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In Table S1, the computational estimates are obtained as follows. The reactant and product molecular
configurations are first relaxed separately at the PBE+vdW level of theory [1], using the all-electron program
package FHI-aims [2]. We used tight settings for the numeric atom centered orbitals basis sets and integration
grids, as explained in Ref. [2]. Following relaxation, the complex geometries are subjected to a single point
calculation using the hybrid PBE0[3, 4]+vdW functional, which yields their electronic energies E . The Gibbs
free energy of each complex is then estimated using the ideal gas thermodynamic relationship, G = F +kBT ,
where kB is the Boltzmann constant, T = 298 K, and F is the Helmholtz free energy. Assuming that
the coupling between translational, vibrational and rotational degrees of freedom can be neglected, F is
estimated as a sum of their independent contributions [5], that is, F = Ftrans + Fvib + Frot, where

Ftrans = −kBT
[
ln
(
mkBT
2π~2

)3/2
+ ln kBT

P + 1
]
,

Fvib = E +

3N−6∑
i

[
~ωi
2

+ kBT ln

(
1 − exp

− ~ωi
kBT

)]
, and

Frot = − 3
2kBT ln

[
2kBT
~2 (IAIBIC)1/3π1/3

]
.

In the expressions above, N is the number of atoms in the molecule, IA, IB , and IC are the molecular
moments of inertia, P = 1 atmosphere, m is the molecular mass and ωi are the harmonic vibrational
frequencies obtained from a Hessian analysis of the PBE+vdW energy surface. The reaction free energy
changes ∆G are then obtained by subtracting the free energies of reactant complexes from the product
complexes; that is, ∆G =

∑
npGp −

∑
nrGr, where np and nr are the stoichiometries of the products and

reactants. We find that computed values agree with experiments. The inclusion of dispersion van der Waals
interactions is crucial, as shown by the amount of dispersion energy, ∆EvdW = ∆EPBE0+vdW − ∆EPBE0, in
each computed reaction free energy change in Table S1.
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Table S1: Comparison between experimental and computed reaction free energy changes ∆G involving Na+, K+ and
Ba2+ ions forming complexes with water (W) and methanol (M) molecules. ∆EvdW is the contribution of dispersion
energy to the computed ∆G. All energies are in units of kcal/mol.

Gas phase reaction Experiment Theory

∆G ∆Ga ∆EvdW

Na+W 
 NaW -18.8b -17.6 -0.3

Na+ 2W 
 NaW2 -31.9b -32.1 -0.8

Na+ 3W 
 NaW3 -40.9b -42.2 -1.7

Na+ 2M 
 NaM2 -35.5c -35.6 -2.0

Na+ 3M 
 NaM3 -44.7c -46.2 -4.8

K +W 
 KW -11.8b -11.8 -0.7

K + 2W 
 KW2 -20.7b -22.9 -1.4

K + 3W 
 KW3 -27.0b -28.6 -2.1

K +M 
 KM -13.4d -13.7 -1.0

K + 2M 
 KM2 -23.1e -23.8 -3.3

K + 3M 
 KM3 -29.9e -29.3 -5.9

BaW4 +W 
 BaW5 -16.1f -14.6 -1.0

BaW5 +W 
 BaW6 -12.6f -14.0 -0.9
a Computed at T=298 K, except for the reaction K + M 
 KM , whose free energy was computed at T=443 K.

b Estimated at T=298 K and taken from reference [6]. c Estimated by adding NaWn + nM 
 NaMn + nW

substitution reaction free energies obtained at T=303 K [7] to corresponding NaWn complexation energies obtained

at T=298 K [6]. d Estimated by adding the KW + M 
 KM + W reaction free energy obtained at T=443 K to the

KW complexation energy taken from reference [7]. e Estimated by adding KWn + nM 
 KMn + nW substitution

reaction free energies obtained at T=302 K [7] to corresponding KWn complexation energies obtained at T=298 K

[6]. f Estimated at T=298 K and taken from reference [8].
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Figure S1: (a) Comparison of single point energy changes (�E) obtained from PBE0+vdW [1] and a polarizable
force field [9, 10, 11]. �E are estimated for the substitution reactions studied in Figure 2 of the main manuscript, and
are computed using geometries relaxed separately at the respective levels of theory. Note that we utilize two separate
parameter sets for Ba2+, one taken from [12], and the other (Ba2+ modified) in which we reduced the Ba2+ damping
factor five-fold from 0.39 to 0.078, as suggested in references [13, 14]. We find that while polarizable force fields
generally reproduce the PBE0+vdW trends, the quantitative di↵erences can be large. (b) To understand the origin
of these di↵erences we examine one specific energetic contribution that is not modeled explicitly in the polarizable
force field. The atomic C6 dispersion coe�cients are kept fixed in the polarizable force field. In contrast, the C6

coe�cients are variables in the PBE0+vdW method that depend on self–consistent electron densities. For example
in the ion–propanol complexes, we find that the C6 coe�cients of Na+, K+, and Ba2+ vary by factors of ⇠8, ⇠5 and
⇠3, respectively. To obtain energetic estimates for such variations in C6 coeeficieints, we estimate using PBE+vdW
the contribution of dispersion energy �EvdW to the stabilities of the ion–propanol complexes. In addition, we divide
these energies into ion–ligand (�EIL

vdW ) and ligand–ligand (�ELL
vdW ) contributions. We find that these contributions,

especially the ion–ligand contributions, increase non–linearly with the number of propanols in the complex, which
suggests that the di↵erences between PBE0+vdW and the polarizable force field can emerge from the di↵erences in
the descriptions of dispersion interactions. The convergence with PBE0+vdW may be improved by introducing C6

coe�cient variability in polarizable fields.
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Figure S1: (a) Comparison of substitution reaction energy changes (∆E) obtained from PBE0+vdW [1] and a
polarizable force field [9, 10, 11]. ∆E are estimated for the substitution reactions studied in Figure 2 of the main
manuscript, and are computed using geometries relaxed separately at the respective levels of theory. Geometry
relaxations employing PBE0+vdW are carried out using FHI-AIMS [2] as described in the methods section of the
main manuscript, and relaxations employing the polarizable force field are carried out using the optimize algorithm
of TINKER v6.2 with a RMS gradient cut off of 0.01 kcal/mol. Note that we utilize two separate parameter
sets for Ba2+, one taken from [12], and the other (Ba2+ modified) in which we reduced the Ba2+ damping factor
five-fold from 0.39 to 0.078, as suggested in references [13, 14]. We find that while a polarizable force field can
reproduce the PBE0+vdW trends, the quantitative differences can be large. (b) To understand the origin of these
differences we examine one specific energetic contribution that is not modeled explicitly in the polarizable force field.
The atomic C6 dispersion coefficients are kept fixed in the polarizable force field. In contrast, the C6 coefficients
are variables in the PBE0+vdW method that depend on self–consistent electron densities. For example in the
ion–propanol complexes, we find that the C6 coefficients of Na+, K+, and Ba2+ vary by factors of ∼8, ∼5 and
∼3, respectively. To understand the energetic consequences of such variations in C6 coefficients in ion–propanol
complexes, we divide the total dispersion energy (EvdW ) into intra–ligand (EL

vdW ), ligand–ligand (ELL
vdW ), and ion–

ligand (EIL
vdW ) contributions. We define for a given geometry APn, EvdW (APn) = EPBE0+vdW (APn)−EPBE0(APn),

EL
vdW (APn) = n × (EPBE0+vdW (P ) − EPBE0(P )), ELL

vdW (APn) = EPBE0+vdW (Pn) − EPBE0(Pn) − EL
vdW (APn) and

EIL
vdW (APn) = EvdW (APn)−ELL

vdW (APn)−EL
vdW (APn). We find that EIL

vdW increases non–linearly with the number
of propanols in the complex, and, in fact, the EIL

vdW are correlated strongly with the ion C6 coefficients (Pearson
correlations > 0.96). This suggests that the differences between PBE0+vdW and the polarizable force field can
emerge from the differences in the descriptions of dispersion interactions. The convergence with PBE0+vdW may be
improved by introducing C6 coefficient variability in polarizable fields.
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Figure S2: Optimized configurations of representative 4-fold butanol complexes compared with the S4 site. The
central ion in each case is Ba2+. The dashed lines serve as visual aids. The grey lines indicate the coordination
geometry, and the magenta/orange lines indicate the distances between the branched methyl groups of adjacent
ligands. All distances are in Ångstrom units. We note that the packing of the branched methyl group of threonine
in the S4 site of KcsA is intermediate between the packing of branched methyl groups in 4-fold complexes comprised
of 2-butanols and isobutanols

Table S2: Effect of T → S substitutions on the structures of ion complexes. In the calculation of the root mean
squared deviation (RMSD) between two ion-complexes, only non-hydrogen atoms are considered. Note that two
simultaneous T → S substitutions can be introduced in two different ways. In one case, the substitutions can be
made on adjacent threonine residues, and in the other case, the substitutions are made on non-adjacent threonine
residues. The numbers in brackets correspond to substitutions made on adjacent threonine residues. We find that
these substitutions result in only minor configurational changes. While the configurational changes are generally
higher in the case of Ba2+ complexes, they do not correspond to any changes in binding topology or geometry (see
Figure S3).

RMSD (in Å) between A ≡ Na+ A ≡ K+ A ≡ Ba2+

AT4 & AT3S 0.13 0.46 0.85
AT4 & AT2S2 0.13 (0.14) 0.69 (0.02) 0.84 (0.96)
AT4 & AT1S3 0.14 0.64 0.96
AT4 & AS4 0.03 0.02 1.01
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Figure S3: Superimposed optimized configurations of the BaT4 and BaS4 complexes. While the RMSD between
the two optimized configurations is 1.01 Å, their coordination geometries are the same. Note that only three out of
the four bidentate ligands in the complexes are shown. The distances between the coordinating oxygen atoms and
ions are in Ångstroms.

Table S3: Changes in single point energy ∆E and free energy ∆G associated with the substitution reaction,
BaT4 + 4S 
 BaS4 + 4T , estimated with and without vdW contributions. The vdW contributions are evaluated
in two different ways: (1) using a pairwise approximation [1], denoted by PBE0+vdW, and (2) using a many-body
correction scheme [15], denoted by PBE0+mbd. Free energies are evaluated at a temperature of 298 K and a
pressure of 1 atmosphere. All energies are in units of kcal/mol. We find that while the contributions of many-body
vdW interaction terms to ∆E are small (0.3 kcal/mol), dispersion contributes significantly to the energy differences
associated with the substitution reaction.

PBE0 PBE0+vdW PBE0+mbd

∆E = EBaS4 + 4ET − EBaT4 − 4ES 3.1 5.2 4.9
∆G = GBaS4 + 4GT −GBaT4 − 4GS 2.5 6.9 -
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