordance model of cos-
mology, though both being very successful theories, cannot account for the baryon asymmetry
of the universe. Over the past decades many theories of baryogenesis have been proposed. One
of the most popular scenarios is leptogenesis. In this scenario the asymmetry is first produced
in the lepton sector, and then transferred to the baryon sector through the sphaleron processes.
This scenario postulates the existence of new heavy particles, the right-handed counterparts of
the three Standard Model neutrinos. Leptogenesis is very attractive since, in addition to the
baryon asymmetry of the universe, it naturally explains the small masses of the left-handed
neutrinos.

Qualitatively, it is clear that the leptogenesis scenario can explain the observed baryon
asymmetry of the universe. However, it is very difficult to compute the precise value of the
produced baryon asymmetry. The main reason is that the generation of the asymmetry is a
pure quantum phenomenon which takes place during the out-of-equilibrium evolution of the
universe, as required by the third Sakharov condition. In the conventional approach that we
have reviewed in chapter 2, the matter-antimatter asymmetry of the universe is computed by
means of the classical Boltzmann equation with vacuum transition amplitudes in the collision
term. Since leptogenesis takes place in the hot early universe, this approach is questionable.
Over the past few years a lot of efforts have been made to improve the computation of the
asymmetry generation in the leptogenesis scenario.

In this work we have studied leptogenesis using a first principles approach based on nonequi-
librium quantum field theory. Starting from the Kadanoff-Baym equations we have derived in
chapter 4 a quantum-corrected Boltzmann equation for the time evolution of the lepton asym-
metry in the early universe. This equation is very similar to the classical Boltzmann equation.
Its left-hand side corresponds to the Liouville operator, and its right-hand side to the collision
term. Despite the similarities, the quantum-corrected Boltzmann equation and the classical
one differ in a fundamental way. The latter, when used with transition amplitudes computed
in the S-matrix formalism, generates an asymmetry even in thermal equilibrium. This problem
can be solved by subtracting the contribution of the real intermediate states, which have been
counted twice in the collision term. However, this procedure neglects the quantum statisti-
cal effects. The double counting problem does not arise in the quantum-corrected Boltzmann
equation since its collision term vanishes in thermal equilibrium due to the KMS relations. In
other words, the latter is automatically consistent with the third Sakharov condition and there
is not need to perform an ad-hoc RIS subtraction as in the conventional approach. Another
advantage of the equation obtained from first principles is that it incorporates consistently
thermal corrections to the collision term and takes into account thermal corrections to the
quasiparticle properties, in particular thermal masses.
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In this work we have taken into account contributions to the collision term of the quantum-
corrected Boltzmann equation for the lepton asymmetry up to order O(h4) and O(h4λ2

t ). This
implies that the equation derived from first principles includes decay and inverse decay of the
right-handed neutrinos at tree- and one-loop level, lepton number violating scattering processes
mediated by the heavy neutrinos at tree-level, and Higgs mediated processes at tree- and one-
loop level. Technically, this is achieved by using the extended quasiparticle approximation.
This ansatz represents the propagator as a sum of two terms, one of them describing the
quasiparticle behaviour of the propagator, the other one corresponding to its off-shell part. The
latter is of higher order in the coupling and is neglected in the quasiparticle approximation.
However, this term is crucial for the consistent description of the heavy neutrino and Higgs
mediated scattering processes. We have also taken into account the contribution from the
Higgs decay, which is kinematically allowed at high temperature when one includes the thermal
masses. The method presented here can be easily generalised to include other lepton number
and CP-violating processes.

The derived quantum-corrected Boltzmann equation is valid for a hierarchical and mildly
degenerate heavy neutrino mass spectrum, but not in the quasidegenerate case. For a quaside-
generate mass spectrum one cannot reduce the dynamics of two-point function of the right-
handed neutrino to the dynamics of its diagonal components and we need to consider its full
flavour structure. The thermal correction to the masses of the heavy neutrino must also be
included in this case.

In this work we have not attempted to solve numerically the obtained quantum-corrected
Boltzmann equations. In order to compare the first principles approach and the conventional
one, we derived from the Boltzmann equations obtained in both approaches a system of rate
equations. The latter are governed by a handful of reaction densities, which describe the
production and washout of the asymmetry and the production of the right-handed neutrinos. In
chapter 5 we have compared numerically the reaction densities obtained in the two approaches.
When we neglect the thermal masses we observe that the improved reaction densities for the
heavy neutrino decay are mildly enhanced compared to the conventional ones. This behaviour
is due to the thermal corrections to the decay width of the right-handed neutrinos. The CP-
violating parameter, being a loop effect, is stronger enhanced by the thermal corrections. The
inclusion of thermal masses decreases the available phase-space for the right-handed neutrino
decay. Therefore, when we consider the reaction densities with thermal masses, we observe that
the enhancement of the effective amplitudes due to thermal corrections is overcompensated by
the shrinking of the phase-space. At very high temperature the heavy neutrino decay becomes
kinematically forbidden and is replaced by the Higgs decay. The CP-violating parameter for
the Higgs decay is a few orders of magnitude larger than the one for the heavy neutrino decay.

The scattering amplitudes of the processes mediated by the heavy neutrinos are less affected
by the thermal corrections since they are tree-level processes. The effects of thermal masses
are also less important. The washout reaction densities for the scattering processes mediated
by the heavy neutrinos are much smaller than the one for the heavy neutrino decay at z . 1
and can be neglected at low temperature. Our computation confirmed the RIS-subtraction
procedure performed in the S-matrix approach.

Finally we have studied the processes mediated by the Higgs. Due to the large top Yukawa
coupling the contributions of these processes are not negligible. At low temperature they are
suppressed in comparison with the heavy neutrino decay. At high temperature the reaction
densities for the Higgs-mediated scattering processes become larger than the one for the heavy
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neutrino decay since the latter is suppressed due to the thermal masses. Moreover, the Higgs
mediated processes affect indirectly the production of the asymmetry since they increase the
relaxation rate of the heavy neutrino. This leads to an enhancement of the CP-violating
parameter of the heavy neutrino decay by about 10% at z ∼ 1. This is a genuine medium
effect since in vacuum only the three-body decay, which is negligible, affects the relaxation rate
of the heavy neutrino.

As a final word, we would like to stress that the method presented here can be used to
compute consistently the asymmetry produced not only in the leptogenesis scenario, but also
in other baryogenesis scenarios. It overcomes many problems inherent to the conventional
approach based on the classical Boltzmann equation. Even though our method is computa-
tionally more demanding than the conventional approach, the formalism put forward by this
work is needed for a precise computation of the baryon asymmetry produced in the leptogenesis
scenario.
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Appendix A

Notation

Heavy neutrino propagator

S ij(x, y) = 〈TCNi(x)N̄j(y)〉 propagator on the CTP

Ŝ (x, y) propagator on the CTP (matrix notation)

Sii· (X, q) “diagonal” propagator

Sii
· (X, q) scalar part of the “diagonal” propagator

S̃iiρ (t, q) =
(
/q +Mi

)
sign(q0)(2π)δ(q2 −M2

i ) eQP spectral function

S̃ii
ρ (t, q) = sign(q0)(2π)δ(q2 −M2

i ) scalar part of the eQP spectral function

Lepton propagator

Sαβab (x, y) = 〈TC`aα(x)¯̀b
β(y)〉 propagator on the CTP

Ŝ(x, y) propagator on the CTP (matrix notation)

S(x, y) unflavoured, SU(2)L-symmetric propagator

S̃ρ(t, p) = PL/psign(p0)(2π)δ(p2 −m2
` ) eQP spectral function

S̃ρ(t, p) = sign(p0)(2π)δ(p2 −m2
` ) “scalar” part of eQP spectral function

Higgs propagator

∆ab(x, y) = 〈TCφa(x)φb†(y)〉 propagator on the CTP

∆̂(x, y) propagator on the CTP (matrix notation)

∆(x, y) SU(2)L-symmetric propagator on the CTP

∆̃ρ(t, k) = sign(k0)(2π)δ(k2 −m2
φ) eQP spectral function

Top quark propagator

St
AB(x, y) = 〈TCtA(x)t̄B(y)〉 propagator on the CTP

St(x, y) colourless propagator

S̃tρ(t, pt) = PR/ptsign(p0
t )(2π)δ(p2

t −m2
t ) eQP spectral function

S̃tρ(t, pt) = sign(p0
t )(2π)δ(p2

t −m2
t ) “scalar” part of eQP spectral function

Quark doublet propagator

SQ
AB
ab (x, y) = 〈TCQAb (x)Q̄Bb (y)〉 propagator on the CTP

SQ(x, y) colourless, SU(2)L-symmetric propagator

S̃Qρ(t, pQ) = PL/pQsign(p0
Q)(2π)δ(p2

Q −m2
Q) eQP spectral function

S̃Qρ(t, pQ) = sign(p0
Q)(2π)δ(p2

Q −m2
Q) “scalar” part of eQP spectral function
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Appendix B

Kinematics

We show here analytical simplification of the phase-space integration appearing in the reaction
densities.

B.1 Two-body decay

The reaction densities of the heavy neutrino decay can be generally written as,

〈X〉D ≡
∫
dΠNi`φ

qpk (2π)4δ(q − p− k)X , (B.1)

where X is any function of the momenta q, p and k. Performing the integration over k we find,

〈X〉D =
∫
dΠNi`

qp (2π)δ+((p− k)2 −m2
φ)X . (B.2)

Using spherical coordinate for ~p and integrating over the azimuthal angle using the remaining
delta function we find,

〈X〉D =
1

8π

∫
dΠNi

q

1
|~q|

∫ E+
p

E−p
dEp

∫ 2π

0

dϕ

2π
X =

1
32π3

∫ ∞
Mi

dEq

∫
dΩ
4π

∫ E+
p

E−p
dEp

∫ 2π

0

dϕ

2π
X , (B.3)

where Ω is the solid angle of ~q. The integral limits are given by,

E±p ≡
1
2
[
Eq(1 + x` − xφ)± |~q|λ

1
2 (1, x`, xφ)

]
, (B.4)

where x` ≡ m2
`/q

2, xφ ≡ m2
φ/q

2 and λ(x, y, z) ≡ x2 +y2 + z2−2xy−2xz−2yz. If the function
X is independent of the angles we find,

〈X〉D =
1

32π3

∫ ∞
Mi

dEq

∫ E+
p

E−p
dEpX . (B.5)

In vacuum the decay amplitude and CP-violating parameter do not depend on the momen-
tum. In that case the above integral can be performed analytically. Neglecting the mass of the
SM particles the CP-violating reaction density in vacuum is obtained from (B.5) by replacing
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Appendix B Kinematics

X → 32πMiΓNiεie
−Eq/T ,

〈εiγDNi〉MB =
εiMiΓNi
π2

∫ ∞
Mi

dEq

∫ 1
2 (Eq−|~q|)

1
2 (Eq−|~q|)

dEpe
−Eq/T

=
εiMiΓNi
π2

∫ ∞
Mi

dEq

√
E2
q −M2

i e
−Eq/T . (B.6)

The last integral corresponds to the modified Bessel function of the second kind,

K1(z) ≡ 1
z

∫ ∞
z

dx
√
x2 − z2e−x . (B.7)

Then the reaction density (B.6) reads,

〈εiγDNi〉MB =
εiM

2
i ΓNiT
π2

K1

(
Mi/T

)
. (B.8)

Similarly the washout reaction density in vacuum reads,

〈γDNi〉MB =
M2
i ΓNiT
π2

K1

(
Mi/T

)
. (B.9)

B.2 Two-body Scattering

The reaction densities for scattering processes involve phase-space integrals of the type,

〈X〉S ≡
∫
dΠabjk

papapjpk
(2π)4δ(pa + pb − pj − pk)X . (B.10)

Inserting the identity 1 =
∫
dsd4pδ(p− pa − pb)δ(p2 − s) into above equation, we rewrite it as,

〈X〉S ≡
∫
ds

d4p

(2π)4
δ(p2 − s)dΠab

papb
(2π)4δ(pa + pb − p)dΠjk

pjpk
(2π)4δ(p− pj − pk)X . (B.11)

The integral over pa and pb are performed similarly to the two-body decay:

dΠab
papb

(2π)4δ(pa + pb − p) =
1

8π
1√

E2
p − s

∫ E−pa

E+
pa

dEpa
dϕa
2π

, (B.12)

with the integration limits,

E±pa ≡
1
2
[
Ep(1 + xa − xb)±

√
E2
p − s λ

1
2 (1, xa, xb)

]
. (B.13)

For the integration over pj and pk we use a different representation. Since it is a Lorentz-
invariant quantity we can perform the integration in the center-of-mass frame, where ~p = 0,

dΠjk
pjpk

(2π)4δ(p− pj − pk) =
1

8π
|~pj |
p0

∫
d cos θ

dϕ

2π
, (B.14)
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where θ is the angle between ~pa and ~pj . The integration variable θ is traded for the Mandelstam
variable t = (pa − pj)2,

d cos θ =
1

2|~pa||~pj |
dt . (B.15)

Then, using the identity 2p0|~pa| = sλ
1
2 (1,m2

a,m
2
b), which is valid in the center-of-mass frame,

we can write (B.14) with Lorentz invariant quantities only,

dΠjk
pjpk

(2π)4δ(p− pj − pk) =
1

8π
1

λ
1
2 (1,m2

a,m
2
b)

∫ t+

t−

dt

s

dϕj
2π

, (B.16)

with the integration limits given by,

t± = m2
a +m2

j −
s

2
[
(1 + xa − xb)/1 + xj − xk)∓ λ

1
2 (1,m2

a,m
2
b)λ

1
2 (1,m2

j ,m
2
k)
]
. (B.17)

Putting everything together we find,

〈X〉S =
1

64π4

∫ ∞
smin

ds

∫ ∞
√
s
dEp

dΩp

4π
1

λ
1
2 (1,m2

a,m
2
b)

∫ E−pa

E+
pa

dEpa
dϕa
2π
× 1

8π

∫ t+

t−

dt

s

dϕj
2π

X , (B.18)

where smin = max
(
(ma +mb)2, (mj +mk)2

)
.

The above integral can be further simplified when one neglects the thermal masses and
uses the Maxwell-Boltzmann distribution function. In that case the reaction density for the
scattering process ab↔ jk reads,

〈γabjk〉MB =
T

64π4

∫ ∞
smin

ds
√
sK1

(√s
T

)
σ̂abjk , (B.19)

where σ̂abjk is the so-called reduced cross-section,

σ̂abjk ≡
1

8π

∫ 2π

0

dϕa
2π

∫ t+

t−

dt

s
Ξab↔jk . (B.20)

B.3 Three-body decay

The reaction density for a three-body decay is of the type,

〈X〉3D =
∫
dΠNi`tQ

qpptpQ
(2π)4δ(q − p− pt − pQ)X , (B.21)

where X is any function of the momenta. Similarly to the scattering we insert into (B.21) the
identity in the form,

1 =
∫
dsd4kδ(pt + pQ − k)δ(k2 − s) . (B.22)
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Then the integrals can be performed as in (B.3), and (B.21) reads,

〈X〉3D =
1

64π2

∫
dΠNi

q

∫ (Mi−m`)2

(mt+mQ)2

ds

2π
1
|~q|

∫ E+
p

E−p
dEp

∫ 2π

0

dϕp
2π

× 1√
(Eq − Ep)2 − s

∫ E+
pQ

E−pQ

dEpQ

∫ 2π

0

dϕpQ
2π

X , (B.23)

where the integration limits are given by,

E±p =
1
2
[
Eq(1 + x` − xs)± |~q|λ

1
2 (1, x`, xs)

]
, (B.24a)

E±pQ =
1
2
[
Eq(1 + xQ − xt)± |~q|λ

1
2 (1, xQ, xt)

]
, (B.24b)

where xs ≡ s/M2
i .
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Appendix C

Properties of the propagators

We list here the properties of the Higgs, lepton and heavy neutrino propagators. Here the
hermitian conjugate and transpose act on the SU(2)L, flavour and spinor indices.

C.1 Symmetry properties in coordinate representation

Higgs field

∆̂F (x, y) = ∆̂†F (y, x) , (C.1a)

∆̂ρ(x, y) = −∆̂†ρ(y, x) , (C.1b)

∆̂≷(x, y) = ∆̂†≷(y, x) , (C.1c)

∆̂R(x, y) = ∆̂†A(y, x) , (C.1d)

∆̂h(x, y) = ∆̂†h(y, x) . (C.1e)

Lepton field

ŜF (x, y) = γ0Ŝ†F (y, x)γ0 = PLŜF (x, y)PR , (C.2a)

Ŝρ(x, y) = −γ0Ŝ†ρ(y, x)γ0 = PLŜρ(x, y)PR , (C.2b)

Ŝ≷(x, y) = γ0Ŝ†≷(y, x)γ0 = PLŜ≷(x, y)PR , (C.2c)

ŜR(x, y) = γ0Ŝ†A(y, x)γ0 = PLŜR(x, y)PR , (C.2d)

Ŝh(x, y) = γ0Ŝ†h(y, x)γ0 = PLŜh(x, y)PR . (C.2e)

Heavy neutrino field

ŜF (x, y) = γ0Ŝ †
F (y, x)γ0 = CŜ T

F (y, x)C−1 , (C.3a)

Ŝρ(x, y) = −γ0Ŝ †
ρ (y, x)γ0 = −CŜ T

ρ (y, x)C−1 , (C.3b)

Ŝ≷(x, y) = γ0Ŝ †
≷(y, x)γ0 = CŜ T

≶ (y, x)C−1 , (C.3c)

ŜR(x, y) = γ0Ŝ †
A(y, x)γ0 = CŜ T

A (y, x)C−1 , (C.3d)

Ŝh(x, y) = γ0Ŝ †
h (y, x)γ0 = CŜ T

h (y, x)C−1 . (C.3e)
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C.2 Symmetry properties in Wigner representation

Higgs field

∆̂F (X, k) = ∆̂†F (X, k) , (C.4a)

∆̂ρ(X, k) = ∆̂†ρ(X, k) , (C.4b)

∆̂≷(X, k) = ∆̂†≷(X, k) , (C.4c)

∆̂R(X, k) = ∆̂†A(X, k) , (C.4d)

∆̂h(X, k) = ∆̂†h(X, k) . (C.4e)

Lepton field

ŜF (X, p) = γ0Ŝ†F (X, p)γ0 = PLŜF (X, p)PR , (C.5a)

Ŝρ(X, p) = γ0Ŝ†ρ(X, p)γ
0 = PLŜρ(X, p)PR , (C.5b)

Ŝ≷(X, p) = γ0Ŝ†≷(X, p) = PLŜ≷(X, p)PRγ0 , (C.5c)

ŜR(X, p) = γ0Ŝ†A(X, p)γ0 = PLŜR(X, p)PR , (C.5d)

Ŝh(X, p) = γ0Ŝ†h(X, p)γ0 = PLŜh(X, p)PR . (C.5e)

Heavy neutrino field

ŜF (X, q) = γ0Ŝ †
F (X, q)γ0 = CŜ T

F (X,−q)C−1 , (C.6a)

Ŝρ(X, q) = γ0Ŝ †
ρ (X, q)γ0 = −CŜ T

ρ (X,−q)C−1 , (C.6b)

Ŝ≷(X, q) = γ0Ŝ †
≷(X, q)γ0 = CŜ T

≶ (X,−q)C−1 , (C.6c)

ŜR(X, q) = γ0Ŝ †
A(X, q)γ0 = CŜ T

A (X,−q)C−1 , (C.6d)

Ŝh(X, q) = γ0Ŝ †
h (X, q)γ0 = CŜ T

h (X,−q)C−1 . (C.6e)

C.3 CP-conjugated propagators in coordinate representations

Higgs CP-conjugated propagators

¯̂∆F (x, y) = ∆̂T
F (ȳ, x̄) , (C.7a)

¯̂∆ρ(x, y) = −∆̂T
ρ (ȳ, x̄) , (C.7b)

¯̂∆≷(x, y) = ∆̂T
≶(ȳ, x̄) , (C.7c)

¯̂∆R(x, y) = ∆̂T
A(ȳ, x̄) , (C.7d)

¯̂∆h(x, y) = ∆̂T
h (ȳ, x̄) . (C.7e)
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C.4 CP-conjugated propagators in Wigner representations

Lepton CP-conjugated propagators

¯̂
SF (x, y) =

(
CP
)
ŜTF (ȳ, x̄)

(
CP
)−1

, (C.8a)
¯̂
Sρ(x, y) = −

(
CP
)
ŜTρ (ȳ, x̄)

(
CP
)−1

, (C.8b)
¯̂
S≷(x, y) =

(
CP
)
ŜT≶(ȳ, x̄)

(
CP
)−1

, (C.8c)
¯̂
SR(x, y) =

(
CP
)
ŜTA(ȳ, x̄)

(
CP
)−1

, (C.8d)
¯̂
Sh(x, y) =

(
CP
)
ŜTh (ȳ, x̄)

(
CP
)−1

. (C.8e)

Heavy neutrino CP-conjugated propagators

¯̂
SF (x, y) =

(
CP
)
Ŝ T
F (ȳ, x̄)

(
CP
)−1

, (C.9a)
¯̂

Sρ(x, y) = −
(
CP
)
Ŝ T
ρ (ȳ, x̄)

(
CP
)−1

, (C.9b)
¯̂

S≷(x, y) =
(
CP
)
Ŝ T
≶ (ȳ, x̄)

(
CP
)−1

, (C.9c)
¯̂

SR(x, y) =
(
CP
)
Ŝ T
A (ȳ, x̄)

(
CP
)−1

, (C.9d)
¯̂

Sh(x, y) =
(
CP
)
Ŝ T
h (ȳ, x̄)

(
CP
)−1

. (C.9e)

C.4 CP-conjugated propagators in Wigner representations

Higgs CP-conjugated propagators

¯̂∆F (X, k) = ∆̂T
F (X̄,−k̄) , (C.10a)

¯̂∆ρ(X, k) = −∆̂T
ρ (X̄,−k̄) , (C.10b)

¯̂∆≷(X, k) = ∆̂T
≶(X̄,−k̄) , (C.10c)

¯̂∆R(X, k) = ∆̂T
A(X̄,−k̄) , (C.10d)

¯̂∆h(X, k) = ∆̂T
h (X̄,−k̄) . (C.10e)

Lepton CP-conjugated propagators

¯̂
SF (X, p) =

(
CP
)
ŜTF (X̄,−p̄)

(
CP
)−1

, (C.11a)
¯̂
Sρ(X, p) = −

(
CP
)
ŜTρ (X̄,−p̄)

(
CP
)−1

, (C.11b)
¯̂
S≷(X, p) =

(
CP
)
ŜT≶(X̄,−p̄)

(
CP
)−1

, (C.11c)
¯̂
SR(X, p) =

(
CP
)
ŜTA(X̄,−p̄)

(
CP
)−1

, (C.11d)
¯̂
Sh(X, p) =

(
CP
)
ŜTh (X̄,−p̄)

(
CP
)−1

. (C.11e)
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Heavy neutrino CP-conjugated propagators

¯̂
SF (X, q) =

(
CP
)
Ŝ T
F (X̄,−q̄)

(
CP
)−1

, (C.12a)
¯̂

Sρ(X, q) = −
(
CP
)
Ŝ T
ρ (X̄,−q̄)

(
CP
)−1

, (C.12b)
¯̂

S≷(X, q) =
(
CP
)
Ŝ T
≶ (X̄,−q̄)

(
CP
)−1

, (C.12c)
¯̂

SR(X, q) =
(
CP
)
Ŝ T
A (X̄,−q̄)

(
CP
)−1

, (C.12d)
¯̂

Sh(X, q) =
(
CP
)
Ŝ T
h (X̄,−q̄)

(
CP
)−1

. (C.12e)
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Appendix D

Wigner transform of a convolution product

We derive here the Wigner transform of a convolution product,

A(x, y) =
∫
d4zB(x, z)C(z, y) . (D.1)

Using the central X = 1
2(x + y) and relative s = x − y coordinates we can write the above

equation as,

A(X, s) =
∫
d4zB(X + 1

2szy, sxz)C(X − 1
2sxz, szy) , (D.2)

where we have defined szy = z−y and sxz = x−z. Performing the Wigner transform separately
on the two-point functions we find,

A(X, p) =
∫
d4sd4z

d4pB
(2π)4

d4pC
(2π)4

ei(ps−pBsxz−pCszy)B(X + 1
2szy, pB)C(X − 1

2sxz, pC) . (D.3)

We can now expand the functions B and C around the central coordinate X,

B(X + 1
2szy, pB) =

∞∑
n=0

1
n!

(
1
2
szy∂X

)n
B(X, pB) , (D.4a)

C(X − 1
2sxz, pC) =

∞∑
m=0

1
m!

(
−1

2
sxz∂X

)m
C(X, pC) . (D.4b)
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Using the expansion (D.4) into (D.3) we find,

A(X, p) =
∫
d4sd4z

d4pB
(2π)4

d4pC
(2π)4

ei(ps−pBsxz−pCszy)
{ ∞∑
n=0

1
n!

(
1
2
szy∂X

)n
B(X, pB)

}
×
{ ∞∑
m=0

1
m!

(
−1

2
sxz∂X

)m
C(X, pC)

}
=
∫
d4sd4z

d4pB
(2π)4

d4pC
(2π)4

eips
{ ∞∑
n=0

1
n!
( i

2
∂pC∂X

)n(
e−ipCszyB(X, pB)

)}
×
{ ∞∑
m=0

1
m!
(−i

2
∂pB∂X

)m(
e−ipBsxzC(X, pC)

)}
=
∫
d4sd4z

d4pB
(2π)4

d4pC
(2π)4

ei(ps−pBsxz−pCszy)

×

[
B(X, pB)

{ ∞∑
n=0

1
n!
(
− i

2
←−
∂ X
−→
∂ pC

)n}{ ∞∑
m=0

1
m!
( i

2
←−
∂ pB
−→
∂ X
)m}

C(X, pC)

]

= B(X, p)
{ ∞∑
n=0

1
n!
(
− i

2
←−
∂ X
−→
∂ p
)n}{ ∞∑

m=0

1
m!
( i

2
←−
∂ p
−→
∂ X
)m}

C(X, p)

= B(X, p)e−
i
2

“←−
∂ X
−→
∂ p−←−∂ p−→∂ X

”
C(X, p) ≡ e−

i
2�{B(X, p)}{C(X, p)} , (D.5)

where the arrows over the derivatives indicate on which direction they act.

D.1 Properties of the diamond operator

We summarise here different properties of the diamond operator. One can easily verify these
identities by using the definition of the diamond operator given in (D.5).[

�
{
Â(X, p)

}{
B̂(X, p)

}]†
= − �

{
B̂†(X, p)

}{
Â†(X, p)

}
, (D.6a)

Â(X, p) �
{
Â−1(X, p)

}{
Â(X, p)

}
= − �

{
Â(X, p)

}{
Â−1(X, p)

}
Â(X, p) , (D.6b)

tr
[{
Â(X, p)

}{
B̂(X, p)

}]
= −tr

[{
B̂(X, p)

}{
Â(X, p)

}]
, (D.6c)

tr
[{
Â(X, p)

}{
B̂(X, p)

}]
= −tr

[{
Â−1(X, p)

}{
A(X, p)B̂(X, p)A(X, p)

}]
. (D.6d)
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Appendix E

2PI effective action and self-energies

E.1 2PI effective action

The 2PI effective action is defined as a functional of the one- and two-point functions consisting
of an infinite sum of all connected 2PI vacuum diagrams [116]. In practice, its expansion can
be characterised in terms of the number of loops appearing in each diagram:

iΓ2PI[S,S ,∆, St , SQ ] =
∑
n

iΓ(n)
2PI[S,S ,∆, St , SQ ] . (E.1)

Two diagrams relevant for this work contribute to the two-loop 2PI effective action,

iΓ(2.1)
2PI = −

∫
C
d4u d4w tr

[
hPRŜ (u,w)PLh†Ŝ(w, u)ε∆̂∗(u,w)ε

]
, (E.2a)

iΓ(2.2)
2PI = −|λt|2

∫
C
d4ud4v tr

[
ŜQ(v, u)PRŜt(u, v)ε∆̂T (v, u)ε

]
, (E.2b)

At three-loop order only one diagram contributes to the 2PI effective action,

iΓ(3)
2PI =

1
2

∫
C
d4u d4w d4η d4ξ tr

[
hPRŜ (u,w)CPRhT ŜT (η, w)ε∆̂∗(w, ξ)εh∗PLCŜ (η, ξ)

PLh
†Ŝ(ξ, u) ε∆̂∗(u, η)ε

]
. (E.3)

In (E.2) and (E.3) the trace acts on flavour, colour, SU(2)L and spinor space, and in (E.3)
the trace acts only in spinor and flavour space. Note that the propagators in the 2PI effective
action are the full propagators with the time arguments attached to the CTP.

E.2 Lepton self-energy

Coordinate representation

By functional differentiation of the 2PI effective action with respect to the lepton propagator
we obtain the corresponding self-energy which enters the Schwinger-Dyson equation:

Σ̂(n−1)(x, y) = −i
δΓ(n)

2PI

δŜT (y, x)
. (E.4)
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Appendix E 2PI effective action and self-energies

Since we do not consider the flavour effects and the early universe was in an SU(2)L-symmetric
state, the SU(2)L and flavour structure of the lepton and Higgs propagators is trivial,

Sαβab (x, y) = δabδ
αβS(x, y) , ∆ab(x, y) = δab∆(x, y) . (E.5)

Using the identity εabεbc = −δac we find that the lepton self-energy is also proportional to
the identity in SU(2)L space, Σαβ

ab (x, y) = δabΣαβ(x, y). Furthermore, in the unflavoured
approximation it is convenient to take the trace over lepton flavours: Σ(x, y) ≡ Σαα(x, y).
Then the one- and two-loop lepton self-energy read,

Σ(1)(x, y) = −(h†h)jiPRS ij(x, y)PL∆(y, x) , (E.6a)

Σ(2)(x, y) = −(h†h)ij(h†h)lk

∫
C
d4wd4ηPRS jk(x,w)CPRST (η, w)PL

× CS li(η, y)PL∆(y, w)∆(η, x) , (E.6b)

Eventually, we want to find the Wightman components since they enter the gain and loss terms
on the right-hand side of (4.11). To this end we insert into (E.6) the decomposition of the
propagators into their Wightman components,

G(x, y) = θC(x0, y0)G>(x, y)± θC(y0, x0)G<(x, y) , (E.7)

where the upper (lower) sign corresponds to boson (fermion). At one-loop level we find,

Σ(1)
≷ (x, y) = −(h†h)jiPRS ij

≷ (x, y)PL∆≶(y, x) , (E.8)

where the Wightman components of the self-energy are defined similarly to (E.7). In the case
of the two-loop contribution (E.6b) the computation becomes slightly more elaborate. The
complication is due to the appearance of 32 different terms after inserting the decomposition
(E.7) for each of the five propagators into (E.6b) as well as due to the two remaining integrations
over the internal space-time arguments w and η. The decomposition makes the path-ordering
explicit and allows us to convert the integration along the CTP into an integration along the
positive branch. The 32 terms contain different combinations of the θC-functions. These can
be rewritten by using relations similar to (3.27) which can be found in [59]. After some simple
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E.2 Lepton self-energy

but lengthy algebra we obtain for the two-loop Wightman components:

Σ(2)
≷ (x, y) = (h†h)ij(h†h)lk

∫
C
d4ωd4η

×
[
PRS jk

R (x, ω)CPRSTF (η, ω)PLCS li
≷ (η, y)PL ∆≶(y, ω)∆A(η, x)

+ PRS jk
F (x, ω)CPRSTR(η, ω)PLCS li

≷ (η, y)PL ∆≶(y, ω)∆A(η, x)

+ PRS jk
R (x, ω)CPRSTA(η, ω)PLCS li

≷ (η, y)PL ∆≶(y, ω)∆F (η, x)

+ PRS jk
≷ (x, ω)CPRSTR(η, ω)PLCS li

A (η, y)PL ∆F (y, ω)∆≶(η, x)

+ PRS jk
≷ (x, ω)CPRSTA(η, ω)PLCS li

F (η, y)PL ∆R(y, ω)∆≶(η, x)

+ PRS jk
≷ (x, ω)CPRSTF (η, ω)PLCS li

A (η, y)PL ∆R(y, ω)∆≶(η, x)

+ PRS jk
R (x, ω)CPRST≶(η, ω)PLCS li

A (η, y)PL ∆≶(y, ω)∆≶(η, x)

+ PRS jk
≷ (x, ω)CPRST≷(η, ω)PLCS li

≷ (η, y)PL ∆R(y, ω)∆A(η, x)
]
. (E.9)

Wigner represention

We perform then a Wigner transformation defined in (3.35) on the lepton self-energy. The
Wigner transform of the one-loop self-energy is obtained straightforwardly,

Σ≷(X, p) = −(h†h)ji
∫
dΠ4

qk(2π)4δ(q − k − p)PRS ij
≷ (X, q)PL∆≶(X, k) . (E.10)

The Wigner transform of the two-loop self-energy (E.9) is more involved. Due to the integration
over ω and η the Wigner transform can be expressed in term of an infinite sum of derivatives
similarly to the convolution product, see appendix D. We neglect here the derivatives and only
keep the leading order terms in the gradient expansion. It can be conveniently written as a
sum of three terms,

Σ(2)
≷ (X, p) = Σ(2.1)

≷ (X, p) + Σ(2.2)
≷ (X, p) + Σ(2.3)

≷ (X, p) . (E.11)

The first term of the above equation, which corresponds to the first six terms in the square
bracket of (E.9), reads,

Σ(2.1)
≷ (X, p) =

∫
dΠ4

qk(2π)4δ(p+ k − q)
[
(h†h)in(h†h)jmΛmn(X, q, k)PLCS ij

≷ (t, q)PL∆≶(X, k)

+ (h†h)ni(h†h)mjPRS ji
≷ (X, q)CPRVnm(X, q, p)∆≶(X, k)

]
, (E.12)

where we have introduced two functions containing loop corrections:

Λmn(X, q, k) ≡
∫
dΠ4

k1p1q1(2π)4δ(q + k1 + p1) (2π)4δ(k + p1 − q1)

×
[
PRSmn

R (X,−q1)CPRSTF (t, p1)∆A(X, k1) + PRSmn
F (X,−q1)CPRSTR(X, p1)∆A(X, k1)

+ PRSmn
R (X,−q1)CPRSTA(X, p1)∆F (X, k1)

]
, (E.13)
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Appendix E 2PI effective action and self-energies

and Vnm(X, q, k) ≡ P Λ†nm(X, q, k)P to shorten the notation. The second term in (E.11)
corresponds to the seventh term in (E.9) and is given by,

Σ(2.2)
≷ (X, p) =

∫
dΠ4

p1k1k2
(2π)4δ(p+ k1 − p1 − k2)(h†h)ni(h†h)mj (E.14)

× PRS ij
R (X, p1 + k2)CPRST≶(X,−p1)PLCSmn

A (X, p1 − k1)PL∆≶(X, k1)∆≶(X,−k2) .

Finally the last term in (E.11) reads,

Σ(2.3)
≷ (X, p) =

∫
dΠ4

p1q1q2(2π)4δ(p+ q1 − p1 − q2)(h†h)ij(h†h)lk (E.15)

×PRS jk
≷ (X,−q1)CPRST≷(X, p1)PLCS li

≷ (X, q2)PL∆A(X,−p1 − q2)∆R(X, q1 − p1) .

E.3 Right-handed neutrino self-energy

Coordinate representation

We consider here only the one-loop right-handed neutrino self-energy. Similarly to (E.4) the
heavy neutrino self-energy is obtained by differentiating the 2PI effective action with respect
to the corresponding propagator,

Π̂(x, y) = −i
δΓ(2)

2PI

δŜ T (y, x)
. (E.16)

Due to its Majorana nature two terms contribute to the one-loop heavy neutrino self-energy,

Πij(x, y) = −gw
[
(h†h)ijPLS(x, y)PRS (x, y) + (h†h)∗ijPRPS̄(x̄, ȳ)PPL∆̄(x̄, ȳ)

]
, (E.17)

where we have assumed SU(2)L symmetric medium and neglected the flavour effects. In
(E.17) we have written the second term using the CP-conjugate lepton and Higgs propagators
to emphasize the fact that the intermediate lines correspond to antiparticle. We decompose
then the one-loop heavy neutrino self-energy into its Wightmann components,

S ij
≷ (x, y) = −gw

[
(h†h)ijPLS≷(x, y)PRS≷(x, y)

+ (h†h)∗ijPRPS̄≷(x̄, ȳ)PPL∆̄≷(x̄, ȳ)
]
. (E.18)

Wigner representation

Performing the Wigner transformation of (E.18) we find,

Πij
≷(t, q) = −gw

∫
dΠ4

pk(2π)4δ(q − p− k)
[
(h†h)ijPLS≷(t, p)PR∆≷(t, k)

+ (h†h)∗ijPRPS̄≷(t, p̄)PPL∆̄≷(t, k̄)
]
, (E.19)

where we used the fact the the propagators and self-energies are independent of ~X in a ho-
mogeneous and isotropic medium. The quantity entering the CP-violating parameters is the
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E.3 Right-handed neutrino self-energy

spectral self-energy. It can be easily read off from (E.19),

(E.20)

Πij
ρ (t, q) = − gw

16π
[
(h†h)ijPLΠρ(t, q)PR + (h†h)∗ijPLΠ̄ρ(t, q̄)PR

]
, (E.21)

where we have defined the two functions

Πρ(t, q) ≡ 16π
∫
dΠ4

pk(2π)δ(q − p− k)
[
S>(t, p)∆>(t, k)− S<(t, p)∆<(t, k)

]
, (E.22a)

Π̄ρ(t, q̄) ≡ 16π
∫
dΠ4

pk(2π)δ(q − p− k)
[
S̄>(t, p̄)∆̄>(t, k̄)− S̄<(t, p̄)∆̄<(t, k̄)

]
. (E.22b)

In a CP-symmetric medium, which the early universe was to a very good approximation, the
lepton and Higgs propagators satisfy,

S≷(t, p) = S̄≷(t, p) , ∆≷(t, k) = ∆̄≷(t, k) . (E.23)

The homogeneity and isotropy of the early universe furthermore imply, that there is no de-
pendence on the momentum direction and the spatial central coordinate so that ∆̄≷(t, k̄) =
∆≷(t, k). In the lepton case we need to take into account the /p term,

PL/̄pPR = PLP/pPPR = PPR/pPLP . (E.24)

Therefore, in a homogeneous, isotropic and CP-symmetric medium, we can rewrite (E.21) as
a sum of left and right projections of the same “vector” integral Lρ(t, q),

Πij
ρ (t, q) = − gw

16π
[
(h†h)ijPL + (h†h)∗ijPR

]
Lρ(t, q) , (E.25)

with,

Lρ(t, q) = 16π
∫
dΠ4

pk(2π)4δ(q − p− k)
[
S>(t, p)∆>(t, k)− S<(t, p)∆<(t, k)

]
/p , (E.26)

where we have factored out the “scalar“ part S≷(t, p) of the lepton propagator. Inserting the
leading order term of the eQP approximation for the lepton and Higgs propagators into the
loop integral (E.26) we find,

Lρ(t, q) = 16π
∫
dΠ4

pk(2π)4δ(q − p− k)S̃ρ(t, p)∆̃ρ(t, k)

×
[
(1− F`(t, p))(1 + Fφ(t, k)) + F`(t, p)Fφ(t, k)

]
. (E.27)

In the quasiparticle approximation the eQP spectral functions of the lepton and Higgs fields
are represented by a delta function,

S̃ρ(t, p) = sign(p0)(2π)δ(p2 −m2
` ) , ∆̃ρ(t, k) = sign(k0)(2π)δ(k2 −m2

φ) . (E.28)

The delta functions in (E.28) can be decomposed in a sum of two delta functions, one with
positive frequency, and one with negative frequency. Therefore the product of the two spectral
functions in (E.27) gives raise to four terms. We need then to specify the kinetic conditions
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Appendix E 2PI effective action and self-energies

to determine which of the four terms satisfy the delta function ensuring energy conservation.
We consider first the case where Mi > m` +mφ and q2 positive. In that case the loop integral
(E.27) takes the form,

Lρ(t, q) = 16π
∫
dΠpq

`φF̃
q;pk
(Ni)↔`φ/p , (E.29)

where we assumed q0 > 0 and defined the combination of distribution function,

F̃pXpapb...;pipj ...(X)ab...↔ij... ≡ (2π)δ(pX+
∑
a

pa −
∑
i

pi)

×
[∏

a

fpaa
∏
i

(1± fpii ) +
∏
i

fpii
∏
a

(1± fpaa
]
. (E.30)

Inserting the equilibrium distribution functions into (E.29) and integrating out the energy-
momentum conserving delta-function we obtain for the Lorentz components of the loop integral
[63],

L0
ρ =

2T
y
I1(y0, y) ,

~Lρ =
~q

|~q|
2T
y2

[
y0I1(y0, y)− 1

2
(y02 − y2)(1 + x` − xφ)I0(y0, y)

]
, (E.31)

where y0 ≡ q0/T , y ≡ |~q|/T , x` ≡ m2
`/q

2 and xφ ≡ m2
φ/q

2. The integral functions In(y0, y) are
defined by,

In(y0, y) ≡
∫ z+

z−
dzzn

(
1 +

1
ey0−z − 1

− 1
ez + 1

)
, (E.32)

with the integration limits given by,

z± ≡ 1
2
[
y0(1 + x` − xφ)± yλ

1
2 (1, x`, y`)

]
. (E.33)

For Mi > m` + mφ and q2 > 0 but negative q0 the components of Lρ are related to the one
above by L0

ρ(−q0, ~q) = L0
ρ(q

0, ~q) and ~Lρ(−q0, ~q) = −~L0
ρ(−q0, ~q).

To evaluate the t- and u-channel processes we also need to calculate Lρ for negative q2. In
that case the loop integral (E.27) reads,

Lρ(t, q) = 16π
∫
dΠpk

`φ

[
(2π)4δ(q + k − p) + (2π)4δ(q − k + p)

][
fp` + fkφ

]
/p . (E.34)

Although it is in principle possible to retain the thermal masses of leptons and the Higgs in
the calculation, the resulting expressions are quite lengthy in this case. Neglecting the thermal
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E.3 Right-handed neutrino self-energy

masses we obtain for the Lorentz components of Lρ in this regime:

L0
ρ =

2T
y

∑
±
I±1 (y0, y) ,

~Lρ =
~q

|~q|
2T
y2

∑
±

[
y0I
±
1 (y0, y)− 1

2(y2
0 − y2)I±0 (y0, y)

]
, (E.35)

where the integral functions are given by

I±n (y0, y) ≡
∞∫

1
2

(y±y0)

dz zn
(

1
ez + 1

+
1

ez∓y0 − 1

)
.

Note that in this regime y > y0 and therefore the lower integration limit is positive.

To compute the scattering amplitude we need to calculate the product qLρ. For q2 > 0 we
find:

qLρ = q2(1 + x` − xφ) y−1I0(y0, y) , (E.36)

whereas the corresponding expression for q2 < 0 reads

qLρ = q2 y−1
∑
±
I±0 (y0, y) . (E.37)

At low temperatures (E.37) is exponentially small and vanishes in the vacuum limit.

The top quark also contributes to the function Lρ at NLO. Substituting the off-shell Higgs
propagator into (E.26), we find,

Ltρ(t, q) = 16π
∫
dΠ4

pptpQ
(2π)4δ(q + pt − p− pt)S̃ρ(p)S̃tρ(pt)S̃Qρ(pQ)gq|λt|2(2ptpQ)

×∆2
R+A(pt − pQ)

[
− F<Q (pQ)F>` (p)F>t (pt) + F<` (p)F<t (pt)F>Q (pQ)

]
, (E.38)

where we have used the eQP approximation for the lepton, top and quark fields. Integrating
out the delta-functions in the eQP spectral functions, we can write (E.38) as a sum of four
terms (assuming q0 > 0),

Ltρ(t, q) =16π
∫
dΠpptpQ

`tQ

[
F̃qpQ;ppt

(Ni)Q↔`t∆
2
R+A(pt − pQ)Ξ(T )

φ∗Q↔t + F̃qpt;ppQ
(Ni)t̄↔`Q̄∆2

R+A(pt − pQ)Ξ(T )
φ∗Q↔t

+ F̃qp;ptpQ
(Ni)¯̀↔tQ̄∆2

R+A(pt + pQ)Ξ(T )
φ∗Q↔t + F̃q;pptpQ

(Ni)↔`tQ̄∆2
R+A(pt + pQ)Ξ(T )

φ∗Q↔t
]
/p . (E.39)

The first three terms correspond to the scattering processes and the last one to the three-body
decay. In the vacuum limit only the last term survives.

We consider now the regime mφ > Mi + m`, where the Higgs field can decay into a right-
handed neutrino and a lepton. In that case the function Lρ reads,

Lρ(t, q) = 16π
∫
dΠpk

`φF̃
qp;k

(Ni)`↔φ̄/p , (E.40)
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where we assumed q0 > 0. After integrating out the delta-function in F̃qp;k
(Ni)`↔φ̄ we obtain,

L0
ρ(t, q) =

2T
y
J1 (y0, y) ,

~Lρ(t, q) =
~q

|~q|
2T
y2

[
y0J1 (y0, y)− 1

2
(xφ − x` − 1)J0 (y0, y)

]
, (E.41)

where the integral function is defined as,

Jn(y0, y) ≡
z+∫
z−

dz zn
(

1
ez + 1

+
1

ez+y0 − 1

)
, (E.42)

with the integration limit,

z± ≡ 1
2
[
y0(xφ − x` − 1)± yλ

1
2 (1, x`, y`)

]
. (E.43)

E.4 Higgs self-energy

Coordinate representation

At one-loop level the Higgs self-energy receives two contributions, one from the quark loop,
and one from the lepton-heavy neutrino loop. The later is suppressed due to the smallness
of the heavy neutrino Yukawa couplings hαi and is neglected here. In a SU(2)L symmetric
state, the Higgs, leptons and quark doublet propagators are proportional to the identity in
the SU(2)L space, which implies, in particular, that the SU(2)L matrix structure of the Higgs
self-energy is trivial. The top quark contribution is obtained by functional differentiation of
the 2PI effective action (E.2b),

Ωab(x, y) = Ω(x, y)δab =
δiΓ(2.2)

2PI

∆ba(y, x)
= |λt|2tr

[
ŜQ(y, x)PRŜt(x, y)PL

]
δab , (E.44)

where the trace acts on spinor and colour space. The propagators of the quarks are diagonal
in colour space,

SQAB(x, y) ≡ SQ(x, y)δAB , StAB(x, y) ≡ St(x, y)δAB . (E.45)

Performing explicitly the trace over the colour indices we obtain for the Higgs self-energy,

Ω(x, y) = gq|λt|2tr
[
SQ(y, x)PRSt(x, y)PL

]
δab , (E.46)

where gq = δABδBA = 3. The trace in (E.46) acts now only in spinor space. Its Wightman
components of the Higgs self-energy (E.46) are given by,

Ω≷(x, y) = gq|λt|2tr
[
SQ≶(y, x)PRSt≷(x, y)PL

]
. (E.47)
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Wigner representation
Performing a Wigner transform of (E.47) we obtain,

Ω≷(t, k) = gq|λt|2
∫
dΠ4

pQpt
(2π)4δ(k + pQ − pt)tr

[
SQ≶(t, pQ)PRSt≷(t, pt)PL

]
, (E.48)

where we used the fact that, in a homogeneous medium, the propagators and self-energies are
independent of the spatial coordinate ~X.
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