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SUPPLEMENTARY INFORMATION 

 

Modeling FRAP recoveries 

Mean fluorescence intensities in the FRAP region and across the entire nucleus 

(including the FRAP region) were calculated and background subtracted. The bleached 

region and whole nucleus profiles were then individually normalized to their prebleach values 

(obtained from averaging the 10 images immediately preceding the bleaching). The final 

recovery profile was then obtained by dividing these two normalized profiles (FRAP region 

divided by whole nucleus). This final division removes the global decrease in fluorescence 

upon bleaching as well as any later gradual bleaching that occurred during the recovery (the 

latter was always less than a few percent). An incomplete recovery (to a value less than 1) 

indicates the presence of an immobile fraction. 

Recoveries in undamaged and damaged nuclei were interpreted using an analytic 

Laplace-transform-based solution of the full reaction-diffusion equations in a rectangular 

geometry (see S1 for a similar approach in a circular geometry).  For the undamaged nuclei, 

all recoveries were complete and consistent with "effective diffusion". The recoveries were 

therefore governed by two parameters, the asymptotic recovery value and the effective 

diffusion constant, which were fit by minimizing chi squared to individual nuclear recoveries. 

The effective diffusion constants were used, along with other information from the pre-
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images and the asymptotic recovery value, to predict and/or fit the recoveries in the damaged 

nuclei. 

For FRAP in undamaged nuclei, recoveries were monitored following bleaching 

within a narrow stripe (1.29 µm width) along the nuclear midpoint.  All values were 

normalized to the instantaneous integrated nuclear intensity to correct for the reduction of 

total nuclear fluorescence following the bleaching. All recoveries were complete and 

consistent with a “diffusive” recovery, which was specified in the model by an effective 

diffusion constant,  ( , where  is the actual diffusion constant and  is the 

instantaneous fraction of protein that is free to diffuse).  Nuclear lengths were obtained from 

the images. Joint least-squares minimization of  and an overall scaling factor 

(representative cell fits shown on the lower panel of Fig. 6C) led to the values for  listed 

in Fig. 6C (upper panel, mean ± s.d. of eight separate cells).  We note that the narrow stripe 

used for bleaching and the relatively long bleaching step are not optimal for truly accurate 

estimation of  (S2, S3), therefore the  values shown in Fig. 6C should be considered 

as only rough estimates.  

In cells with damaged nuclei the obtained for the undamaged nuclei average values 

for  (Fig. 6C) were assumed.  The model implicitly accounted for uniform binding sites 

scattered throughout the nucleus (through ), but explicitly specified the additional binding 

sites introduced by the damage (see Suppl. Fig. 7). The assumed model parameters listed in 

Fig. 6C correspond to the contrast  (brightness of the stripe compared to the nucleoplasm), 

the immobile fraction  in the stripe, and the residence half-life  for rapid-turnover 

binding sites in the stripe (superscript “f” denotes “fast”).   
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FRAP recovery in undamaged nuclei 

To model the recovery curves, we used a Laplace transform approach in the context of a 

1D rectangular model.  A centered 1D coordinate system with nuclear length defined as 

 and the extent of the centered FRAP region defined as  was assumed (Suppl. 

Figs. 7A,B).  The diffusion equation for the fluorescent protein is simply:  

,      (1) 

where 

       (2) 

is the effective diffusion constant. The effective diffusion constant is the normal diffusion 

constant multiplied by the instantaneous freely-diffusing fraction of molecules, specified by 

, , and the concentration of free binding sites  (S1, S4).  This approximation (see also 

S1 and S4) is valid for all of the proteins we observe in undamaged nuclei whose recoveries 

are well fit by a purely diffusive recovery. Due to symmetry, we can restrict our analysis to 

only the right half of the nucleus (from  in Suppl. Fig. 7A). For the FRAP assay, a 

fraction of the fluorescence is bleached in the FRAP region (the efficiency of the bleaching is 

given by , with  denoting complete bleaching): 

      (3) 

    .    (4) 

In this simple case, we can separately consider the recovery of only the bleached fraction by 

subtracting off the initial, postbleach fluorescence in the FRAP region: 

.     (5) 

The initial conditions are thereby simplified: 
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       (6) 

   ,    (7) 

without affecting the form of the diffusion equation: 

 .      (8) 

Taking the Laplace transform of the diffusion equation gives the following: 

,    (9) 

where the bar denotes the Laplace-transformed version of the function: 

.        (10) 

After FRAP bleaching, the equation for each zone is then: 

     (11) 

 .  (12) 

In terms of the general solution, the solution in each region is just 

    (13) 

 .  (14) 

Taking into account the zero-slope, Neumann boundary conditions at  (due to no 

source/sink there and symmetry) and  (“hard wall” boundary), along with satisfying 

continuity and smoothness at  gives the following form for the solution in the FRAP 

region: 

€ 

F rec(x, p) =
ε Feq

p
1

coth p
Deff

w( ) + coth p
Deff

l − w( )( )
cosh p

Deff
x( )

sinh p
Deff

w( )
. (15) 
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Integrating over the FRAP region, dividing by the total bleached fluorescence there ( ), 

and taking into account the decreased total nuclear fluorescence due to the bleaching (to 

obtain a recovery from 0 to 1) gives: 

€ 

f rec(p) =
1
p
1

1− w
l

1
w

Deff

p
1

coth p
Deff

w( ) + coth p
Deff

l − w( )( )
,  (16) 

which can be rewritten as: 

,      (17) 

with 

€ 

g rec(α;φ) =
1

1−α
1
φ

1 φα( )
coth φα( ) + coth φ 1−α( )( )

,   (18) 

where  and .  Taking the inverse Laplace transform then gives: 

€ 

f rec(t) = 1
2π i f rec(p)e

ptdp
µ− i∞

µ + i∞
∫ = 1

2π i g rec(α;φ)e
φτdφ = grec(α;τ )ν − i∞

ν + i∞
∫ , (19) 

with dimensionless time 

€ 

τ = Deff
l 2 t .   The shape of the recovery (as a function of ) is 

therefore dependent only on .  The actual recovery in normal time units can be obtained 

from  by simply scaling the -axis by .  Again, due to the symmetry 

condition,  applies equally well to a centered geometry with nuclear length  

and centered FRAP region of extent  (as considered in this work), or to a FRAP 

region of extent w flush against one side of a nucleus of length l.  To calculate the inverse 

Laplace transform, we use the algorithms described in S5-S7. 

 The fluorescence profiles before, immediately after, and long after FRAP bleaching 

are shown in Suppl. Fig. 7B.  The renormalization applied above involves setting the lowest 

value of the bleaching (red, dashed line) to zero and the recovery value of one to the 
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predicted asymptotic value (blue line).  The effects of changes in  or FRAP region width 

are shown in Suppl. Figs. 7C and D, respectively.  

Assuming a FRAP region of size  µm for all nuclei and a nuclear length 

of  estimated on a cell-by-cell basis from analyzing the images (average length was 

roughly 13 µm), we obtained the average effective diffusion constants for all labeled proteins 

(Figs. 6C). All profiles recovered completely (to a few percent) within seconds, and a 

significant immobile fraction was not detected. 

If a uniform immobile fraction  had been present, the final recovery would have 

instead been to: 

€ 

f rec(t →∞) =1−η ε (1−α)
ε (1−α) +1−ε

≤1.    (20) 

 

FRAP at the damage site 

For analyzing FRAP in the damaged region, we again employ a 1D Laplace transform 

approach.  The following equations describe the concentration of a freely diffusing 

fluorescent protein, ; unoccupied binding sites, ; and binding sites occupied by 

fluorescent protein, : 

€ 

∂F(x, t)
∂t

= D∇2F(x,t) − konB(x, t)F(x,t) + koffC(x, t)    (21) 

€ 

∂B(x, t)
∂t

= −konB(x,t)F(x, t) + koffC(x, t)     (22) 

€ 

∂C(x, t)
∂t

= konB(x, t)F(x,t) − koffC(x,t) .    (23) 

We again take a symmetric, centered coordinate system as shown in Suppl. Fig. 7E.  Here, 

we assume that the FRAP region is exactly the same as the damage region.  Again, due to 

symmetry, we need only consider the solution in one half of the nucleus.  The FRAP process 
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will not change the concentration of unoccupied binding sites, which is  in the 

damage/FRAP region ( ) and 0 outside the damage/FRAP region ( ).  The 

relevant equations are then 

€ 

∂F(x, t)
∂t

= Deff∇
2F(x,t) − konB(x)F(x, t) + koffC(x,t)    (24) 

€ 

∂C(x, t)
∂t

= konB(x)F(x, t) − koffC(x, t).    (25) 

In the damage region at steady-state,  

 .       (26) 

Laplace transforming the differential equations gives: 

€ 

pF (x, p) − F(x,0) = Deff∇
2F (x, p) − konB(x)F (x, p) + koffC (x, p)  (27) 

€ 

pC (x, p) −C(x,0) = konB(x)F (x, p) − koffC (x, p) .   (28) 

The second equation gives: 

 

€ 

C (x, p) =
konB(x)F (x, p) + C(x,0)

p + koff
.     (29) 

Substituting this into the first equation gives: 

€ 

Deff∇
2F (x, p) − p 1+

konB(x)
p + koff

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ F (x, p) = −F(x,0) − koff

p + koff
C(x,0) .  (30) 

The bleaching process removes a fraction  of the fluorescence of the freely diffusing and 

bound proteins, giving: 

 

€ 

F(x,0) = (1−ε)Feq        (31) 

€ 

C(x,0) = (1−ε)
konBeq
koff

Feq .      (32) 

Plugging these in gives the final equations for both inside and outside the damage/FRAP 

region: 
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€ 

Deff∇
2F (x, p) − p 1+

konBeq

p + koff

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ F (x, p) = −(1−ε)Feq 1+

konBeq

p + koff

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

€ 

0 ≤ x ≤ w    (33) 

€ 

Deff∇
2F (x, p) − pF (x, p) = −Feq ,     

€ 

w < x ≤ l     (34) 

The general solution in each region is then: 

€ 

F (x, p) = Acosh 1+ β
1+ p / koff

p
Deff

x( ) + Bsinh 1+ β
1+ p / koff

p
Deff

x( ) + (1−ε) Feq
p ,   

        

€ 

0 ≤ x ≤ w  (35) 

€ 

F (x, p) = Ccosh p
Deff

x + Dsinh p
Deff

x + Feq p,  

€ 

w < x ≤ l    (36) 

where 

€ 

β =konBeq koff  is the dimensionless ratio of the intensity in the binding sites to the 

intensity in the effectively diffusing fraction.  Taking into account the zero-slope conditions at 

 and , and continuity and smoothness at  (see previous section) yields: 

€ 

F (x, p) = ε
Feq
p

1

coth 1+ β
1+ p / koff

p
Deff

w( ) + 1+ β
1+ p / koff

coth p
Deff

l − w( )( )
×

cosh 1+ β
1+ p / koff

p
Deff

x( )
sinh 1+ β

1+ p / koff
p

Deff
w( )

+ (1−ε)
Feq
p
.

 (37) 

Integrating over the FRAP region and dividing by  gives:  

€ 

f (p) =
l2

Deff

1
φ
ε

1
1+ β

1+γφ

1 φα( )
coth 1+ β

1+γφ φα( ) 1+ β
1+γφ + coth φ 1−α( )( )

+ (1−ε)
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
, 

(38) 

where ,  and .  The bound fraction from above is again just: 

€ 

C (x, p) =
konB(x)F (x, p) + C(x,0)

p + koff
     (39) 

Integrating over the FRAP region and dividing by  gives: 
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€ 

c (p) =
β

1+ γφ
f (p) +

l2

Deff
(1−ε)βγ 1

1+ γφ
.    (40) 

The total recovery is then simply: 

€ 

r (p) =
(1+ β)α +1−α

(1−ε )(1+ β)α +1−α
f (p) + c (p)
1+ β

,    (41) 

where we have divided by  and normalized to take into account the reduction in total 

fluorescence upon FRAP bleaching, yielding a recovery to 1 (if no additional immobile 

fractions are present).  The inverse Laplace transform is then: 

€ 

r (p) =
l2

Deff
r (α,β,γ ,ε;φ) ,      (42) 

with 

€ 

r (α,β,γ ,ε;φ) =
(1+ β)α +1−α

(1−ε )(1+ β)α +1−α
×

1
1+ β

×

1
φ
ε

1 φα( )
coth 1+ β

1+γφ φα( ) 1+ β
1+γφ + coth φ 1−α( )( )

+ (1−ε) 1+ β
γφ
1+ γφ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
.
(43) 

The inverse transform then gives the recovery: 

€ 

r(t) = 1
2π i r (α,β,γ ,ε;φ)eφτdφ

µ− i∞

µ + i∞
∫ .     (44) 

For : 

€ 

lim
γ→ 0

r (α,β,γ ,ε;φ) =
(1+ β)α +1−α

(1−ε )(1+ β)α +1−α
×

1
1+ β

×

1
φ
ε

1 φα( )
coth 1+ β φα( ) 1+ β + coth φ 1−α( )( )

+ (1−ε)
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
,
 (45) 

which corresponds to a recovery in the effectively diffusing fraction and at the binding sites 

that is only diffusion-limited. 

For 

€ 

γ →∞ (koff << Deff
l 2 ): 
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€ 

lim
γ→∞

r (α,β,γ ,ε;φ) =
(1+ β)α +1−α

(1−ε )(1+ β)α +1−α
×

1
1+ β

×

1
φ
ε

1 φα( )
coth φα( ) + coth φ 1−α( )( )

+ (1−ε ) 1+ β( )
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
,
  (46) 

which corresponds to a diffusive recovery for the effectively diffusing fraction but no 

recovery at the completely immobile binding sites. 

The effects on the recovery of different β (ratio of total bound to free protein in the 

nucleus) and γ (proportional to the binding site residence time ) are displayed in Suppl. 

Fig. 7E.   

For completeness, we give the general solution for the Laplace transform of the 

recovery in the presence of different types of binding sites within the FRAP region ( , ) 

and outside of the FRAP region ( , ): 

€ 

r (p) =
l2

D
r (α,β j

in ,γ j
in ,βk

out ,γ k
out ,ε;φ),     (47) 

with 

€ 

r (α,β j
in ,γ j

in ,βk
out ,γ k

out ,ε;φ) =
1+ β j

in
j

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ α + 1+ βk

out
k

∑( )(1−α)
(1−ε ) 1+ β j

in
j

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ α + 1+ βk

out
k

∑( )(1−α)
1

1+ β j
in

j
∑

×

1
φ
ε

1
φα

coth 1+
β j
in

1+γ j
inφj

∑ φα
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1+
β j
in

1+γ j
inφj

∑
+
coth 1+ β k

out

1+γ k
outφk∑ φ 1−α( )⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1+ β k
out

1+γ k
outφk∑

+ (1−ε ) 1+ β j
in γ j

inφ

1+ γ j
inφj

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

.

          (48) 

In the above, we use the actual diffusion constant, D, assuming that all binding interactions 

have already been accounted for in 

€ 

r (α,β j
in ,γ j

in ,βk
out ,γ k

out ,ε;φ). 
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In Fig. 6C, analysis of the recoveries in representative cells for each protein are shown 

(using Eq. 44).  For PCNA, the only recovery was due to bleaching of the free fraction, with 

all bound protein immobilized in the damaged region.  However, for p21 and Cdt1, most 

bound protein was turned over rapidly (a significant immobile fraction cannot be ruled out).  

For Cdt2, robust evidence is found for two different types of Cdt2 binding sites: those with 

rapid Cdt2 turnover and those that immobilize Cdt2. 

The displayed models for the damaged cells in Figs. 6C are not fits to the data with all 

parameters left unspecified. Rather, these models are predictions of the recovery based on 

parameters already obtained from image analysis (bound-to-free ratio , nuclear length , 

immobile fraction determined from asymptotic recovery) and the  values measured in 

undamaged cells.  The only parameter that might actually have required fitting was  

(proportional to ), but we were only able to obtain an upper limit (all model recovery 

curves below this upper limit were essentially the same, due to “effective-diffusion-limited” 

nature of all of the observed recoveries). 

 

Turnover rate at binding sites 

The amount of protein over a given duration of time that has been bound at least once in 

the damaged region can be approximated as follows.  On timescales longer than seconds, 

diffusion rapidly mixes all proteins across the cell.  This allows us to make the assumption 

that the exchange of protein at binding sites samples from the entire nuclear population, 

allowing us to neglect diffusion and leading to the following simple rate equation: 

€ 

dX(t)
dt

= −α konBeq
X
XT

X ,      (49) 
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where X is the amount of protein that has not yet been bound and XT is the total amount of 

protein in the nucleus.  This can be rewritten in terms of the fractional amount that has not yet 

been bound, 

€ 

χ = X XT : 

€ 

dχ(t)
dt

= −αkonBeqχ
2 = −αβkoffχ

2      (50) 

The solution is simply: 

€ 

χ(t) = χ0
1

1+αβχ0koff t
.      (51) 

The amount of time needed before only a fraction 

€ 

χf  is left (protein that has never been 

bound) is: 

€ 

t f =
1
koff

1
αβ

1
χ f

−
1
χ0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

t1/ 2
f

ln2
1
αβ

1
χ f

−
1
χ0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .   (52) 

Taking , , and  (so that 90% of the protein has been bound at some 

point) gives  for p21 ( , ) and  for Cdt1 ( , ).  So, 

within roughly 2 min, 90% of both p21 and Cdt1 have been bound at least once in the 

damaged region. 

 

References  

S1)  B.L. Sprague, R.L. Pego, D.A. Stavreva, & J.G. McNally, Biophys J 86,  
3474-3495 (2004) 

S2)  J. Braga, J.M. Desterro, & M. Carmo-Fonseca, Mol Biol Cell 15, 4749-4760   
(2004) 

S3)  F. Mueller, D. Mazza, T.J. Stasevich, & J.G. McNally. 2010 Curr Opin Cell Biol 22, 
403-411 (2010) 

S4)  B.L. Sprague, F. Müller, R.L. Pego, P.M. Bungay, D.A. Stavreva, &  
J.G. McNally, Biophys J 91, 1169-1191 (2006) 

S5)  J. Abate, P.P. Valkó,  Int J Numer Meth Engng 60, 979–993 (2004) 
S6)  http://library.wolfram.com/infocenter/MathSource/4738/ 
S7)  http://library.wolfram.com/infocenter/MathSource/5026/ 


