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Vibrational spectroscopic observation of ice dewetting
on MgO(001)†‡

Esther Carrasco, Andreas Aumer, Janaina F. Gomes, Yuichi Fujimori and
Martin Sterrer*

The properties of the interfacial water monolayer on MgO(001)

during growth of multilayer ice and, in particular, the dewetting of

crystalline ice on MgO(001) are revealed by vibrational sum frequency

generation and infrared reflection absorption spectroscopy.

The interaction of water with surfaces is of fundamental interest due
to its importance in a wide range of environmental and technological
processes. Of the many facets summarized in a number of review
papers,1 the wetting behavior of water on metal surfaces, and its
effects on the subsequent growth of crystalline ice (CI) multilayers,
has recently gained renewed interest.2 The most recent studies of
such phenomena have been summarized by Hodgson and Haq for a
variety of low Miller-index, transition-metal surfaces.3 From that
work, it seems that hydrogen bonding between interfacial and
subsequent water layers plays a pivotal role in determining the
wetting behavior of multilayer ice upon crystallization. As such, those
systems allowing for greater rearrangement of the interfacial mono-
layer tend to better stabilize the CI–metal interface and vice versa.3

While most of the recent findings dealing with ice dewetting have
been obtained via diffraction, rare gas adsorption, and scanning
tunneling microscopy,3 vibrational spectroscopy is often the method
of choice for studies of adsorbed water, as it simultaneously provides
information about the interactions of molecules within the
submonolayer (water bonding/types of H-bonds) and the multilayer
(amorphous or crystalline) regime.4 However, since thick ice layers
tend to mask monolayer signals with strong absorption of their own,
and wetted monolayers do not show distinct vibrational features over
many of the transition-metal surfaces, IR has been largely neglected
for this application.

In this work, this topic is extended to non-metal surfaces by
studying the wetting behavior of monolayer and multilayer water on
a single-crystalline MgO(001) surface, for which the state of the
monolayer can be followed using sum frequency generation (SFG)
and infrared reflection absorption spectroscopy (IRAS), even when

buried under a thick layer of ice. Together, the results provide the
first spectroscopic observation of ice dewetting during transition
from amorphous solid water (ASW) to CI.

Laterally ordered layers of water on single-crystalline oxide surfaces
are rare. For bulk terminated oxides, compelling evidence of an
ordered water monolayer exists only for MgO(001), where c(4 � 2)
and p(3� 2) overlayers, Fig. 1, with mixed molecular/dissociated water
adsorption structures were found to be stable between 100 K and
200 K.5 The dissociated water molecules yield two different types of
hydroxyl species within both structures: the free OH group designated
as OHf, which sticks out of the monolayer into vacuum, and the surface
OH group designated as OsH, which is created by transfer of the proton
remaining after water dissociation to an oxygen anion in the surface
layer. The OHf groups give rise to a single vibrational feature at 3685
cm�1 (OH)/2722 cm�1 (OD). By contrast, the OsH groups exhibit
slightly different vibrational frequencies in the two overlayers,
3570 cm�1 (OH)/2639 cm�1 (OD) for c(4 � 2), and 3515 cm�1 (OH)/
2593 cm�1 (OD) for p(3� 2), respectively, and provide a sensitive probe
for the presence of the respective structures.5h

To probe the fate of the interfacial water–MgO monolayer below
ice layers of varying thickness SFG has been applied because of its
interface sensitivity. Fig. 2a shows a series of SFG spectra of
MgO(001) obtained after increasing (from bottom to top) H2O dose
at 90 K. At the initial stage of ice growth (0.5 L dose, 1 L = 1 � 10�6

torr s) the spectrum contains two narrow resonances at 3515 and

Fig. 1 The two most stable ordered water monolayer structures on MgO(001).
(a) p(3 � 2)/6H2O and (b) c(4 � 2)/10 H2O.5h
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3680 cm�1, which can be attributed to the p(3 � 2) overlayer.5h A
third resonance, at 3560 cm�1, appears after a 1 L dose and
corresponds to the more dense c(4 � 2) overlayer.5h The three sharp
resonances reach saturation after 2 L H2O, indicating completion of
the monolayer (Fig. 2c). With increasing water coverage (Z3 L
dosage) broad resonances begin to appear below 3500 cm�1

(Fig. 2a and c), which is indicative of hydrogen-bonded OH within
three-dimensional networks of amorphous solid water (ASW). The
fact that an SFG signal is obtained from the ASW indicates that a net
polarization is built up in this layer, and similar polarization effects
have been observed in SFG studies of CI on Pt(111) and Ru(001).6

The positions and lineshapes of the monolayer related OsH
resonances at 3515 and 3560 cm�1 hardly change in the course of
the experiment (Fig. 2a), which indicates that the lateral order in the
water monolayer is not affected by the thick ASW layer grown on top
of it. Spectral modifications do however occur in the region around
3700 cm�1 (Fig. 2b). Specifically, the OHf signal from the 1st
monolayer (3681–3689 cm�1) is gradually replaced by a new peak,
which initially appears after exposing the sample to 0.75 L H2O and
gradually red-shifts from 3701 cm�1 to 3696 cm�1 by the time the
peak saturates (B5 L). This new signal can be assigned to the
presence of dangling OH (d-OH) on the surface of the growing ASW
layer,5d and the corresponding disappearance of the OHf related
resonance results from efficient hydrogen bonding between OHf

groups in the water monolayer and second layer water molecules.5h

The properties of the interfacial water monolayer during
desorption have been studied as well. Fig. 2d provides SFG spectra
of an MgO(001) film that was initially covered with 20 L H2O at 90 K
(top spectrum) and then sequentially heated to higher temperatures.
After the initial heating step to 140 K, significant broadening of the
OsH features, such that both become nearly unresolvable, is noted.
The peak broadening is interpreted as an indication of increased
disorder in the interfacial layer. This could be caused by enhanced

mobility/reorientation in the interfacial layer itself, by increased
reorientational dynamics within the ASW,7 which could affect
the monolayer, or by a combination of the two. The complete
disappearance of the ASW features at 150 K indicates that some
combination of ASW-to-CI phase transition and/or multilayer
desorption has occurred. Concurrently, the re-emergence of a pro-
nounced, sharp resonance at 3579 cm�1 (- c(4 � 2) structure),
accompanied by aless intense one at 3515 cm�1 (-p(3� 2) structure)
is noted. While the re-appearance of these peaks clearly indicates the
presence of well-ordered monolayer structures, the peak ratio of the
signals now shows strong favouritism for the c(4 � 2) phase, which
suggests that the formation of this more dense structure is kinetically
limited at 90 K, where the amplitudes of the two OsH features were
similar. As heating the sample is continued from 150–180 K, the
gradual loss of the c(4� 2) phase prior to disappearance of the p(3� 2)
structure is noted, which is consistent with previous IRAS spectra and
reported stabilities for the two monolayer structures.5b,h An important
piece of information, namely the state of the interfacial water layer
during ASW crystallization and the wetting behaviour of CI on
MgO(001), could not be extracted from the SFG data because a spectral
distinction between ASW and CI turned out to be outside the scope of
direct observation with SFG. Therefore, the ASW - CI transition has
in more detail been analysed with infrared spectroscopy.

A series of IRA spectra of D2O adsorbed on MgO(001) is shown in
Fig. 3a. For 20 L D2O dosed at 90 K, the typical IR spectrum of ASW is
obtained (spectrum 1). Heating to 140 K leads to a slight reduction in
overall intensity due to partial water desorption (spectrum 2), and the
transition from ASW to CI occurs at 153 K (spectrum 3). This is
followed by the slow desorption of water from the CI state, which was
completed after holding the temperature at 153 K for B500 s
(spectrum 8).

To gain insight into the changes of the monolayer OD signals
during the ASW - CI transition and subsequent desorption, the

Fig. 2 (a) Series of SFG spectra for increasing dose (from bottom to top) of H2O adsorbed on the MgO(001) surface at 90 K. (b) Details of the spectral region around
3700 cm�1. (c) Plots of SFG amplitude vs. H2O dose for selected vibrational bands obtained from fits of the spectra in (a) and (b). (d) Series of SFG spectra recorded
during heating of an ice layer prepared by dosing 20 L H2O at 90 K to the temperatures indicated in the figure.
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broad features associated with multilayer ice have been subtracted
from the spectra. The spectral region of interest (2750–2600 cm�1) is
displayed in Fig. 3b. A small but relatively narrow band at 2630 cm�1

(3560 cm�1 in the OH region) is present in spectrum 1, corresponding
to OsD in the c(4 � 2) structure. The OsD signal from the p(3 � 2)
overlayer would appear at 2593 cm�1,5h but, due to its small absorp-
tion, this signal could not be extracted from the spectra. Upon heating
to 140 K (spectrum 2), detection of the OsD signal is lost, and the only
narrow band observed in IRAS is the d-OD signal at 2730 cm�1.
However, after additionally heating to the ASW - CI transition at
153 K (spectrum 3), the OsD band reappears and continues to grow as
the multilayer desorbs.

To further probe the changes occurring during crystallization and
CI desorption, the spectral region around 2725 cm�1 has been
analyzed in more detail using spectral fitting (Fig. 3c). To aid in the
deconvolution of the signals into their individual d-OD and ODf

components, the fate of d-OD during the desorption of CI grown on
Ag(001), which is free of monolayer-related features,8 has been probed
separately (grey traces in spectra 3 and 5 in Fig. 3b). In spectra 1 and 2
in Fig. 3c, which were taken from ASW at 90 K and 140 K, the band is
symmetric and can be fit with a single component corresponding to
d-OD. Upon crystallization (spectrum 3), the band red-shifts and
becomes asymmetric with a tail extending towards higher frequen-
cies. At this point, two components are necessary to properly fit the
band, with the higher frequency one corresponding to d-OD from the
ice surface, and the lower frequency one (2722 cm�1) assigned to ODf

from the water monolayer on MgO(001). As the d-OD signal gradually
disappears during subsequent desorption of CI, the intensity of the
ODf feature increases until multilayer desorption is complete and only
the ordered water monolayer remains (spectrum 8). The results in
Fig. 3c show that the appearance of the ODf feature from the water
monolayer on MgO occurs with the transition from ASW to CI and well
in advance of complete multilayer desorption. This indicates dewet-
ting of the multilayer ice upon transition to CI, such that portions of
the monolayer become exposed to vacuum.

These results can be set into the context of findings from previous
studies conducted on transition-metal surfaces. Hodgson and Haq
suggest that there is a strong dependence between the wetting
behaviour of CI on metals and the ability to form H-bonds between
mono- and multilayer as well as the flexibility of the interfacial water
structures needed to stabilize the ordered ice phase.3 Despite the
presence of H-bond interactions with the ASW phase in the case of
the interfacial water monolayer on MgO, the strong bonding between
the unfavourably commensurate rectangular monolayer structure
and the MgO(001) surface does not favour relaxation into a structure
capable of stabilizing the bulk CI–oxide interface. As a consequence,
and in agreement with arguments established for ice–metal inter-
faces, crystalline ice does not wet the MgO(001) surface.

In summary, a detailed picture of the properties of ice on
MgO(001) has been obtained using vibrational spectroscopy. The
results show that stable monolayer structures of both p(3 � 2) and
c(4� 2) symmetry are formed in the initial stages of growth and that
the lateral order of the monolayer is not affected by further
adsorption of water, while there is significant interaction between
first and second layer water molecules via hydrogen bonding. When
heating to the ASW - CI transition, the monolayer relaxes to favour
the more dense c(4 � 2) structure. At the same time, OHf groups of
the monolayer water appear, which provides spectroscopic evidence
for ice dewetting upon crystallization.
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