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Van der Waals interactions play a fundamental role in biology, physiakchamistry, in particular in the
self-assembly and the ensuing function of nanostructured materiate weutilize an efficient microscopic
method to demonstrate that van der Waals interactions in nano-materialsdigtances greater than typically
assumed, and can be characterized by different scaling laws degemthe dimensionality and size of the sys-
tem. Specifically, we study the behavior of van der Waals interactions itesiager and multi-layer graphene,
fullerenes of varying size, single-wall carbon nanotubes, and graphanoribbons. As a function of nanos-
tructure size, the van der Waals coefficients follow unusual trenddlfof the considered systems, and deviate
significantly from the conventionally employed pairwise-additive picture.pMpose that the peculiar van der
Waals interactions in nanostructured materials could be exploited to corgnos#if-assembly.

INTRODUCTION RESULTS

The discovery and the ensuing burst of applications of Calculation of van der Waals coefficients
carbon-based nanomaterials, including fullerenes [1}; ca
bon nanotubes [2], single-layer and multi-layer graph&ie [ Here only the salient features of our method are described.
has undoubtedly revolutionized materials science, reévgal We refer the reader to Ref. [11] and the Methods section,
bright prospects in nanotechnology and other related fieldfor additional details of our approach. We map a given
Low-dimensional nanostructures have been demonstrated tmolecule or material to a system of quantum harmonic oscil-
possess previously unexpected electronic [4], opticaldd]  lators (QHO), with a single QHO assigned to every atom. The
hesive [6, 7], and thermal [8] properties. The self-assgmbl QHO parameters are determined as functionals of the ground-
of such nanostructures is often governed by the ubiquitoustate electron density, obtained from density-functidinabry
van der Waals (vdW) interactions, the description of whichcalculation of the self-consistent electronic structursing
requires the usage of quantum electrodynamics [9, 10]. Dethe Tkatchenko-Scheffler (TS) method [12]. The QHOs are
spite this well-known fact, most of the widely employed atom subsequently coupled through the dipole—dipole poteraial
istic models for vdW interactions in nanomaterials are dasethe response of the fully interacting many-atom system-is de
on a simple pairwise interacting “atoms-in-molecules”-pic termined upon solving the self-consistent Dyson-like sare
ture, ignoring the rather strong electrodynamic respofise eing equation [13-15]. The solution of the self-consistent
fects which stem from long-range fluctuations in matter. Re-screening (SCS) equation yields the interacting frequency
cent work by Ruzsinszkgt al. showed that electrodynamic dependent polarizability for the system of interest, thas g
effects can dramatically influence the vdW interaction be-ing beyond the standard pairwise approximation. The fun-
tween large fullerene molecules [7]. Here we determine thelamental equations of the employed method are equivalent
microscopic polarizability and vdW coefficients of moleesil  to Ref. [11], with an improved mapping of the interactions
and materials, including electrodynamic response effésts present in the full electronic system to the QHO model. This
utilizing a recently developed parameter-free methoddbase simple yet effective modification leads to a noticeable im-
a system of coupled quantum harmonic oscillators [11]. Thigorovement in the description of the static polarizability f
method is applied to a wide range of carbon-based nanomanolecules and solids.
terials, including fullerenes, carbon nanotubes and nlnor
bons, graphite, diamond, as well as single-layer and multi-
layer graphene. Our microscopic calculations, valid as&lo Van der Waals coefficients of model systems
and far (less than tens of nanometers) separations between
nanostructures, reveal that vdW interactions act at dissan ~ Before applying our method to carbon nanostructures, we
greater than typically assumed, and show unusual behavidnvestigated its performance for fundamental carbon-ase
depending on the dimensionality of the system. The pecumodel systems: benzenegdfullerene, graphite, and dia-
liar vdW scaling laws lead to decreasing binding energy for mond. For the polarizability and vdWg coefficients of
a fullerene molecule adsorbed on multi-layer graphene as small molecules, such as benzene, the conventional “atoms-
function of the number of graphene layers, contrary to conin-molecules” picture can be successfully employed. For
ventional expectations. example, the TS method [12] leads to accurate values of
a=74.4 boht andCg=1783 hartredoh# for benzene, com-
pared to reference experimental valuesisf71.3 boh? [16]
andCg=1723 a.u. [17] (here and in what follows, the notation
“a.u.” is used to denote Hartree atomic units). However, the
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FIG. 1. Scaling laws for van der Waals coefficientsVan der Waal€g coefficients per carbon atom (tlg of the full system divided bwé,
whereNc is the number of carbon atoms) for nanostructures of different difoerality, as calculated by the electrodynamic response model
of Ref. [11]. The size ranges for different systems are: (1) Butus of fullerenes is varied from 2 to #2 (2) The radius of single-wall
carbon nanotubes (SWCNT)-Armchair(n,n) and SWCNT-Zigz&j(rary between 2 and 60, (3) The graphene nanoribbons (GNRs) vary in
radius from 5 to 503; (4) The number of layers in multi-layer graphene (MLG) varies frato 30, where each point on the plot corresponds
to an increase of 2 layers.

TS method does not capture the anisotropy in the polarizabilchange our conclusions. In fact, the computed carbon—narbo
ity [11], which arises mainly from the interaction betwebet Cg coefficient of 24.2 a.u. insidedgis only slightly lower
dipoles. Upon including the electrodynamic response by-sol than the time-dependent hybrid density-functional thezsy
ing the SCS equation, the anisotropy in the static polaiipab  timate of 28.3 a.u. [19, 20].

is significantly improved, while the isotropic vd\@ coeffi- Similarly accurate results are obtained for solids, intigd
cient is still accurately determined (1697 a.u.). Predigtic-  graphite and diamond. For graphite, we determinedheo-
curate polarizability an@s coefficient for the G fullerene is  efficient of 28 a.u., which is in good agreement with the esti-
a more demanding task, due to the coupling between localizeghate done using the experimentally measured dielectric-fun
sp? bonds and excitations delocalized over thg @olecule.  tion (24 a.u.) [21]. For diamond, the computed value of 22 a.u
The experimental estimate for the static polarizabilitCgfis  agrees rather well with the value of 17 a.u. determined from
8.6+0.9 a.u./atom [18]. The SCS method somewhat undereghe experimental dielectric function [22]. We concludettha
timates the static polarizability and yields 7.5 a.u./atdmis  our method is capable of accurately describing the frequenc
is consistent with the fact that the inclusion of excitai@e-  dependent polarization and the resulting v@é/coefficients
localized over the whole molecule will increase the static p for a wide range of molecules and solids. We proceed to study
larizability of the G molecule. However, here our focus lies the vdWCg coefficients for carbon nanostructures of different
on theCs coefficients, which are obtained upon integrationdimensionality.

over the imaginary frequency. The “metal-like” delocatize

excitations become important only at rather low imaginary

frequencies, and their inclusion is not expected to appbdgi
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Van der Waals coefficients of carbon nanostructures towards the edges. This behavior is explained by stronger po
larization of “less constrained” edge atoms. As expectes, t

The main results are summarized in Figure 1, wherés coefficients of GNRs tend to that of single-layer graphene
we present the&s coefficient per carbon atom (see defini- as the GNR size grows.
tion in the Methods section) for nanostructures of differen  Similarly to the case of GNRs, ti@&; coefficients of single-
dimensionality, including zero-dimensional fullerenese-  Walled carbon nanotubes (SWCNTSs) grow superlinearly as a
dimensional Sing|e-wa” carbon nanotubes, two-dimeraion function of the SWCNT radius. The vdW coefficients also
single-layer and multi-layer graphene, and three-dinmrasi  depend on the chirality of the SWCNTSs, in general increas-
graphite and diamond. Th& coefficient per carbon atom ing faster for armchair nanotubes than for zigzag ones. The
varies by almost an order of magnitude among the diﬁersuperlinear increase of tiig coefficient for SWCNTs stems
ent nanostructures, with the lowest value found for smalfrom the remarkable axial polarization which arises from th
fullerenes and the largest for graphene. These findingfvorable alignment of the dipoles along the SWCNT axis. In
demonstrate that the conventional approximation of fixeccontrast, we find depolarization in the direction perpeuiaic
carbon—carborCg coefficient fails dramatica”y when mod- to the SWCNT. Both of these findings are in agreement with
eling vdW interactions between nanostructures. The pairDFT calculations [23]. However, our method is significantly
wise approximation is especially problematic when therinte more efficient and allows the calculation of the microsogie p
action between different nanostructures is studied, famex  larization tensor even for very large nanostructure asiemb
ple binding between fullerenes/nanotubes with graphepe la containing many thousands of atoms.
ers or graphite surface (see below). Not unexpectedly, even more remarkable behavior is no-

We proceed to analyze ti& per carbon atom as a function ticeable for single- and multi-layer graphene (MLG) nanos-
of system size for different classes of nanostructuresttior tructures. The carbon—carb@ coefficient of 147 a.u. in
fullerene family, the system size is defined by the fullerendwo-dimensional graphene is 5.3 times larger than that of
radius. Therefore, as shown in Figure 1, ecoefficient  three-dimensional graphite. This can be rationalized hyba s
increases linearly as a function of the fullerene radiusis Th stantial in-plane polarization in graphene, on the experfise
leads to the following fitted scaling power law as a functiondepolarization in the direction perpendicular to the geagh
of the number of carbon atormscgﬁc ~ n2-35_ In contrast, a Iayer. In contrast, the interplay of inter-layer and iritmer
simple parwise approximation prediﬂg‘c ~ . The faster polari_zation leads to a small€¥ coefficient for_ (_:arbon in
growth of C coefficients upon including electrodynamic re- 9raphite. Notably, the convergence of Becoefficient from
sponse can be explained by the polarization (depolarizatio the graphene limit to the graphite limit is exceedingly sksv
inside the fullerene (vacuum) when increasing the fulleren & function of the number of graphene layers for MLGs. We
radius. In fact, in the limit of giant fullerenes, tkig per car-  OPserve a linear behavior for up to 30 stacked graphene lay-
bon should approach that of a carbon atom in a graphene lay&'S and a naive linear extrapola_tlon suggests that at I€ast 9
However, curvature effects clearly reduce the polariiighil 9raphene layers would be required to converge the carbon—
even for quite large fullerenes. The rapid increas€gis in ca.rborce.coeffluent to the graphite limit. From the geometry
qualitative agreement with recent calculations based epar POINtof view, such an unusually slow convergence stems from
resentation of a fullerene as a hollow metallic sphere, iicivh  Noticeable surface polarization effects for MLGs. Phylgica
it was found that in the asymptotic regime of giant fullergne this behavior can be explained by the self-consistent aatur
Cg—c grows as?’® [7]. The smaller exponent found in our elec_trodyngmm response e_quatlons that effectively eoafpl
work stems from a fit to smaller fullerene sizes and from thelh® interacting QHOs, leading to effects that propggategnuc
fact that every carbon atom is modeled as a QHO. We confurther beyond the decay of the standard dipole—dipof&,g
sider this atomistic representation as more realistic cyggp ~ Interaction law, wher&ag is the distance between two QHOs.
to modeling fullerenes as hollow metallic spheres. In fact,
recent TDDFT calculations suggest a scaling power law of
~ n?2 for C§~C of fullerenes from o to Cg4 [20]. Our model

yields a very good agreement with TDDFT for these small . ) .
fullerenes, predicting a scaling 6fn225. In conclusion, three Having presented the peculiar scaling laws for vdW co-

different methods unambiguously demonstrate thaogﬂec efficients in different carbon nanostructures, we now study
coefficient grows much faster in fullerenes than a simple-pai the impact of our findings for the interlayer binding energy
wise model would suggest. in graphite and the g fullerene interacting with MLGs.

For graphene nanoribbons (GNRs), the system size is dér_hg interlayer biljdin_g energy of graphite has been a_subject
fined by the radius of the circle enclosing the GNR. In con-Of intense investigation over the last decade. Experinhenta
trast to fullerenes, thég coefficients of GNRs increase super- Measurements yield values from-82 meV [25] to 52t5
linearly as a function of the GNR radius. There are significan meV_ [24] per carbon atom. State-of-the-_art t_heoretlcal (_:_al
edge-polarization effects in GNRs, which lead to largeapol culations using the random-phase approximation (RPAzutili

izability density as one goes away from the center of the GNR"9 PBE [26] wavefunctions) to the electron correlation en-
ergy predicts a value of 48 meV/atom [27], while quantum

Van der Waals binding between carbon nanostructures
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Number of layers (n) beneath Ceo in Figure 2 as a function of numben)(of graphene layers
4 8 12 16 20 24 228 3 beneath the fullerene. Conventionally one would expect the
binding energy to increase with, as shown by the dotted
blue curve in Figure 2, since there are more atoms to inter-
act with (presumably equal to more polarization). In additi
a simple pairwise model would lead to a quick convergence
of the binding energy with respect todue to a rather quick
R,;g decay of the pairwise vdW energy for two atomsand
B. This simple view is, however, deceptive. In fact,reim-
creases the polarizability an@y per carbon atom in MLGs
decrease (see Figure 1). This leads to overall depolavizati
of the fullerene/MLG complex, and showslecreasing bind-
. . . . ‘ . ing energy withincreasing n. Since the convergence of thg
26 28 3 32 34 36 38 4 coefficient withn is rather slow, the binding energy also con-
Graphite interlayer distance (d) (A) verges slowly. We remark that a fully anisotropic treatment
of the vdW interactions is likely to decrease the slope of the

interlayer binding energy as a function of the interlayer distahece- binding energy curve for & on MLGs. However, itis note-
ing the Perdew-Burke-Ernzerhof (PBE) functional with Tkatchenko-Worthy that the pairwise and the fully screened vdW energy

Scheffler (TS) pairwise vdW energy (PBE-TS, dotted black line, tri-COnverge to different values of the binding energy, with the
angles), and PBE with self-consistently screened (SCS) vdW energjtter yielding somewhat weaker binding. This is consisten
(PBE-TS+SCS, solid black line, triangles). The measured experiwith our observations for the graphite interlayer bindimg e
mental binding energy from Ref. [24] is marked in red. Binding ergy. We are not aware of direct experimental measurements
energy Ofoso fUlrlleremlf on mult_i-laypeétizd T@Jéa(%h(i?% &;)Sl a fllﬂ“Ctig_“ of for the binding energy of fullerene with graphite, however w
number of grapnene layers using - otte ue line, dia- i ] i H H H H
monds) and PBE-TS+SCS_ (solid blue line, diamonds) methods. Th\%)l(,]peergt tﬁ?gg;g%igsczs;gtgz ?/:Zlﬁ)jzltr?]ér;teeggéﬁ:a?{em?ésuIts
center of theCgg molecule is located 7.8 away from the closest . L . f
graphene sheet. than a simple pairwise approximation to the vdW energy. The
rather unconventional behavior of the binding energy for ad
sorption on MLGs with the number of layersis a general
Monte Carlo (QMC) calculations yield a larger value of 56 phenomenon for a variety of adsorbates, ranging from small
meV/atom [28]. The interlayer binding in graphite has beenmolecules to larger objects.
frequently approximated as a sum of pairwise potentialb wit
vdW Cg coefficients obtained to the experimental dielectric
function of graphite (24 a.u.), or explicitly fitted to exper
mental measurements. Such a simple approximation assumes
that the carbon—carbd®y coefficient is the same in graphene  To place our findings in the broader context of current un-
and graphite, and this result is far from reality as clearly i derstanding of vdW interactions, we note that it is widely
lustrated in Figure 1. Electrodynamic response effeciifea accepted that these interactions are inherently nonieeldit
radically different polarization behavior in two-dimeosal ~ (many-body) phenomena, corresponding to correlations be-
graphene and three-dimensional graphite. In Figure 2rthe i tween fluctuating multipoles in matter [9]. Interested read
terlayer binding energy of graphite is presented as a foncti ers are referred to early papers by Axilrod and Teller [29],
of the distance between the layers. The pairwise approximadade [30], and Zwanzig [31] for the analysis and explana-
tion using the PBE-TS method [12] overestimates the bindingions of many-body contributions to vdW interactions. The
considerably, by at least 30 meV/atom. Accurate inclusion oseminal ideas proposed in this early work to treat vdW inter-
electrodynamic response screening in the PBE-TS+SCS [2Actions beyond simple pairwise additivity have been wdiz
method leads to interlayer binding energy that agrees excefnore recently to study model systems, characterized byt poin
tionally well with the measurements of Zachaeizal. [24],  Polarizabilities, see e.g. analysis by Cole [32], Doncl88]
as well as RPA [27] and QMC [28] calculations. The impor- Dobson [34], among others.
tant improvement of the binding energy in the PBE-TS+SCS The crucial idea of our method is to extend the description
method stems from a much larg@s coefficient of graphene from point-polarizable fluctuating dipoles to quantum har-
when compared to graphite. This results in an increased vdvnonic oscillators extended in space and described by dipole
energy contribution for a carbon atom inside graphene and gensity distributions (see Methods and Ref. [35]). All the
concomitantly smaller interlayer binding energy. necessary parameters are determined from the self-cemtsist
Finally, we illustrate how the peculiar scaling laws for electron density using state-of-the-art electronic stngccal-
vdW coefficients in nanomaterials can lead to unusual bindculations, apart from the available high-level referenaead
ing behavior between nanostructures of different dimensio for atomic polarizabilities [11]. The efficiency and acoeya
ality. The binding energy of a fullerene on MLGs is shown Of our methods make it possible to carry out calculations on
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Binding energy per atom in graphite (meV)
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Binding energy between Cg, and MLGs (eV)

FIG. 2. Van der Waals binding between nanostructuresGraphite
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a broad variety of real materials. Recently, our method havusing density-functional theory (DFT). We require thatthe
been implemented in the widely used VASP code [36] andsponse of the material is not dominated by delocalized ex-
benchmarked for a set of pristine three-dimensional solidscitations and can therefore be initially divided into effee

In this work, we significantly extend previous observationsatomic fragments. The Hirshfeld [40] partitioning of the&!

on the importance of electrodynamic response effects t@mortron density is then utilized to account for the local chemi-
general nanostructures of lower dimensionality, inclgdime  cal environment surrounding each atom. Since both parame-
interaction between different nanostructures. ters @ S[n(r)] andwySn(r)]) are referenced to highly accu-

The coupled QHO model assumes that the material carate free-atom reference data, short-range quantum mechan
be initially partitioned into well-defined atomic fragment ical exchange-correlation effects are accounted for iseghe
Thus, the possibility of hopping of electrons over long dis-quantities by construction. In fact, the frequency-degend
tances is neglected. The coupling of screening and such deelarizabilties defined in this manner yie@@ coefficients
localized electrons can lead to other types of non-additivi that are accurate to 5.5% when compared to reference experi-
not addressed in this work. For example, Dobsbal. [6] mental values for an extensive database of atomic and (small
and Misquittaet al. [37] have identified peculiar asymptotic molecular dimers [12].
power laws for the interaction between low-dimensional ma- To accurately capture the long-range electrodynamic re-
terials. Subsequently, it has been found that these effects  sponse screening and anisotropy effects beyond the local
tribute very little at equilibrium separations between agn chemical environment, we self-consistently solve the Dyso
tructures [27]. The incorporation of delocalized electonto  like screening equation (SCS), see Eqgs. (2)—(4) in Ref..[11]
the coupled QHO model will be a subject of future work. In short, we solve the following equation to determine the

In conclusion, we have identified an unusual behaviomon-local (interacting) polarizability tensarss(r,r';iw) (p
caused by electrodynamic response in vdW interactions foandq label the Cartesian tensor components)
nanostructured materials. Depending on the dimensignalit . TS, . TS,
and the atomic arrangement of carbon atoms, the vdW co- riw) =a>(rjiw) +a >(r;iw)
efficients per carbon atom gxhibit peculiar scaling lawg tha % /dr"qu(r,r’)aSCS(r’;iw) 1)
can be exploited for controlling the self-assembly of coempl
nanostructures, as recently suggested by experimental megnhere Toq(r,r') is the dipole-dipole interaction tensor
surements [38, 39]. (Hartree atomic units used throughout).

The above SCS equation can be written as a system of al-
gebraic equations in the basis of QHO positions, see Egs.
(2)-(4) in Ref. [11]. The interacting polarizability temso
asgr,r';iw) is obtained upon solving this system of alge-
braic equations, and in practice amounts to an inversion of a
3N x 3N matrix at every frequency of interest. The charge

The long-range non-retarded van der Waals (vdW) energyensity distribution of each QHO required for the calcuaiati
between two atom#n vacuo originates from the electrody- of Toq(r,1') is defined as

namic interaction of “atomic” dipolar fluctuations. Howeyve
when an atom is embedded in a condensed phase (or in a QHO,.\ _ 1, QHO, .\ |2 exp—r?/207]
molecule), the corresponding dipolar fluctuations sigaifity ng (r) =[Wg (= W? @
differ from the free atom case, and in fact, this differendg-o
inates fromboth the local chemical environment surrounding in which o represents the width of the Gaussian [35]. An im-
the atom and the long-range electrodynamic interactioh wit provement of the TS+SCS method published in Ref. [11] is
the more distant fluctuating dipoles decayiiga~ 1/R®in-  used for all the results reported in this paper. Ti&® pa-
teraction law. Depending on the underlying topology of therameter corresponding to every free atom obtained from
chemical environment, this fluxional internal electricdiean  the electron density computed with the coupled-cluster sin
give rise to either polarization or depolarization effe@ad  gles and doubles (CCSD) method, by fitting the dipole poten-
is largely responsible for the anisotropy in the molecular p tial resulting from this accurate electron density to a nhode
larizability tensor [14, 15]. To address these non-adeig QHO potential. This allows us to reliably model interacgon
fects, we represent tii¢atoms in a given material as a collec- for interatomic distances beyond 0.5 A. For an atom in a
tion of N quantum harmonic oscillators (QHO), each of which material, and for each frequency of the electric field, ¢the
is characterized initially by an isotropic frequency-degent  parameter is defined by the aforementioned TS prescription
dipole polarizability. To account for the local chemicalen as
ronment, we utilize the Tkatchenko-Scheffler (TS) prescrip . 13
tion [12], in which the static polarizabilitg"S[n(r)] and the A (D) (v Hirshfeld) 1/3 free 3)

= rs(o) rel i

aSC%

METHODS

Calculation of the non-local polarizability tensor

excitation frequencyy S[n(r)] for everyi-th QHO are defined

as functionals of the ground-state electron density), ob-

tained from a self-consistent quantum mechanical calamlat where VHsheld s the Hirshfeld volume ratio between an
atom-in-a-material and the free atom. This straightfodvar



modification of the TS+SCS method leads to an improved

performance for molecular static polarizabilities (7% mea

absolute error on more than 7000 organic molecuk_es frgm a ., tkatchenko@fhi-berlin.mpg.de
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