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84-86, H-6720 Szeged, Hungary
2 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1,
D-85748 Garching, Germany
3 Department für Physik der Ludwig-Maximilians-Universität München,
Am Coulombwall 1, D-85748 Garching, Germany
E-mail: vladislav.yakovlev@lmu.de

New Journal of Physics 15 (2013) 063019 (15pp)
Received 19 December 2012
Published 14 June 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/6/063019

Abstract. We consider the motion of charge carriers in a bulk wide-gap
dielectric interacting with a few-cycle laser pulse. A semiclassical model
based on Bloch equations is applied to describe the emerging time-dependent
macroscopic currents for laser intensities close to the damage threshold. At such
laser intensities, electrons can reach edges of the first Brillouin zone even for
electron–phonon scattering rates as high as those known for SiO2. We find that,
whenever this happens, Bragg-like reflections of electron waves, also known as
Bloch oscillations, affect the dependence of the charge displaced by the laser
pulse on its carrier–envelope phase.
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1. Introduction

The motion of conduction-band electrons in a crystalline solid is usually considered to be similar
to that in free space, apart from scattering processes. The situation is radically different in the
case where an external electric field is so strong that, in spite of scattering, an electron can
acquire such a high crystal momentum that it reaches an edge of the first Brillouin zone. While
the kinetic energy of a free electron exposed to a constant external field would indefinitely
increase, an electron in a crystal first slows down until it reaches the top of the energy band,
and then it moves in the opposite direction towards the bottom of the band. In the semiclassical
picture neglecting scattering, the electron would move periodically back and forth between its
initial and final positions. This phenomenon is known as Bloch oscillations [1], and it leads to
Wannier–Stark localization [2]. In the reduced band scheme, an electron reaching an edge of the
first Brillouin zone continues its motion from the opposite side of the zone. In the real space,
this corresponds to a Bragg-like reflection of an electron wave [3]. While Bloch oscillations
and Wannier–Stark localization are usually considered in the case of a constant external field,
essentially the same physical phenomena take place if the external field is time dependent. In
this paper, we use the term ‘dynamical Bloch oscillations’ (DBOs) to describe phenomena that
occur whenever an electron wave is reflected at an edge of the Brillouin zone.

Until recently, Bloch oscillations were thought to be impossible to observe in bulk solids
because of scattering. The period of Bloch oscillations in a constant field F is given by
TB = h(eFa)−1, where h is the Planck constant and a is a lattice period. To observe Bloch
oscillations, TB must be smaller than characteristic scattering and dephasing times, which
are usually of the order of Ts ∼ 10−13 s. This implies that the external field must be stronger
than F & h(eaTs)

−1
∼ 108 V m−1. Such a strong constant field would destroy even wide-gap

dielectrics. Therefore, over the last few decades, Bloch oscillations were predominantly studied
in artificial periodic structures, such as semiconductor superlattices [4, 5], a notable exception
being the observation of partial Bloch oscillations in n-doped GaAs interacting with intense
terahertz pulses [6]. A closely related phenomenon, optical Bloch oscillations, was observed
in periodic waveguide structures [7, 8], periodic dielectric systems [9] and optical lattices
fabricated from porous silicon [10]. Also, Bloch oscillations were also studied for ultracold
atoms in optical superlattices [11, 12].
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The situation has recently changed as intense few-cycle pulses were generated in the mid-
infrared (MIR) spectral region [13], and the duration of the shortest near-infrared (NIR) pulses
approached one optical cycle [14]. Ghimire et al [15, 16] observed that anharmonicity in the
motion of charge carriers created and driven by an intense MIR pulse in ZnO resulted in
the generation of high-order harmonics [17] and a red-shift of absorption edge [16]. In their
parameter regime, the field was intense enough to drive conduction electrons beyond the first
Brillouin zone, so that Bloch oscillations were suggested to be responsible for the observed
effects.

Very recently, Schiffrin et al [18] found that a 4 fs NIR pulse with a peak electric field of
20 GV m−1 can induce measurable currents in a SiO2 sample. Furthermore, it has been found
that these currents can be steered by controlling the carrier–envelope phase (CEP) [19] of laser
pulses. These findings were interpreted in terms of Wannier–Stark states [20].

While it remains debatable whether Bloch oscillations played a major role in these
particular measurements, there is no doubt that intense few-cycle pulses enable experiments in
the parameter regime where electrons in a bulk solid are accelerated beyond the first Brillouin
zone. The purpose of this paper is to study some basic effects related to this parameter regime.
In particular, we consider the role of electron scattering and dephasing.

Electron–phonon scattering rates are known to be particularly high for SiO2 due to a strong
coupling between conduction electrons and longitudinal optical (LO) phonons [21, 22]. At the
same time, we are not aware of any direct measurements of scattering rates for moderately
hot (Ekin ∼ 1 eV) electrons, which we consider in this paper, and there are still open questions
related to the scattering of very hot conduction electrons [23].

2. The system and the model

We consider the following model (see figure 1): the xy (z = 0) plane is the surface of a dielectric.
Short pulses with a stabilized CEP propagate along the z-axis and impinge on this surface. In
our calculations, we assume that the external electric field within the sample is linearly polarized
and given by Ex(t) = E0 cos(ω0t + ϕCEP) exp[−t2/(2τ 2)], Ey = Ez = 0.

We adopt the two-band approximation and consider the electron motion in two spatial
dimensions. At each moment t , we describe electronic excitations in the sample with the aid of
quantum-mechanical density matrices

ρ(k, t) =

(
nc(k, t) P(k, t)
P∗(k, t) nv(k, t)

)
, (1)

where nc and nv correspond to the conduction and valence band populations, the off-diagonal
element P(k, t) represents the interband coherence and the crystal momentum k has two
components: k = (kx , ky). The time dependence of the density matrix can be formally written
as

∂

∂t
ρ(k, t) =

(
∂ρ

∂t

)
exc

+

(
∂ρ

∂t

)
force

+

(
∂ρ

∂t

)
scatt

. (2)

The three terms on the right-hand side of this equation describe the effects that we take into
account: photoexcitation, the acceleration of charge carriers by the external field and electron
scattering, which acts as a ‘friction force’. In the following, we use well-established models to
account for each of these phenomena; however, our model is rather phenomenological as we did
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Figure 1. A schematic view of the creation and driving of macroscopic currents
with a laser pulse. Measurements [18] yield the charge transferred by the pulse.

not systematically derive it from first principles. The last two terms on the right-hand side of (2)
are obtained from the standard single-band Boltzmann equation [24]. The role of the laser field
is twofold here: besides driving charge carriers in the conduction and valence bands [(∂tρ)force],
it also drives interband transitions, i.e. populates the initially empty conduction band [(∂tρ)exc].

It is common to describe strong-field excitations using rates for multiphoton or tunnelling
transitions, but the applicability of this approach is very questionable for extremely short
laser pulses at intensities where the Keldysh parameter is comparable to 1. Therefore, we
use a quantum-mechanical model for the term (∂tρ)exc in (2), describing photoexcitation with
k-resolved optical Bloch equations [25, 26] in the two-band approximation:(

∂P(k)

∂t

)
exc

= −
i

h̄
[Ec(k) − Ev(k) − ih̄κ]P(k)

− i[nc(k) − nv(k)]dcv(k)E(t),(
∂nc(k)

∂t

)
exc

= − 2 Im[dcv(k)E(t)P∗(k)],(
∂nv(k)

∂t

)
exc

= −
∂nc(k)

∂t
. (3)

Here, Ev(k) and Ec(k) are the energies of the valence and conduction bands, respectively, dcv(k)

is the x-component of the interband transition matrix element, and the phenomenological rate
κ describes the decay of the interband coherences. We neglect interband relaxation (population
decay) as it occurs on the picosecond to nanosecond time scale. For simplicity, we estimate
the dependence of the dipole matrix elements on k as dcv(k) = dcv(0) Ec(0)−Ev(0)

Ec(k)−Ev(k)
(see [26]). The

actual value of dcv(0) has a minor qualitative effect on our results, as long as saturation-related
phenomena are negligible, i.e. the excited population is well below unity. In the following,
we use dcv(0) = 0.1 atomic unit. Note that equations (3) make no use of the rotating wave
approximation. This allows us to investigate dynamics that unfold within a single optical
oscillation of the laser pulse (e.g. [27] contains a detailed discussion of related phenomena).
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The external electric field not only causes transitions between the bands, but it also
accelerates and decelerates charge carriers. These field-driven dynamics are accounted for by
the second term in (2). We neglect off-diagonal terms in (∂tρ)force and evaluate the diagonal ones
as (

∂nv,c(k)

∂t

)
force

= −
e

h̄
E(t)∇knv,c(k). (4)

Note that E(t) is the electric field in the medium, so that it is assumed to include both the
screening field due to the collective electron response [28] and the field due to the polarization
of the sample.

The third term in (2) accounts for the loss of intraband coherence due to scattering, where
LO phonons are considered to play a major role. The electron–phonon interaction is described
by the Fröhlich Hamiltonian, and standard methods [26] lead to the following dynamical
equations:(

∂nc(k)

∂t

)
scatt

= γ0

∑
q

δ(E(k + q) − Ec(k) − h̄ωLO)

×q−2
{−Nqnc(k) [1 − nc(k + q)] + (Nq + 1)nc(k + q) [1 − nc(k)]}

+ γ0

∑
q

δ(E(k− q) − Ec(k) + h̄ωLO)

× q−2
{−(Nq + 1)nc(k) [1 − nc(k− q)] + Nqnc(k− q) [1 − nc(k)]}, (5)

where h̄ωLO denotes the energy of an LO phonon, which is assumed to be independent
of the reciprocal-space vector q. The related phonon density is denoted by Nq and γ0 is
an electron–phonon coupling constant. For the sake of simplicity, we use a tight-binding-
type dispersion relation, i.e. Ec(k) is proportional to 2 − cos(kxa) − cos(kya), where a is a
lattice constant. At room temperature, Nq is practically zero, so phonon emission processes
(accompanied by electron scattering events with a loss of electron energy) dominate the
scattering dynamics. Note that the scattering process described above qualitatively depends on
the number of dimensions. By using a one-dimensional model, we would strongly underestimate
momentum relaxation, as the probability of back-scattering (q ≈ 2k) is negligibly small for
electrons with a kinetic energy larger than a fraction of an electronvon (eV). If there is more
than one spatial dimension, electron deflection upon scattering results in a faster decrease
of the net momentum. We chose to use two spatial dimensions in our calculations as a
compromise between building a possibly realistic model for electron–phonon scattering and
keeping computational time at an acceptable level.

The model described above allows us to calculate the rate of scattering on LO phonons
γ (k), which is proportional to γ0 appearing in (5). This scattering rate determines how fast the
crystal momentum of an electron wave packet with a well-defined k decreases as a consequence
of scattering events. Our numerical calculations show, in accordance with the analytical results
presented e.g. in [22], that the rate γ (k) has a pronounced minimum at k = 0, being nearly
constant (γ (k) ≈ γ ) for kinetic energies in the range between 0.5 and 2 eV. In the following, we
use γ as a label to quantify the strength of electron–phonon interaction in different simulations,
although we used k-dependent scattering rates in our calculations. It must also be mentioned
that the overall momentum of electrons distributed over a large part of the Brillouin zone
may decrease at a rate that is much smaller than γ because, for a broad electron distribution,
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scattering events that increase the net momentum are approximately as probable as those that
decrease it.

For our simulations, we used material parameters that correspond to SiO2: a band gap
of 9 eV, lattice period a = 0.5 nm, two LO phonon modes with energies h̄ωLO = 0.153 and
0.063 eV and a combined scattering rate equal to γ = 0.3 fs−1. The laser pulse parameters
correspond to the experiment described in [18]: ω0 = 2.51 fs−1 and τ = 2.3 fs (FWHM = 3.8 fs).
Note that in this case the band gap is more than five times larger than h̄ω0; thus, the excitation
is far from being resonant or, in other words, it is a multiphoton process.

3. Results

3.1. Electron acceleration in the laser field

Before we present simulations where a laser pulse creates and drives charge carriers, let us
consider the laser-driven motion of initially free electrons neglecting interband transitions.
Similar simulations can be found in [29]. As an example, we take the initial distribution of
conduction electrons as a Gaussian wave packet centred at k = 0, neglect the terms (∂tρ)exc

and (∂tρ)scatt in (2) and model the time evolution of the electron wave packet by solving (4).
We plot the distribution of conduction electrons in false-colour diagrams, where colours vary
from black through red to yellow as the electron population nc(k, t) grows from zero to its
maximal value. The top panel of figure 2 presents such a diagram in the plane ky = 0. In this
example, the distribution remains localized in the reciprocal space, and it is dynamically shifted
by the field of the laser pulse. The reciprocal-space motion of the wave packet is appropriately
described by the ‘acceleration theorem’ [24]:

∂k

∂t
= −

e

h̄
E(t). (6)

A solution of this equation with the initial condition k(tmin) = 0 is shown by the dashed white
line in figure 2. This solution can be regarded as a trajectory of a ‘classical particle’ in the
reciprocal space. Let us note that as long as neither scattering nor excitation is taken into
account, there is a simple scaling in the model: increasing both the carrier frequency ω0 and
the amplitude of the laser pulse E0 by a certain factor is equivalent to choosing a new unit of
time in (2), and it does not change the maximal crystal momentum that a wave packet can reach
in the reciprocal space.

Having evaluated the time evolution of the density matrix, we are able to investigate
measurable physical quantities.

The number of electrons excited per unit cell is given by

〈nc〉 = �−1

∫
nc(k) d2k (7)

with

� =

∫
d2k. (8)

The electric current per unit cell j(t) is a sum of contributions from conduction-band electrons

jc(t) = �−1

∫
BZ

evc(k)nc(k, t) d2k, (9)
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Figure 2. Laser-driven motion of conduction-band electrons that initially have a
Gaussian distribution: nc(k, tmin) = exp[−(k2

x + k2
y)a

21−2] with 1 = 0.03. This
simulation neglects photoexcitation and electron–phonon scattering. (a) The
distribution of conduction electrons nc(k, t) in the ky = 0 plane. The dashed
white line is the ‘semiclassical trajectory’ evaluated with the aid of the
acceleration theorem (6). (b) The electric field Ex(t) that drives the wave packet,
the current density jx(t) and the time-dependent transferred charge Q(t). The
parameters are E0 = 4 GV m−1, ϕCEP = 0, τ = 2.3 fs.

valence-band holes

jv(t) = �−1

∫
BZ

evv(k)nv(k, t) d2k (10)

and interband coherences

jcv(t) = 2h̄−1�−1 Im

{∫
BZ
P(k, t)dcv(k) [Ev(k) − Ec(k)] d2k

}
, (11)

where the integrals are taken over the first Brillouin zone (in the kx and ky directions,
in accordance with our 2D model), and the velocity distributions are given by vv,c(k) =

h̄−1
∇k Ev,c(k). Equations (9)–(11) result from evaluating the expectation value of the current

operator averaged over a unit cell for a state described by the density matrix (1). Integrating
the current density with respect to time, we obtain the charge (per unit cell) that flows through
a surface perpendicular to the x-axis: Q(t) =

∫ t
−∞

jx(t ′) dt ′
= Qc(t) + Qv(t) + Qcv(t), where jx

denotes the x-component of the total current density j = j c + j v + j cv. It is the charge displaced
by the laser pulse Q = Q(∞) that can be measured in experiments [18]. In the following, we
assume that j c gives the dominant contribution to Q. Indeed, j v is negligible in comparison
with j c due to the low mobility of holes in the valence band, while j cv mainly describes
the polarization response of valence-band electrons; according to our calculations, Qcv(t) is
proportional to the applied field within a relative error of not more than 5% up to a field
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Figure 3. Time evolution of a wave packet initially centred at k = 0 in a
simulation that neglects photoexcitation but takes electron–phonon scattering
into account. γ = 0.3 fs−1; all other parameters are the same as in figure 2.
Electron scattering along both kx and ky is responsible for the gradual reduction
of the reciprocal-space electron distribution nc(k, t) towards the end of the laser
pulse, but it has a relatively weak effect on jx(t).

amplitude of E0 = 25 GV m−1, Qcv(∞) being negligibly small in comparison with Qc(∞).
Keeping this in mind, we restrict our analysis to j c and Qc, referring to them as ‘current
density’ and ‘transferred charge’, respectively. As long as the laser field is linearly polarized
and the medium is isotropic, j c is parallel to the x-axis. The current density jx(t) and the charge
transferred along the laser polarization are shown in figure 2(b) together with the electric field
of the laser pulse, which is depicted by the dashed black line.

In figure 3, we show the effects of electron–phonon scattering on the dynamics of a
conduction-band wave packet initially centred at k = 0. A comparison with figure 2, where
scattering was neglected, reveals that the electron–phonon interaction disperses the electron
wave packet, but it has a relatively weak effect on jx(t), decreasing the amplitude of its
oscillations by merely 20%.

3.2. Nonresonant interband excitations

In order to expose a medium to a very intense laser field without destroying it, the medium must
be possibly transparent, so that little energy will remain in the medium after the interaction with
the pulse. This implies that the laser frequency ω0 should be much smaller than the band gap.
This is why we are interested in studying nonresonant excitations. With our laser parameters, it
takes more than five laser photons to bridge the band gap of SiO2.

The dynamics of interband excitations predicted by our model are shown in figure 4.
For κ = 0, equation (3) describes a completely coherent excitation process, with the average
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Figure 4. Average conduction-band population (7) for different interband
coherence relaxation rates κ . For κ = 5.0 fs−1 (dashed blue curve), we plot
0.05〈nc〉. The parameters are E0 = 5 GV m−1, ϕCEP = 0, τ = 2.3 fs, γ = 0.3 fs−1.

population in the conduction band being roughly proportional to the laser intensity. These
periodic excitations and deexcitations are sometimes referred to as ‘virtual excitations’, as
they largely represent distortions of initial electronic states. Both virtual and real excitations
contribute to photocurrents [30]. In the opposite extreme, if we assume an unrealistically fast
decoherence κ = 5 fs−1, the conduction band population becomes a monotonically increasing
step-like function of time. Little is known about ultrafast dephasing in SiO2, so we use
κ = 0.1 fs−1 for our further simulations as a value that corresponds to an intermediate regime of
interband excitations.

3.3. Laser-driven motion of photoexcited charge carriers and the effect of the carrier–envelope
phase

Here, we investigate the outcomes of our model with all three terms of (2) being taken into
account. The most interesting result of combining excitation and laser-driven motion is that this
may result in a nonzero charge Q transferred by a laser pulse—a transport effect that does not
occur in simulations neglecting interband transitions, as figures 2 and 3 illustrate. In this section,
we show that this is a combination of interband transitions and a dispersion law that determines
the transferred charge.

In the upper panels of figures 5 and 6, we show nc(kx , t) obtained in simulations that
account for all the relevant processes: multiphoton excitations, light-driven motion of charge
carriers, dephasing and electron–phonon scattering. The simulations were performed for a
‘cosine’ (ϕCEP = 0) and a ‘sine’ (ϕCEP = π/2) laser pulse, respectively. The lower panels
of the figures show the electric field of the laser pulse Ex(t), the induced current density jx(t)
and the transferred charge Q(t) as functions of time. Because of scattering, the current density
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Figure 5. (a) Time evolution of the conduction-band electron population
that emerges due to multiphoton excitations. The cross section in the kx

direction (parallel to the polarization of the laser field) is shown for the
following parameters: E0 = 3 GV m−1, ϕCEP = 0, τ = 2.3 fs, κ = 0.1 fs−1, γ =

0.3 fs−1. The dashed white line represents a semiclassical trajectory released
at t = 0 with k = 0. (b) The electric field of the laser pulse Ex(t), the induced
current density jx(t) and the transferred charge Q(t) as functions of time.

at the end of each simulation quickly approaches zero, but the final value of the transferred
charge is in general nonzero, and it has a significantly higher value for the cosine pulse
(figure 5).

The dashed lines in figures 5(a) and 6(a) represent ‘semiclassical electron trajectories’
released at a peak of the electric field, which are solutions of (6) with the initial condition
k(t0) = 0, the initial time being t0 = 0 for the cosine pulse and t0 = −π(2ω0)

−1 for the sine
pulse. Even without taking scattering into account, this semiclassical analysis can be used to
explain many features observed in our calculations. In this picture, the contribution from a
particular electron to the transferred charge at a final time tmax is determined by the semiclassical
electron displacement:

s(t0) =

∫ tmax

t0

vc(k(t)) dt, (12)

where t0 is a time when the electron appeared in the conduction band, k(t) satisfies (6),
vc(k) = h̄−1

∇k Ec(k) and an implicit assumption was made that the initial velocity of the
electron is zero. In the case of a short cosine pulse, the central half-cycle of the electric field has
a significantly higher amplitude than any other half-cycle. Consequently, there is one dominant
semiclassical trajectory that starts at the peak of the main half-cycle. A simple calculation shows
that, in our example, the semiclassical displacement associated with this trajectory is negative,
which agrees with the positive final transferred charge in figure 5. For a short sine pulse, there
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Figure 6. The same as figure 5, but for a sine pulse (ϕCEP = π/2). The
semiclassical trajectory begins at the first main peak of the laser field, i.e. at
t = −π(2ω0)

−1
≈ −0.6 fs, and it trespasses k = 0 at the peak of the next half-

cycle, which is the starting point of the second dominant electron trajectory.

are two dominant trajectories which start at the peaks of the two most pronounced half-cycles
of the electric field. The electron displacements associated with these trajectories have opposite
signs and add ‘destructively’ in the case shown in figure 6. This explains why the magnitude of
the net transferred charge is considerably smaller for ϕCEP = π/2 than for ϕCEP = 0.

We further elaborate on the role of the CEP in figure 7, where we plot Q(ϕCEP) for different
values of κ and γ . From this figure, one can see that Q(ϕCEP + π) = −Q(ϕCEP), which is a direct
consequence of symmetry: adding π to the CEP is equivalent to substituting E(t) with −E(t),
which is equivalent to replacing x with −x in our symmetric arrangement. One also infers from
figure 7 that the relaxation rate of interband coherences influences the positions of minima and
maxima of Q(ϕCEP), which is not the case for the phonon scattering rate γ .

Increasing the amplitude of the input laser fields, we reach the regime where even electrons
initially excited in the middle of the Brillouin zone experience reflections at its edges during the
laser pulse—DBOs take place. This is illustrated in figure 8, where we plot the outcomes of
a simulation with a laser pulse that has a peak amplitude of the electric field of 10 GV m−1,
the other parameters being the same as in the previous simulations. DBOs occur in spite of the
fact that we use a fairly large value for the electron–phonon scattering rate (γ = 0.3 fs−1). In
contrast to the case of a low field (figure 5), the final transferred charge is now negative, which
can be interpreted in terms of the semiclassical electron displacement. The dominant electron
trajectory, shown as a dashed white line, crosses the lower edge of the Brillouin zone, but it
does not reach its upper edge. Since vc(k) = 0 at the edges of the Brillouin zone, the electron is
displaced maximally during the time when kx > 0. Consequently, the final electron displacement
is positive, and the transferred charge is negative.
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Figure 8. The effect of DBOs in a simulation with the following parameters:
E0 = 10 GV m−1, ϕCEP = 0, τ = 2.3 fs, κ = 0.1 fs−1, γ = 0.3 fs−1. (a) Time
evolution of the conduction-band electron population nc(kx , t) for a laser field
with an amplitude sufficient for accelerating excited electrons to the edges of
the Brillouin zone. The white dashed line represents the solution of (6) with
k(0) = 0. (b) The electric field of the laser pulse Ex(t), the induced current
density jx and the transferred charge Q(t).
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Figure 9. (a) The semiclassical electron displacement (12) for ϕCEP = 0, t0 = 0
and tmax = 15 fs. The parameters of the laser pulse are τ = 2.3 fs and ω0 =

2.51 fs−1. (b) The normalized transferred charge Q̃, defined by (13), as a function
of the CEP and the amplitude of the laser pulse. For dephasing and relaxation,
we used κ = 0.1 fs−1 and γ = 0.3 fs−1. (c) The maximal average population in
the conduction band 〈nc〉max(E0), defined by (14), for ϕCEP = 0.

Note that the temporal evolution of the current in figure 8 contains frequency components
higher than those of the driving field. The same effect in a different parameter regime was
reported to contribute to the generation of nonperturbative high-order harmonics in solids [15].

Figures 5 and 8 demonstrate that DBOs have a large impact on the CEP dependence of the
transferred charge Q(ϕCEP). In figure 9, we investigate it more systematically by plotting the
normalized transferred charge

Q̃(ϕCEP, E0) =
Q(ϕCEP, E0)

〈nc〉max(E0)
(13)

for different laser intensities. The E0-dependent normalization factor

〈nc〉max(E0) = �−1 max
t

∫
BZ

nc(k, E0, t, ϕCEP = 0) d2k, (14)

which is plotted in figure 9(c), denotes the maximum of the time-dependent average population
in the conduction band for ϕCEP = 0.

One immediately observes that the extrema of Q(ϕCEP) shift as the laser intensity increases.
By inspecting these simulations, we identified DBOs for peak laser fields above 7 GV m−1.
Below this limit, Q(ϕCEP) is approximately proportional to cos(ϕCEP), and only the amplitude of
Q(ϕCEP) increases with the peak laser intensity. For intensities high enough to induce DBOs, the
extrema of Q(ϕCEP) change their positions. For E0 = 15 GV m−1, maxima and minima exchange
their places.
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To relate these observations to the semiclassical analysis, we focus on the cosine pulse and
plot the electron displacement at tmax = 15 fs as a function of the peak electric field in figure 9(a).
We see that this analysis qualitatively explains our numerical results: Q(ϕCEP = 0, E0) and
s(t0 = 0, E0) have their extrema at approximately the same values of the peak electric field E0.

Finally, let us return to our model given by equation (2) and summarize the physical role
of the various processes. Multiphoton excitation and laser-driven motion in the conduction and
valence bands are essential for the CEP dependence of the transferred charge, as well as for
the appearance of DBOs. LO phonon scattering, however, is a process that competes with
laser-driven interband motion, and could possibly render the detection of DBOs impossible.
According to our calculation, this is not the case even for the large scattering rates known for
SiO2 [21, 22].

One of our major approximations is using just two bands: a valence and a conduction
one. This approximation was made not because we can exclude the involvement of higher
conduction or lower valence bands, but because our intention was to clarify the role of Bloch
oscillations. In a more realistic description, crossing the edge of a Brillouin zone does not
necessarily imply Bragg-like scattering of an electron—transitions to other bands lead to more
complicated dynamics [31], which may, for example, smear the dependences shown in figure 9,
especially in the region of the highest intensities. To what extent this happens in a particular
measurement will depend on the chosen material, sample preparation, laser wavelength
and other parameters. Even though we neglect these transitions, our results may assist the
interpretation of future measurements by recognizing certain features as evidence of Bloch
oscillations.

4. Summary

Using a phenomenological model, we have investigated multiphoton injection and laser-driven
motion of charge carriers in a wide-gap bulk dielectric exposed to intense few-cycle laser
pulses. In comparison with more rigorous quantum models [18, 20, 32], where different physical
phenomena are relatively difficult to disentangle, our approach lends itself to clarifying the roles
played by various processes. Our most important finding is that whenever a laser field drives
electrons close to or beyond the edges of the Brillouin zone, Bragg-like reflections of electron
waves have a significant impact on CEP-sensitive measurements like those reported in [18]
(the phase shift by π in figure 9). At the same time, the role of electron–phonon scattering
is limited to reducing the amount of the transferred charge without qualitatively affecting
CEP dependences, even if we assume scattering rates as high as γ ∼ 1014 s−1. The fact that
electron–phonon scattering plays a minor role in the high-intensity regime justifies neglecting
it in earlier models [18, 32]. Our final conclusion is that the detection of the total transferred
charge can be used to measure signatures of DBOs in bulk solids. Furthermore, we show that
this effect can be qualitatively explained in terms of the semiclassical electron displacement
evaluated for dominant electron trajectories.
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