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Scaling laws for van der Waals interactions
in nanostructured materials
Vivekanand V. Gobre1 & Alexandre Tkatchenko1

Van der Waals interactions have a fundamental role in biology, physics and chemistry, in

particular in the self-assembly and the ensuing function of nanostructured materials. Here we

utilize an efficient microscopic method to demonstrate that van der Waals interactions in

nanomaterials act at distances greater than typically assumed, and can be characterized by

different scaling laws depending on the dimensionality and size of the system. Specifically, we

study the behaviour of van der Waals interactions in single-layer and multilayer graphene,

fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a

function of nanostructure size, the van der Waals coefficients follow unusual trends for all of

the considered systems, and deviate significantly from the conventionally employed pairwise-

additive picture. We propose that the peculiar van der Waals interactions in nanostructured

materials could be exploited to control their self-assembly.
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T
he discovery and the ensuing burst of applications of
carbon-based nanomaterials, including fullerenes1, carbon
nanotubes2, single-layer and multilayer graphene (MLG)3,

have undoubtedly revolutionized materials science, revealing
bright prospects in nanotechnology and other related fields. Low-
dimensional nanostructures have been demonstrated to possess
previously unexpected electronic4, optical5, cohesive6,7 and
thermal8 properties. The self-assembly of such nanostructures is
often governed by the ubiquitous van der Waals (vdW)
interactions, the description of which requires the usage of
quantum electrodynamics9,10. Despite this well-known fact, most
of the widely employed atomistic models for vdW interactions in
nanomaterials are based on a simple pairwise interacting ‘atoms-
in-molecules’ picture, ignoring the rather strong electrodynamic
response effects, which stem from long-range fluctuations in
matter. Recent work by Ruzsinszky et al.7 showed that
electrodynamic effects can dramatically influence the vdW
interaction between large fullerene molecules.

Here we determine the microscopic polarizability and vdW
coefficients of molecules and materials, including electrodynamic
response effects, by utilizing a recently developed parameter-free
method based on a system of coupled quantum harmonic
oscillators (QHO)11. This method is applied to a wide range of
carbon-based nanomaterials, including fullerenes, carbon nano-
tubes and nanoribbons, graphite, diamond, as well as single-layer
and MLG. Our microscopic calculations, valid at close and far
(o10 nm) separations between nanostructures, reveal that vdW
interactions act at distances greater than typically assumed and
show unusual behaviour depending on the dimensionality of the
system. The peculiar vdW scaling laws lead to a decreasing
binding energy for a fullerene molecule adsorbed on MLG
as a function of the number of graphene layers, contrary to
conventional expectations.

Results
Calculation of vdW coefficients. Here only the salient features of
our method are described. We refer the reader to ref. 11 and the
Methods section for additional details of our approach. We map
a given molecule or material to a system of QHO, with a
single QHO assigned to every atom. The QHO parameters are
determined as functionals of the ground-state electron density,
obtained from density-functional theory (DFT) calculation of the
self-consistent electronic structure, using the Tkatchenko–
Scheffler (TS) method12. The QHOs are subsequently coupled
through the dipole–dipole potential, and the response of the fully
interacting many-atom system is determined upon solving the
self-consistent Dyson-like screening equation13–15. The solution
of the self-consistent screening (SCS) equation yields the
interacting frequency-dependent polarizability for the system of
interest, thus going beyond the standard pairwise approximation.
The fundamental equations of the employed method are
equivalent to ref. 11, with an improved mapping of the inter-
actions present in the full electronic system to the QHO model.
This simple yet effective modification leads to a noticeable
improvement in the description of the static polarizability for
molecules and solids.

vdW coefficients of model systems. Before applying our method
to carbon nanostructures, we investigated its performance for
fundamental carbon-based model systems: benzene, C60 fullerene,
graphite and diamond. For the polarizability and vdW C6 coef-
ficients of small molecules, such as benzene, the conventional
‘atoms-in-molecules’ picture can be successfully employed. For
example, the TS method12 leads to accurate values of a¼ 74.4
bohr3 and C6¼ 1,783 hartree � bohr6 for benzene, compared with

reference experimental values of a¼ 71.3 bohr3 and C6¼ 1,723
a.u.16,17 (here and in what follows, the notation ‘a.u.’ is used to
denote Hartree atomic units). However, the TS method does not
capture the anisotropy in the polarizability11, which arises mainly
from the interaction between the dipoles. Upon including the
electrodynamic response by solving the SCS equation, the
anisotropy in the static polarizability is significantly improved,
whereas the isotropic vdW C6 coefficient is still accurately
determined (1,697 a.u.). Predicting accurate polarizability and C6

coefficient for the C60 fullerene is a more demanding task because
of the coupling between localized sp2 bonds and excitations
delocalized over the C60 molecule. The experimental estimate for
the static polarizability of C60 is 8.6±0.9 a.u. per atom18. The SCS
method somewhat underestimates the static polarizability and
yields 7.5 a.u. per atom. This is consistent with the fact that the
inclusion of excitations delocalized over the whole molecule will
increase the static polarizability of the C60 molecule. However,
here our focus lies on the C6 coefficients, which are obtained upon
integration over the imaginary frequency. The ‘metal-like’
delocalized excitations become important only at rather low
imaginary frequencies, and their inclusion is not expected to
appreciably change our conclusions. In fact, the computed
carbon–carbon C6 coefficient of 24.2 a.u. inside C60 is only
slightly lower than the time-dependent hybrid DFT (TDDFT)
estimate of 28.3 a.u.19,20.

Similarly accurate results are obtained for solids, including
graphite and diamond. For graphite, we determine the C6

coefficient of 28 a.u., which is in good agreement with the
estimate done using the experimentally measured dielectric
function (24 a.u.)21. For diamond, the computed value of
22 a.u. agrees rather well with the value of 17 a.u. determined
from the experimental dielectric function22. We conclude that our
method is capable of accurately describing the frequency-
dependent polarization and the resulting vdW C6 coefficients
for a wide range of molecules and solids. We proceed to study the
vdW C6 coefficients for carbon nanostructures of different
dimensionality.

vdW coefficients of carbon nanostructures. The main results are
summarized in Fig. 1, where we present the C6 coefficient per
carbon atom (see definition in the Methods section) for nano-
structures of different dimensionality, including zero-dimensional
fullerenes, one-dimensional single-wall carbon nanotubes, two-
dimensional single-layer and MLG, and three-dimensional gra-
phite and diamond. The C6 coefficient per carbon atom varies by
almost an order of magnitude among the different nano-
structures, with the lowest value found for small fullerenes
and the largest for graphene. These findings demonstrate that
the conventional approximation of fixed carbon–carbon C6

coefficient fails dramatically when modelling vdW interactions
between nanostructures. The pairwise approximation is especially
problematic when the interaction between different nano-
structures is studied, for example, binding between fullerenes/
nanotubes with graphene layers or graphite surface (see below).

We proceed to analyse the C6 per carbon atom as a function of
system size for different classes of nanostructures. For the
fullerene family, the system size is defined by the fullerene radius.
Therefore, as shown in Fig. 1, the C6 coefficient increases linearly
as a function of the fullerene radius. This leads to the following
fitted scaling power law as a function of the number of carbon
atoms n, CC �C

6 En2.35. In contrast, a simple parwise approxima-
tion predicts CC �C

6 En2. The faster growth of C6 coefficients
upon including electrodynamic response can be explained by the
polarization (depolarization) inside the fullerene (vacuum) when
increasing the fullerene radius. In fact, in the limit of giant
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fullerenes, the C6 per carbon should approach that of a carbon
atom in a graphene layer. However, local curvature effects clearly
reduce the polarizability even for quite large fullerenes. The rapid
increase of C6 is in qualitative agreement with recent calculations
based on a representation of a fullerene as a hollow metallic
sphere, in which it was found that in the asymptotic regime of
giant fullerenes, CC�C

6 grows as n2.75 (ref. 7). The smaller
exponent found in our work stems from a fit to smaller fullerene
sizes and from the fact that every carbon atom is modelled as a
QHO. We consider this atomistic representation as more realistic
compared with modeling fullerenes as hollow metallic spheres. In
fact, recent TDDFT calculations suggest a scaling power law of
Bn2.2 for CC�C

6 of fullerenes from C60 to C84 (ref. 20). Our
model yields a very good agreement with TDDFT for these small
fullerenes, predicting a scaling of Bn2.25. In conclusion, three
different methods unambiguously demonstrate that the CC�C

6
coefficient grows much faster in fullerenes than a simple pairwise
model would suggest.

For graphene nanoribbons (GNRs), the system size is defined
by the radius of the circle enclosing the GNR. In contrast to
fullerenes, the C6 coefficients of GNRs increase superlinearly as a
function of the GNR radius. There are significant edge-
polarization effects in GNRs, which lead to larger polarizability
density as one goes away from the centre of the GNR towards the
edges. This behaviour is explained by stronger polarization of ‘less
constrained’ edge atoms. As expected, the C6 coefficients of GNRs
tend to that of single-layer graphene as the GNR size grows.

Similar to the case of GNRs, the C6 coefficients of single-walled
carbon nanotubes (SWCNTs) grow superlinearly as a function of
the SWCNT radius. The vdW coefficients also depend on the
chirality of the SWCNTs, in general increasing faster for armchair
nanotubes than for zigzag ones. The superlinear increase of the C6

coefficient for SWCNTs stems from the remarkable axial
polarization that arises from the favourable alignment of the
dipoles along the SWCNT axis. In contrast, we find depolariza-
tion in the direction perpendicular to the SWCNT. Both of these
findings are in agreement with DFT calculations23. However, our
method is significantly more efficient and allows the calculation

of the microsopic polarization tensor even for very large
nanostructure assemblies containing many thousands of atoms.

Not unexpectedly, even more remarkable behaviour is notice-
able for single-layer graphene and MLG nanostructures.
The carbon–carbon C6 coefficient of 147 a.u. in two-dimensional
graphene is 5.3 times larger than that of three-dimensional
graphite. This can be rationalized by a substantial in-plane
polarization in graphene on the expense of depolarization in the
direction perpendicular to the graphene layer. In contrast, the
interplay of interlayer and intralayer polarization leads to a
smaller C6 coefficient for carbon in graphite. Notably, the
convergence of the C6 coefficient from the graphene limit to
the graphite limit is exceedingly slow as a function of the number
of graphene layers for MLGs. We observe a linear behaviour for
up to 30 stacked graphene layers, and a naive linear extrapolation
suggests that at least 90 graphene layers would be required to
converge the carbon–carbon C6 coefficient to the graphite limit.
From the geometry point of view, such an unusually slow
convergence stems from noticeable surface polarization effects for
MLGs. Physically, this behaviour can be explained by the self-
consistent nature of electrodynamic response equations that
effectively couple all the interacting QHOs, leading to effects that
propagate much further beyond the decay of the standard dipole–
dipole BR� 3

AB interaction law, where RAB is the distance between
two QHOs.

vdW binding between carbon nanostructures. Having presented
the peculiar scaling laws for vdW coefficients in different carbon
nanostructures, we now study the impact of our findings for
the interlayer-binding energy in graphite and the C60 fullerene
interacting with MLGs. The interlayer-binding energy of graphite
has been a subject of intense investigation over the last decade.
Experimental measurements yield values from 31±2 meV
(ref. 24) to 52±5 meV (ref. 25) per carbon atom. State-of-the-art
theoretical calculations using the random-phase approximation
(utilizing Perdew–Burke–Ernzerhof (PBE)26 wavefunctions) to
the electron correlation energy predicts a value of 48 meV per

180

160

140
4L 6L

Graphite

26L 28L

MLGs

Graphene

r=35 Å

(80,80)

(9,9)

(28,28)
SWCNT-Armchair

r=20 Å
(40,0)

SWCNT-Zigzag

(16,0)

r=5 Å

GNRs

120

100

80

60

40

20
C20

C60
C80 C540

Diamond

Fullerenes

0

System size

V
an

 d
er

 W
aa

ls
 C

6 
co

ef
fic

ie
nt

pe
r 

ca
rb

on
 (

ha
rt

re
e.

bo
hr

6 )

Figure 1 | Scaling laws for vdW coefficients. vdW C6 coefficients per carbon atom (the C6 of the full system divided by NC
2, where NC is the number of

carbon atoms) for nanostructures of different dimensionality, as calculated by the electrodynamic response model of ref. 11. The size ranges for different

systems are as follows: (1) the radius of fullerenes is varied from 2 to 12 Å; (2) the radius of single-wall carbon nanotubes (SWCNT)-Armchair(n,n) and

SWCNT-Zigzag(n,0) vary between 2 and 60 Å; (3) the graphene nanoribbons (GNRs) vary in radius from 5 to 50 Å; (4) the number of layers in

multilayer graphene (MLG) varies from 2 to 30, where each point on the plot corresponds to an increase of two layers.
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atom27, whereas quantum Monte Carlo calculations yield a larger
value of 56 meV per atom28. The interlayer binding in graphite
has been frequently approximated as a sum of pairwise potentials
with vdW C6 coefficients obtained using the experimental
dielectric function of graphite (24 a.u.) or explicitly fitted to
experimental measurements. Such a simple approximation
assumes that the carbon–carbon C6 coefficient is the same in
graphene and graphite, and this result is far from reality as clearly
illustrated in Fig. 1. Electrodynamic response effects lead to
radically different polarization behaviour in two-dimensional
graphene and three-dimensional graphite. In Fig. 2, the inter-
layer-binding energy of graphite is presented as a function of the
distance between the layers. The pairwise approximation using
the PBE-TS method12 overestimates the binding considerably, by
at least 30 meV per atom. Accurate inclusion of electrodynamic
response screening in the PBE-TSþ SCS22 method leads to
interlayer-binding energy that agrees exceptionally well with the
measurements of Zacharia et al.25, as well as random-phase
approximation27 and quantum Monte Carlo28 calculations. The
important improvement of the binding energy in the PBE-
TSþ SCS method stems from a much larger C6 coefficient of
graphene when compared with graphite. This results in an
increased vdW energy contribution for a carbon atom inside
graphene and a concomitantly smaller interlayer-binding
energy.

Finally, we illustrate how the peculiar scaling laws for vdW
coefficients in nanomaterials can lead to unusual binding
behaviour between nanostructures of different dimensionality.
The binding energy of a fullerene on MLGs is shown in Fig. 2 as a
function of number (n) of graphene layers beneath the fullerene.
Conventionally, one would expect the binding energy to increase
with n, as shown by the dotted blue curve in Fig. 2, as there are
more atoms to interact with (presumably equal to more
polarization). In addition, a simple pairwise model would lead
to a quick convergence of the binding energy with respect to n
because of a rather quick R� 6

AB decay of the pairwise vdW energy

for two atoms A and B. This simple view is, however, deceptive.
In fact, as n increases, the polarizability and C6 per carbon atom
in MLGs decrease (see Fig. 1). This leads to overall depolarization
of the fullerene/MLG complex, and shows a decreasing binding
energy with increasing n. As the convergence of the C6 coefficient
with n is rather slow, the binding energy also converges slowly.
We remark that a fully anisotropic treatment of the vdW
interactions is probable to decrease the slope of the binding
energy curve for C60 on MLGs. However, it is noteworthy that the
pairwise and the fully screened vdW energy converge to different
values of the binding energy, with the latter yielding somewhat
weaker binding. This is consistent with our observations for the
graphite interlayer-binding energy. We are not aware of direct
experimental measurements for the binding energy of fullerene
with graphite; however, we expect similar findings as for the
graphite interlayer binding, where the PBE-TSþ SCS method
yields more accurate results than a simple pairwise approxima-
tion to the vdW energy. The rather unconventional behaviour of
the binding energy for adsorption on MLGs with the number of
layers n is a general phenomenon for a variety of adsorbates,
ranging from small molecules to larger objects.

Discussion
To place our findings in the broader context of current under-
standing of vdW interactions, we note that it is widely accepted
that these interactions are inherently non-additive (many-body)
phenomena, corresponding to correlations between fluctuating
multipoles in matter9. Interested readers are referred to the
previous papers by Axilrod and Teller29, Bade30 and Zwanzig31 for
the analysis and explanations of many-body contributions to vdW
interactions. The seminal ideas proposed in this previous work to
treat vdW interactions beyond simple pairwise additivity have
been utilized more recently to study model systems, characterized
by point polarizabilities, see for example, the analysis by Cole32,
Donchev33 and Dobson34 among others.
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Figure 2 | vdW binding between nanostructures. Graphite interlayer-binding energy as a function of the interlayer distance d using the PBE functional

with TS pairwise vdW energy (PBE-TS, dotted black line, triangles) and PBE with self-consistently screened (SCS) vdW energy (PBE-TSþ SCS, solid

black line, triangles). The measured experimental-binding energy from ref. 25 is marked in red. Binding energy of C60 fullerene on multilayered graphene

as a function of number of graphene layers, using PBE-TS (dotted blue line, diamonds) and PBE-TSþ SCS (solid blue line, diamonds) methods. The

centre of the C60 molecule is located 7.5 Å away from the closest graphene sheet.
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The crucial idea of our method is to extend the description
from point-polarizable fluctuating dipoles to QHO extended in
space and described by dipole density distributions (see Methods
and ref. 35). All the necessary parameters are determined from
the self-consistent electron density using state-of-the-art
electronic structure calculations, apart from the available high-
level reference data for atomic polarizabilities11. The efficiency
and accuracy of our methods make it possible to carry out
calculations on a broad variety of real materials. Recently, our
methods have been implemented in the widely used VASP code36

and benchmarked for a set of pristine three-dimensional solids. In
this work, we significantly extend previous observations on the
importance of electrodynamic response effects to more general
nanostructures of lower dimensionality, including the interaction
between different nanostructures.

The coupled QHO model assumes that the material can be
initially partitioned into well-defined atomic fragments. Thus, the
possibility of hopping of electrons over long distances is
neglected. The coupling of screening and such delocalized
electrons can lead to other types of non-additivity not addressed
in this work. For example, Dobson et al.6 and Misquitta et al.37

have identified peculiar asymptotic power laws for the interaction
between low-dimensional materials. Subsequently, it has been
found that these effects contribute very little at equilibrium
separations between nanostructures27. The incorporation of
delocalized electrons into the coupled QHO model will be a
subject of future work.

In conclusion, we have identified an unusual behaviour caused
by electrodynamic response in vdW interactions for nanostruc-
tured materials. Depending on the dimensionality and the atomic
arrangement of carbon atoms, the vdW coefficients per carbon
atom exhibit peculiar scaling laws that can be exploited for
controlling the self-assembly of complex nanostructures, as
recently suggested by experimental measurements38,39.

Methods
Calculation of the non-local polarizability tensor. The long-range non-retarded
vdW energy between two atoms in vacuo originates from the electrodynamic
interaction of ‘atomic’ dipolar fluctuations. However, when an atom is embedded
in a condensed phase (or in a molecule), the corresponding dipolar fluctuations
significantly differ from the free-atom case, and in fact, this difference originates
from both the local chemical environment surrounding the atom and the long-
range electrodynamic interaction with the more distant fluctuating dipoles
decaying via a B1/R3 interaction law. Depending on the underlying topology of
the chemical environment, this fluxional internal electric field can give rise to either
polarization or depolarization effects, and is largely responsible for the anisotropy
in the molecular polarizability tensor14,15. To address these non-additive effects, we
represent the N atoms in a given material as a collection of N QHO, each of which
is characterized initially by an isotropic frequency-dependent dipole polarizability.
To account for the local chemical environment, we utilize the TS prescription12, in
which the static polarizability aTS

i [n(r)] and the excitation frequency oTS
i [n(r)] for

every i-th QHO are defined as functionals of the ground-state electron density n(r)
obtained from a self-consistent quantum mechanical calculation using DFT. We
require that the response of the material is not dominated by delocalized
excitations and can therefore be initially divided into effective atomic fragments.
The Hirshfeld40 partitioning of the electron density is then utilized to account for
the local chemical environment surrounding each atom. As both parameters
(aTS

i [n(r)] and oTS
i [n(r)]) are referenced to highly accurate free-atom reference

data, short-range quantum mechanical exchange-correlation effects are accounted
for in these quantities by construction. In fact, the frequency-dependent
polarizabilties defined in this manner yield C6 coefficients that are accurate to 5.5%
when compared with reference experimental values for an extensive database of
atomic and (small) molecular dimers12.

To accurately capture the long-range electrodynamic response screening and
anisotropy effects beyond the local chemical environment, we self-consistently
solve the Dyson-like screening equation (SCS), see equations (2)–(4) in ref. 11. In
short, we solve the following equation to determine the non-local (interacting)
polarizability tensor aSCS

pq (r,r0 ;io); p and q label the Cartesian tensor components)

aSCSðr; ioÞ ¼ aTSðr; ioÞþ aTSðr; ioÞ�
Z

dr0Tpqðr; r0ÞaSCSðr0; ioÞ ð1Þ

where Tpqðr; r0Þ is the dipole–dipole interaction tensor (Hartree atomic units have
been used throughout).

The above SCS equation can be written as a system of algebraic equations on
the basis of QHO positions, see equations (2)–(4) in ref. 11. The interacting
polarizability tensor aSCS

pq ðr; r0; ioÞ is obtained upon solving this system of algebraic
equations, and in practice amounts to an inversion of a 3N� 3N matrix at every
frequency of interest. The charge density distribution of each QHO required for the
calculation of Tpqðr; r0Þ is defined as

nQHO
0 ðrÞ ¼ cQHO

0

�� ðrÞj2¼ exp½ � r2=2s2�
ð2pÞ3=2s3

ð2Þ

in which s represents the width of the Gaussian35. An improvement of the
TSþ SCS method published in ref. 11 is used for all the results reported in this
paper. The sfree

i parameter corresponding to every free atom i is obtained from the
electron density computed with the coupled-cluster singles and doubles method by
fitting the dipole potential resulting from this accurate electron density to a model
QHO potential. This allows us to reliably model interactions for interatomic
distances beyond B0.5 Å. For an atom in a material, and for each frequency of the
electric field, the s parameter is defined by the aforementioned TS prescription as

si ¼
aTS

i ðioÞ
aTS

i ð0Þ

� �1=3

ðVHirshfeld
rel Þ1=3sfree

i ; ð3Þ

where VHirshfeld
rel is the Hirshfeld volume ratio between an atom-in-a-material and

the free atom. This straightforward modification of the TSþ SCS method leads to
an improved performance for molecular static polarizabilities (7% mean absolute
error on 47,000 organic molecules from a database used in ref. 41). The reference
polarizabilities were calculated by applying a finite electric field to DFT calculations
using the hybrid PBE0 functional. This approach yields an accuracy of 3% for
polarizabilities in comparison with experimental data and high-level linear-
response coupled-cluster calculations including single and double excitations.

The values of the employed parameters were obtained from coupled-cluster
singles and doubles calculation for the free carbon atom and DFT electron density
calculations for all materials, and they are sfree

C ¼ 1.514 bohr, VHirshfeld
rel ¼ 0.911 for

the carbon atom in diamond, VHirshfeld
rel ¼ 0.884 for graphite and VHirshfeld

rel ¼ 0.863
for sp2-bonded carbon in all the other materials (slight variations of this value are
observed in different nanostructures but these variations have negligible effect on
the final results).

Computation of atom–atom C6 coefficients. The total isotropic frequency-
dependent polarizability aSCS

S ðioÞ for a system S is obtained upon contraction of
the non-local polarizability tensor aSCS

pq ðr; r0; ioÞ. The usual Casimir–Polder inte-
gral over polarizability at imaginary frequency

CSS
6 ¼

3
p

Z 1
0
½aSCS

S ðioÞ�
2do: ð4Þ

is then utilized to compute the CSS
6 coefficient for a system S. As we are only

concerned with carbon atoms in this work, the CCC
6 coefficient (‘per carbon atom’)

is defined as CSS
6 /N2

C, where NC is the total number of carbon atoms in the system
(or per unit cell).

DFT calculations. All DFT calculations have been performed using the full-
potential all-electron code FHI-aims42. FHI-aims uses a real-space grid
representation for the Kohn–Sham wavefunctions; therefore, both periodic and
non-periodic systems can be treated efficiently and on equal footing (see http://
www.aimsclub.fhi-berlin.mpg.de for a detailed description of the FHI-aims code).
We employed the PBE functional26 for all DFT calculations. Special care has been
taken to use sufficiently large supercells to eliminate any possible interactions with
artificial periodic images for low-dimensional systems. Typically, vacuum sizes of
500 Å were used for this purpose. Such large unit cells do not substantially increase
the computational cost in real-space DFT codes because there are no basis
functions in the vacuum region. For molecular systems (fullerenes, GNRs), no
periodic boundary conditions were used. The geometries employed in this work
were constructed using the experimental carbon–carbon distances for the different
systems.

References
1. Kroto, H. W., Heath, J. R., O0Brien, S. C., Curl, R. F. & Smalley, R. E. C60:

Buckminsterfullerene. Nature 318, 162–163 (1985).
2. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
3. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191

(2007).
4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in

graphene. Nature 438, 197–200 (2005).
5. Nair, R. R. et al. Fine structure constant defines visual transparency of

graphene. Science 320, 1308–1308 (2008).
6. Dobson, J. F., White, A. & Rubio, A. Asymptotics of the dispersion interaction:

analytic benchmarks for van der Waals energy functionals. Phys. Rev. Lett. 96,
073201 (2006).

7. Ruzsinszky, A., Perdew, J. P., Tao, J., Csonka, G. I. & Pitarke, J. M. Van der
Waals coefficients for nanostructures: fullerenes defy conventional wisdom.
Phys. Rev. Lett. 109, 233203 (2012).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3341 ARTICLE

NATURE COMMUNICATIONS | 4:2341 | DOI: 10.1038/ncomms3341 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.aimsclub.fhi-berlin.mpg.de
http://www.aimsclub.fhi-berlin.mpg.de
http://www.nature.com/naturecommunications


8. Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer
graphene. Nat. Mater. 9, 555–558 (2010).

9. Parsegian, V. A. Van der Waals forces: A Handbook for Biologists, Chemists,
Engineers and Physicists (Cambridge University Press, 2005).

10. Dobson, J. F. & Gould, T. Calculation of dispersion energies. J. Phys.: Condens.
Matter 24, 073201 (2012).

11. Tkatchenko, A., DiStasio, Jr R. A., Car, R. & Scheffler, M. Accurate and efficient
method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402
(2012).

12. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions
from ground-state electron density and free-atom reference data. Phys. Rev. Lett
102, 073005 (2009).

13. Felderhof, B. U. On the propagation and scattering of light in fluids. Physica 76,
486–502 (1974).

14. Oxtoby, D. W. & Gelbart, W. M. Collisional polarizability anisotropies of the
noble gases. Mol. Phys. 29, 1569–1576 (1975).

15. Thole, B. T. Molecular polarizabilities calculated with a modified dipole
interaction. Chem. Phys. 59, 341–350 (1981).

16. Haynes, W. M., Lide, D. R. & Bruno, T. J. CRC Handbook of Chemistry and
Physics 2012–2013 (CRC Press, 2012).

17. Kumar, A. & Meath, W. J. Dipole oscillator strength properties and dispersion
energies for acetylene and benzene. Mol. Phys. 75, 311–324 (1992).

18. Antoine, R. et al. Direct measurement of the electric polarizability of isolated
C60 molecules. J. Chem. Phys. 110, 9771–9772 (1999).

19. Jiemchooroj, A., Norman, P. & Sernelius, B. E. Complex polarization
propagator method for calculation of dispersion coefficients of extended
p-conjugated systems: the C6 coefficients of polyacenes and C60. J. Chem. Phys.
123, 124312 (2005).

20. Kauczor, J., Norman, P. & Saidi, W. A. Non-additivity of polarizabilities and
van der Waals C6 coefficients of fullerenes. J. Chem. Phys. 138, 114107 (2013).

21. Bruch, L. W. Evaluation of the van der Waals force for atomic force
microscopy. Phys. Rev. B 72, 033410 (2005).

22. Zhang, G.-X., Tkatchenko, A., Paier, J., Appel, H. & Scheffler, M. Van der
Waals interactions in ionic and semiconductor solids. Phys. Rev. Lett. 107,
245501 (2011).

23. Rajter, R. F., French, R. H., Ching, W., Podgornik, R. & Parsegian, V. A.
Chirality-dependent properties of carbon nanotubes: electronic structure,
optical dispersion properties, Hamaker coefficients and van der Waals -
London dispersion interactions. RSC Adv. 3, 823–842 (2013).

24. Liu, Z. et al. Interlayer binding energy of graphite: a mesoscopic determination
from deformation. Phys. Rev. B 85, 205418 (2012).

25. Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite
from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69,
155406 (2004).

26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

27. Lebegue, S. et al. Cohesive properties and asymptotics of the dispersion
interaction in graphite by the random phase approximation. Phys. Rev. Lett.
105, 196401 (2010).

28. Spanu, L., Sorella, S. & Galli, G. Nature and strength of interlayer binding in
graphite. Phys. Rev. Lett. 103, 196401 (2009).

29. Axilrod, B. M. & Teller, E. Interaction of the van der Waals type between three
atoms. J. Chem. Phys. 11, 299–300 (1943).

30. Bade, W. L. Drude-model calculation of dispersion forces.I. General theory.
J. Chem. Phys. 27, 1280–1284 (1957).

31. Zwanzig, R. Two assumptions in the theory of attractive forces between long
saturated chains. J. Chem. Phys. 39, 2251–2258 (1963).

32. Cole, M. W., Velegol, D., Kim, H.-Y. & Lucas, A. A. Nanoscale van der Waals
interactions. Mol. Simul. 35, 849–866 (2009).

33. Donchev, A. G. Many-body effects of dispersion interaction. J. Chem. Phys.
125, 074713 (2006).
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