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1. ABSTRACT 
 

During the natural killer (NK) cell immune 
response, cytoskeletal components, adhesion and signaling 
molecules and ligand-specific receptors are involved in the 
formation of the natural killer cell immune synapse (NK-
IS), a highly organized supramolecular structure assembled 
at the interface of the interacting cells that regulates the NK 
cell activation and decides the target cell fate. In this 
review the current state on knowledge about the 
organization and physio-pathological function of the 
inhibitory, cytotoxic and activating NK-IS is presented. 
Moreover, it briefly summarizes microspectroscopy 
techniques suitable for live cell imaging of the dynamic 
biochemical processes, which achieve the coordinated NK 
cell immune responses. 

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Natural killer (NK) cells are essential cytotoxic 
lymphocytes of the innate immunity able to directly lyse 
tumour cells, virus infected cells and other pathogens. 
Furthermore, by secreting cytokines and chemokines, as 
well as interacting with other immune cells, such as T 
lymphocytes or dendritic cells (DC), they also regulate both 
the innate and the adaptive immune responses (1, 2). NK 
cell function is regulated by cytokines, chemokines, the 
contact with the extracellular matrix (ECM), and a balance 
of intracellular signals triggered from the cell surface by a 
diverse group of activating and inhibitory receptors upon 
the specific binding of ligands expressed on surrounding 
cells (3). As predicted by the missing self hypothesis, 
inhibition is mainly mediated by the specific binding of the 
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Figure 1. Organization of the cNK-IS, iNK-IS and aNK-IS. Schematic representation of the synapse face arranged inside the red 
boxes. Main components present at the central (c)SMAC/SMIC and peripheral (p)SMAC/SMIC are detailed at the early events 
and mature state of the different synapses described in the text. 

 
MHC class I molecules by the killer cell 

immunoglobulin-like (Ig-L) receptors (KIR) and the 
NKG2A/CD94 lectin-like (L-L) receptor heterodimer (4). 
These receptors switch activating signals off by recruiting 
the SH2-containing protein tyrosine phosphatase SHP-1 to 
an immunoreceptor tyrosine based inhibitory motif (ITIM) 
placed in their cytoplasmic tails (5, 6). A wide repertoire of 
Ig-L and L-L activating receptors, which bind different 
adaptor molecules in order to form activating complexes, 
has been described. The activating receptor complexes in 
the Ig-L group include the natural cytotoxicity receptors 
(NCR), NKp46/CD3ζ, NKp30/CD3ζ and NKp44/DAP12, 
the Fc receptor CD16/CD3ζ/FcγR, the signaling 
lymphocyte activating molecules (SLAM), 2B4/LAT 
(Linker for activation of T cells), NTB-A and CRACC, and 
the activating KIR. The L-L group is mainly represented by 
NKG2D/DAP10, CD94/NKG2C/DAP12 and NKp80 (7-9). 
Upon the binding of the specific ligands, activating signals 
are triggered by immunoreceptor tyrosine based activation 
motifs (ITAMs) present at the cytoplasmic tail of the 
adaptor molecules DAP12, CD3ζ and FcγR, by the PI3K 
and Grb2 binding motif present in DAP10, by the tyrosine 
based motifs present at the cytoplasmic tail of LAT and by 
the immunoreceptor tyrosine-based switch motifs (ITSM) 
present at the cytoplasmic tail of 2B4, NTB-A and 
CRACC. The cellular ligands described for some of these 
receptors and the signaling molecules recruited upon ligand 
binding are summarized in the table 1. 

 
In 1999 two important contributions were made 

by Sentman and co-workers (10): First, inhibitory receptors 
altered the interaction with target cells, a fact that showed 
the significance of receptor-ligand binding for the fate of 
cells after the contact. Secondly, cytotoxic and non-
cytotoxic interactions were simultaneously performed by 

single NK cells, which demonstrated the existence of a 
spatio-temporal regulation of activating and inhibitory 
signals during the NK cell response. These results posed a 
new question: How do surface receptors and signaling 
molecules achieve this spatio-temporal regulation that 
eventually decides the fate of the target cells? In answering 
this question, the immune synapse (IS) (11) has emerged as 
a highly organized supramolecular cluster at the interface 
of contacting immune cells that allow the intercellular 
communication needed for a coordinated immune response 
to be obtained (12). This review will focus on the 
organization and physiological significance of the NK cell 
immune synapse (NK-IS) established at the cytotoxic and 
non-cytotoxic interactions formed during the NK cell 
“social” life. 
 
3. ASSEMBLY OF THE NATURAL KILLER CELL 
IMMUNE SYNAPSE (NK-IS) 
 
 Receptor tyrosine phosphorylation of ITIMs and 
ITAMs by Lck is an early common phenomenon necessary 
for both the inhibition and activation of NK cell effector 
functions respectively (13). However, the different spatio-
temporal organization of supramolecular activating or 
inhibitory clusters (called SMAC or SMIC respectively) 
will regulate the NK cell cytotoxic activity and therefore 
the eventual fate of the target cell (14, 15). Recently, the 
activating, non-cytotoxic, NK-IS formed between resting 
NK cells and mature (m) DC has been described (16). The 
organization of inhibitory (i), cytotoxic (c) and activating 
(a) NK-IS (Figure 1) is described below. 
 
3.1. The inhibitory NK-IS 

The NK-IS was first described in 1999 during the 
missing-self recognition (17). Exogenously expressed KIR 
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and their specific MHC class I ligands clustered and co-
localized at the contact area formed during NK cell-Target 
cell interactions. Importantly, later studies done by Dupont 
and co-workers have shown that very early after the 
interaction of primary activated NK cells with MHC class I 
positive cells, the constituted iNK-IS is characterized by a 
central single cluster of the phosphatase SHP-1 and KIR 
(cSMIC) surrounded by a peripheral ring of talin and the 
αLβ2 integrin leukocyte function associated antigen 1 
(LFA-1) (pSMIC) (14, 15, 18). The activating signaling 
molecule Lck is seen dispersed in two or three clusters at 
the cSMIC by this time, consistent with the requirement of 
early tyrosine phosphorylation for KIR inhibition. 
However, this accumulation is rapidly dissolved to multiple 
small clusters. Other signaling molecules such as ZAP-70, 
SLP-76, PLC-γ, Itk or PKC-θ are not recruited to the iNK-
IS. The microtubule organizing centre (MTOC) and 
secretory lysosomes (SL) are not polarized to the iNK-IS 
while talin accumulation is dissolved within 5 min of 
interaction. Then, although inhibition mediated by KIR 
involves the cortical cytoskeleton remodelling for the 
active formation of SMIC of signaling molecules, non-
cytotoxic conjugates are short lived probably due to an 
absence of further downstream signaling. In fact, talin, Lck 
and SHP-1 do not show significant accumulation after 10 
min of non-cytotoxic interactions, which suggests 
completion of the self recognition (Figure 1). 

 
Recently Davis and co-workers have shown that 

although inhibitory KIR are clustered across the iNK-IS, 
phosphorylation of these receptors are restricted to discrete 
microclusters along with Lck clusters (figure 1) (19). Thus, 
one hypothesis for NK cell inhibition could be that Lck 
recruited to the membrane by activating receptors would be 
able to trans-phosphorylate KIR molecules engaged with 
the specific MHC class I molecule at the iNK-IS. Thus, the 
inhibitory action of KIR would be locally focused at the 
early interface of the NK cell-target cell interaction where 
activating signals are triggered (Figure 2A). Only the 
absence of MHC class I on target cells would then allow 
the eventual formation of the cytotoxic NK-IS (Figure 2B-
3). 
 
3.2. The cytotoxic NK-IS 

The cNK-IS organization resembles the one 
previously described for cytotoxic T lymphocytes (CTL), 
which is characterized by a cSMAC that contains a 
secretory domain, along with a signaling region where the 
T cell receptor (TCR) accumulates, and a pSMAC enriched 
in f-actin. CTL acts to clear virally infected and tumour 
cells via this so called secretory synapse (20). The 
supramolecular organization at the early and mature cNK-
IS is described below. 

  
3.2.1. Early events during the cNK-IS assembly 

The early events during the NK cell 
immunosurveillance are summarized in figure 2B. The first 
step during the formation of the cNK-IS is the adhesion 
process mainly mediated by LFA-1. Signaling mediated by 
LFA-1 induces the tyrosine phosphorylation and activation 
of Vav-1, which lead to the polymerization of actin and 
clustering of lipid rafts (21, 22). These events are essential 

for the final assembly of the mature cNK-IS. In fact, 
activation of Vav-1/Rac pathway, which precedes actin 
polymerization, also regulates the generation of cell-
mediated killing by CTL (23). Early recruitment of the 
SLP-76 has also been observed preceding the polarization 
of the MTOC and SL that occurs within the first 5 min 
(18). The recruitment of the SLP-76 could be involved in 
the “inside-out” signaling for integrin activation, 
consequently sustaining the adhesion during cytotoxic 
interactions (24). Remarkably, early talin and LFA-1 
accumulation is a common phenomenon initiated during 
conjugate formation, independently of the nature of the 
target (Figure 2A-B), however, as pointed out in section 
3.1, KIR inhibitory action block further downstream signals 
leading to unstable, short lived conjugates (see also section 
4). 

 
Another early event is the formation of Lck small 

clusters at the synapse (presumably recruited to activating 
receptors), that will eventually culminate after 5 min of 
interaction with the formation of one unique cluster of this 
signaling molecule at the cSMAC surrounded by a ring of 
talin and f-acting at the pSMAC of the mature cNK-IS 
(Figure 1). Lck phosphorylation of ITAMs at the 
cytoplasmic tail of activating receptors lead to the 
recruitment and activation of Syk kinases, which 
subsequently induces the activation of PI3K and the 
eventual polarization of the MTOC and SL, the activation 
of SLP-76, WASP and Vav-1 complexes, and the 
phosphorylation of LAT and other adaptor molecules (25-
27). 

 
Another important molecule during the early 

events is the receptor 2B4 (28). Accumulation of 2B4 at the 
synapse occurs just 30 sec after the cell-cell contact 
preceding the MTOC polarization and remarkably remains 
at the synapse over 20 min of interaction. This early 
accumulation of 2B4 underscores the role of this molecule 
in cell-cell adhesion and NK cell activation. In addition, the 
adaptor molecule SAP (SLAM-associated protein) also 
accumulates at the cNK-IS and co-localizes with 2B4 
during this prolonged time, which demonstrates the 
relevance of this adaptor molecule for the cytotoxic process 
in NK cells (29). In this regard, SAP is encoded by the 
SH2D1A gene, which is mutated in patients with the 
inherited immunodeficiency X-linked lymphoproliferative 
disease (XLP), a human disorder characterized by a 
dysfunction of the T/B-cell interactions and NK cell 
function, leading to a reduced ability to control the Epstein-
Barr virus (EBV) infection (30, 31). NK cells deficient in 
SAP are not able to properly trigger activating signals upon 
2B4 engagement with CD48. It has been postulated that 
SAP competes for the binding of SHP-1 to the cytoplasmic 
tail of 2B4, allowing the activating signals to be properly 
triggered (Figure 2B) (32, 33). Moreover, SAP is also 
necessary for the recruitment of Fyn to the cytoplasmic tail 
of 2B4 (34). The essential role of SAP on the cytotoxic 
synapse formation has been demonstrated in SAP-deficient 
CTL. These cells present a defective polarization of 
perforin, GM1 and 2B4 to the synapse, which leads to a 
defective lytic activity against EBV infected cells (35). 
Thus, SAP may also control the assembly of the cNK-IS 
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Figure 2.  Early events during the NK cell missing-self recognition (A) or activation (B). (A) Early Adhesion events and 
activating (act.) ligand recognition induce the activation of Lck, which trans-phosphorylates in turn the ITIM motifs present at the 
KIR upon MHC class I engagement. As a consequence a docking site for SHP-1 is created. SHP-1 desphosphorylates and 
inactivates Vav-1, which is essential for actin polymerization, promoting then the early detachment from the target cell. Grey 
objects show the blocked pathways upon Vav-1 desphosphorylation. (B) The absence of physiological levels of MHC class I on 
target cells avoids the recruitment of KIR and SHP-1 and then signals for cytoskeleton rearrangement and inside-out integrin 
signaling freely occurs. The MTOC and SL can then polarize to the contact site for the eventual establishment of the mature 
cNK-IS. LR: lipid rafts. Red arrows: On going pathways. The black arrow indicates the directional movement of the MTOC and 
SL to the cSMAC. SAP competes the SHP-1 binding to 2B4 (grey arrow). 
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Table 1. Activating receptor complexes 
Estructure Receptor Adaptor molecule Signaling molecules  Cellular Ligand 

NKG2D DAP10 PI3K, Grb2 MICA-B, ULBPs 
CD94/NKG2C DAP12 Lck, Syk HLA-E 

 
L-L 

NKp80 - - AICL 
NKp30 CD3ζ Lck, Syk Viral hemaglutinins 
NKp44 DAP12 Lck, Syk  Viral hemaglutinins 
NKp46 FcεRIγ, CD3ζ Lck, Syk  - 
KIR2DS DAP12 Lck, Syk HLA-I 
2B4 LAT EAT-2, SAP, Fyn, 3BP2 Grb2, Plcγ CD48 
NTB-A - EAT-2, SAP NTB-A 

 
 
 
Ig-L 

CRACC - EAT-2, SAP? CRACC 
The two families of receptors are colour-coded (L-L: lectin-like receptors; Ig-L: Immunoglobulin-like receptors). Signaling 
molecules recruited to the cytoplasmic tails and the specific cellular ligands involved in the triggering of the NK cell cytotoxic 
activity are enumerated in the fourth and fifth columns. The adaptor molecules DAP12, FcεRIγ and CD3ζ contain ITAM 
motifs, which are phosphorylated by Lck upon ligand binding. This process generates a docking site for the recruitment of 
Syk kinases. DAP10 contains the YxNM motif for the binding of PI3K and Grb2. Currently there is controversy about the 
recruitment of SAP by the ITSM motifs present in CRACC. The adaptor molecule LAT recruits PLCγ 
and Grb2 upon the engagement of CD48 by 2B4. 
 
since it is able to bind 2B4 and block the binding of SHP-1. 
Another human disease, the Wiskott Aldrich syndrome 
(WAS), is characterized by an altered formation of the 
cNK-IS (36). As in the case of SAP, the WAS protein 
(WASp) also accumulates at the cNK-IS and is, along with 
SLP-76 and Vav-1, an important signaling molecule, 
promoting the polymerization of actin at the early cNK-IS 
(figure 2B). 
 
3.2.2. Supramolecular organization of the mature cNK-
IS 

The NK cell cytotoxic process is mediated by the 
polarized exocytosis to the synaptic cleft of SL containing 
perforin, granzyme B (GB) and Fas-L, which trigger the 
apoptotic pathways in target cells by the binding of GB 
receptors and Fas (37-40). Kinesin driven SL moves along 
the microtubules and reach the MTOC at the contact site. 
MTOC polarization to the synapse assures the secretion of 
SL to a specific target cell by the restriction of the delivery 
of lytic substances into the cSMAC (38). This space is 
confined by the pSMAC, the area enriched in talin, actin 
and LFA-1 that is also responsible for the adhesion 
platform required for stable conjugates to be obtained 
(figure 3). The recruitment of the MTOC starts within the 
first 5 minutes of the interaction, before the redistribution 
of talin to the pSMAC and the mature synapse is 
constituted. Interestingly, a fraction of signaling molecules 
clustered at the cSMAC in the mature cNK-IS, including 
Lck, Fyn, ZAP-70, Pyk2, paxilin and Grb2, is localized 
around the MTOC (14, 41-43). Others such as Jnk, Rac, 
Cdc42 and Vav-1 are localized on the microtubules (44-
46). It is then plausible to speculate that the reorientation of 
the MTOC is also able to transport signaling molecules to 
the synapse and therefore helps to keep high concentrations 
of these molecules at the contact site, which is essential for 
sustaining activating signals and the eventual killing of the 
target. An important role of some of these signaling 
molecules in MTOC polarization to the synapse has also 
been demonstrated (47). 

 
By contrast to CTL, that trigger the lytic process 

upon engagement of only one receptor, NK cells express 
many different activating receptors (Table 1). The behavior 
of only a few of them during cNK-IS organization has been 

studied. That is the case of NKG2D in activated human NK 
cells (48). Experiments done in the NKL cell line and 
primary activated NK cells have shown that the expression 
of the NKG2D ligand MICB on susceptible MHC class I 
negative target cells induce the clustering of the 
NKG2D/DAP10 receptor complex at the cSMAC 
surrounded by a ring of f-acting at the pSMAC (Figure 1), 
which suggests that the clustering at the cSMAC is mainly 
mediated by the signaling triggered by this receptor. Since 
lipid rafts accumulate at the NK-IS independently of the 
NKG2D ligand expression on target cells, it is plausible to 
speculate the existence of different mechanisms for the 
recruitment of lipid rafts and NKG2D to the NK-IS. 
Recently, the PI3K binding site present in DAP10 (YxxM) 
has been found to be required for the recruitment of this 
molecule to the cNK-IS (49). Interestingly, this motif is 
necessary for the NKG2D endocytosis in B cells lines and 
activated NK cells as well as for the traffic of DAP10 to SL 
polarized to the cNK-IS (50) (Roda-Navarro and Reyburn, 
in preparation). Upon target cell recognition, endosomes 
containing NKG2D/DAP10 are polarized toward the 
intercellular contact and interestingly only the engagement 
of NKG2D by MICB expressed on target cells trigger the 
polarized exocytosis of this intracellular NKG2D/DAP10 at 
the cNK-IS (Roda-Navarro and Reyburn, in preparation). 
We then propose this polarized exocytosis as a new 
mechanism for receptor recruitment to the synapse, that 
may constitutes a checkpoint for NK cell activation, in a 
similar way that CTLA-4 is secreted in SL to the T cell 
synapse in a signal strength-dependent manner (51). The 
polarized exocytosis of SL containing NKG2D/DAP10 
may also help the unidirectional delivery of lytic substances 
to MICB expressing target cells, as was previously 
postulated for the TCR at the cytotoxic synapse constituted 
by CTL and APC (52, 53). 
 

cNK-IS formed between resting ex-vivo isolated 
NK cells and MHC class I negative target cells have also 
been found however the reduced lytic activity shown by 
these cells. Initially, perforin was found at the cSMAC 
surrounded by integrins, f-acting and CD2 at the pSMAC 
of this mature synapse observed after 30 minutes of 
interaction. Moreover, pSMAC organization and perforin 
polarization to the cSMAC were found to be sequential 
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processes, which require actin and tubulin, respectively (54). In 
other experiments, cell conjugates formed between NK cells 
and target cells expressing the 2B4 ligand CD48 showed the 
accumulation of the activating receptor complex 2B4/LAT at 
the cSMAC, surrounded by a pSMAC characterized by the 
accumulation of talin in the NK cell and ICAM-1 on the target 
cell. Moreover, CD48 also accumulated at this synapse (29). 
The topography of this synapse observed at 5 minutes of the 
conjugate formation is consistent with the recruitment of 
2B4 and LAT to lipid rafts observed in different systems, 
and with the organization of signaling molecules (cSMAC) 
and LFA-1 (pSMAC) observed at the cNK-IS in activated 
NK cells (14, 55). 
 
3.3. The activating NK-IS 

The IS has been described during the interaction 
between CD4+ helper, CD8+ CTL and B cells with antigen 
presenting cells (APC) (11, 56, 57) as a platform for the 
extended interactions required to trigger the differentiation of 
naïve T and B cells to their effector state. Recently it has 
become clear that resting NK cells require activation by DC to 
differentiate to their full function effector state (58, 59). This 
process is dependent on the contact between NK and DC cells, 
which importantly can be observed in vivo in sites of 
inflammation and lymph nodes (60, 61). Upon activation by 
DC, NK cells can efficiently produce cytokines, proliferate and 
reach the highest cytotoxic state. This process is especially 
important in the CD56bright CD16- subset that only acquires 
cytotoxicity upon prolonged activation (61). Among the 
factors required for NK cell activation by DC are the IFN-α, 
IL12, IL18 and IL15 and, interestingly, the polarization to 
the interface of NK-DC contacts of IL12, IL18 and 
adhesion molecules has been observed after long 
interaction time (Figure 1) (59, 62). 

 
Notwithstanding prior data, the early events 

occurring at the NK-IS formed between resting NK cells 
and MHC class Ibright mDC have only been investigated in a 
recent study (16). This study shows the formation of a 
regulatory NK-IS, which does not trigger cytolysis. Resting 
NK cell activation is mediated by the rapid organization of 
this NK-IS containing central but separated clusters of 
inhibitory KIR, CD94 and IL15-R surrounded by a ring of 
talin and LFA-1 at the periphery (Figure 1). The inhibitory 
receptor/MHC class I interaction assures the protection of 
the mDC from the NK cell lytic activity while the IL15-
R/IL15 binding induce NK cell survival. Although the 
resultant NK cell activation, as demonstrated by CD69 
induction and triggering of calcium fluxes, this synapse 
presents features of an iNK-IS such as un-polarized 
Perforin and clustering of KIR and MHC class I that do not 
allow the cytolitic process to be triggered. Therefore, this 
activating interaction should be defined as a new NK-IS, 
namely here the activating NK-IS. 

 
A reciprocal regulatory function in NK cell 

homotipic contacts, and in NK-macrophages interactions 
have also been described (63, 64). Overall, the aNK-IS 
constituted with different immune cells contributes to the 
NK cell differentiation from the naïve to the effector state 
able to exert an efficient Natural Killing. Thus, the aNK-IS 
is a nascent research field that deserves future work. 

4. PHYSIOLOGICAL SIGNIFICANCE OF THE NK-
IS 
 

The IS seems to be a platform where surface 
receptors and intracellular signaling molecules arrive at so 
as to exert their coordinated functions in order to achieve 
the cellular response: differentiation from naïve to effector 
states, missing self recognition, or the spatially restricted 
cytotoxicity observed in CTL and NK cells. Therefore, the 
functional impact of the IS vary depending on the nature of 
contacting cells and the physiological circumstances where 
it takes place. 
 

As previously discussed, the NK cell tolerance 
toward healthy tissues is achieved by the missing self 
recognition. Ligation of either inhibitory KIR or the 
CD94/NKG2A heterodimer abolishes the redistribution of 
the multimolecular signaling complex associated with lipid 
rafts to the cNK-IS (65, 66). Vav-1 dephosphorylation has 
been proposed as the mechanism for inhibition of the 
cellular cytotoxicity (67). In this regard, the NK-IS 
organizes in close proximity activating receptors, necessary 
for Lck activation, and inhibitory receptors, which recruit 
SHP-1 upon being trans-phosphorylated by Lck. The close 
proximity of SHP-1 and Vav-1, which becomes 
phosphorylated upon LFA-1/ICAM-1 engagement, allows 
its desphosphorylation (figure 2A). Conversely, the absence 
of SHP-1 will allow the acting polimeryzation and the 
inside-out integrin signaling needed for the recruitment of 
lipid rafts and activating receptors, and for the formation of 
the tight adhesion, respectively. 

 
The aberrant response of NK cells lacking 

components of the organized cNK-IS in a healthy situation, 
such as SAP or WASp (35, 36), clearly demonstrate the 
significance of the synapse for a normal NK cell immune 
response to be obtained. The most recent contribution to the 
field showing that the synapse organization is directly 
responsible for the cellular response has been the 
description of the aNK-IS (section 3.3), where clusters of 
the KIR/MHC-I engagement promotes the target cell 
protection simultaneously with the NK cell activation by 
the recruitment of IL15-R (16). 

 
It is also proposed that the IS offers checkpoints 

for lymphocyte inhibition and activation. The intensity and 
quality of the signal expressed on the target cell will 
regulate the recruitment of inhibitory and activating 
signaling molecules to the synapse. Regulated, polarized 
exocytosis to the synapse of molecules such as CTLA-4 in 
T cells and NKG2D/DAP10 in NK cells (51) (Roda-
Navarro and Reyburn, in preparation) suggests one cellular 
mechanism for the achievement of these checkpoints. This 
is possible because of the MTOC and SL polarization to the 
synapse. Interestingly, when one NK cell simultaneously 
interacts with a susceptible and a resistant target cell the 
MTOC only polarizes to the former target, which enables 
its selective cytolysis by the regulated delivery of SL (38, 
68). This constitutes the cellular mechanism explaining 
how activation and inhibition are spatially and temporally 
restricted (10). Therefore, the NK-IS is responsible for this 
spatial and temporally confined NK cell function.
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Figure 3. Organization of the mature cNK-IS. The MTOC has already polarized to the contact site along with the associated 
signaling molecules, and the ring of integrins and cytosqueletal components surrounding activating receptors is already 
organized. Polarized secretion of SL containing perforin, granzyme B (GB), Fas-L and NKG2D/DAP10 to the cSMAC triggers 
the apoptotic pathways in the target cell upon the engagement of GB receptors and Fas. Black arrows indicate the directional 
movement of signaling molecules on the microtubules (MT) and SL to the cSMAC. LR: lipid rafts. 

 
As a phenomenon associated to the synapse 

assembly, the intercellular transfer of proteins is a new and 
potentially fruitful research field (extensively reviewed in 
(69-71). It has been proposed to be involved, for example, 
in the initiation and termination of immune responses or in 
the regulation of the extent of the lymphocyte response (48, 
72, 73). Acquisition of external proteins can also alter 
functional capabilities or add to the cell new features (74). 
For example, NK cells are infected by the EBV only upon 
synaptic acquisition of the receptor for the virus entry 
CD21 (75). Then, pathogens can also take advantage of the 
synapse assembly. This is also shown by the viral synapse 
organized in lymphocytes infected with the HTLV-1 virus, 
which favors the spreading of the infection (76). 

 
Immune cells can be connected through long 

distances by the formation of membrane connective 
structures (MCS)/nanotubes (10, 29, 48, 77-79). In NK 
cells it has been demonstrated that these structures are 
formed in cytotoxic interactions when a NK cell detaches 
from the target cell (29). The strong adhesion between the 

NK and the target cell may be the force originating these 
membrane tethers. Interestingly, MCS/nanotubes are not 
observed in non-cytotoxic interactions. Although it is not 
clear what is the function of these structures, surface 
receptors, intracellular organelles and calcium fluxes are 
transported inside them (48, 78-81). Importantly, activating 
receptors transfer from NK cells to target cells at the distal 
end of MCS/nanotubes, which indicates that they can offer 
a mechanism for the intercellular protein transfer (29, 69). 
Finally, viral proteins are also transported through 
nanotubes formed during the detachment of T cell 
conjugates (77). 
 
5. MICROSPECTROSCOPY TECHNIQUES FOR 
THE STUDY OF THE NK-IS 
 

3D fluorescence imaging microscopy has been 
mainly used to get descriptive information about the 
organization of the IS, including the NK-IS. This 
technology is limited by a spatial resolution of a few 
hundred nm, due to the diffractive nature of the light, and 
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an acquisition time that depends on the illumination system 
used. Since the activity of proteins in living cells is 
confined by spatial and temporal restrictions, microscopy 
approaches improving the spatial resolution beyond the 
diffraction limit and adjusting the acquisition times to the 
biological process are necessary. Microspectroscopy, which 
combines different microscope set-ups with fluorescence 
biosensors, is already giving us information about the 
spatio-temporal regulation of protein activities, protein-
protein interactions, and the environment surrounding 
proteins in living cells (82). 

 
Fluorescence Resonance Energy Transfer (FRET) 

measurements provides a useful tool for detection and 
quantification of protein interactions in living cells.  
Interacting proteins should be located in close proximity 
with a maximun separation of around 6 nm (82). This 
resolution may help not only to precisely know where 
signaling pathways are switched on and off, but also the 
activation state of enzymes regulated by, for example, 
postranslational modifications (83, 84). Although there 
are different methods to measure FRET, quantifying the 
lifetime of the donor chromophore by Fluorescence 
Lifetime Imaging Microscopy (FLIM) is the most robust 
method described (85). Importantly, FLIM is also 
suitable to get information about the environment where 
proteins reside. Advantages of FRET are illustrated in 
different works: The well-established clustering of lipid 
rafts at IS has been recently challenged by Nichols and 
co-workers in a study where the clustering of GPI-
anchored proteins at T cell synapse was not detected by 
this approach (86). The spatially restricted 
phosphorylation of KIR in microclusers at the iNK-IS 
(section 3.1) has also been observed using this approach 
(19). 

 
Other techniques such as Total Internal 

Reflection Microscopy (TIRFM) (87) and Stimulated 
Emission Detection (STED) (88) are able to obtain a 
resolution of about 100 nm, and therefore are useful for 
studying processes like the organization of membranes and 
endo- or exocytosis during endosome trafficking. 

 
The diffusion properties, interaction and 

aggregation of molecules can be studied by Fluorescence 
Correlation and Cross-Correlation Spectroscopy (FCS and 
FCCS) (89, 90). These techniques along with Fluorescence 
Recovery after Photobleaching (FRAP) (91) are suitable to 
study the dynamics of molecules in living cells. Although 
only average values can be obtained by these methods, 
Single Particle Tracking (SPT) (92) allows the trajectory of 
a particle, such a quantum dot bound to a small number of 
molecules (1-10), to be studied. 

 
New Electron Microscopy (EM) methodologies 

such as GRAB (GFP Recognition After Photobleaching) 
(93) and Wet Scanning EM (94) have been described. The 
former detects electrodense precipitates formed by GFP 
upon radiation exposure and produces high quality EM to 
reveal detailed spatial information, whilst the latter allows 
the examination of fully hydrated samples with a resolution 
up to 20 nm. 

Improvements to the imaging techniques, 
combined with powerful computer methods for data 
analysis will be required to understand the dynamic 
functional connectivity among the components of signaling 
networks, which regulates the IS organization allowing 
then the coordinated immune response. 
 
6. PERSPECTIVE 
 

Almost 10 years after the discovery of the NK-IS, 
many of the contributions published are fair descriptions of 
its supramolecular organization. Today there are several 
major challenges to be addressed in this research field:  

 
- To understand the molecular mechanisms for the IS 
assembly. Endosome polarized exocytosis described 
for the TCR, CTLA-4 and Fas-L (37, 51, 52), and 
association with lipid rafts or tetraspanins (95-97), 
which help the lateral organization of signaling 
molecules, have been proposed as mechanisms for the 
IS assembly. Another hypothesis proposed is that the 
distribution of surface molecules into distinct 
domains is determined by the length of the 
extracellular domain (98, 99). The recruitment of 
signaling molecules by these and other mechanisms, 
such as cytosolic diffusion and motor proteins, 
require further study. 
 
- To understand the significance of the IS and the 
intercellular protein transfer. At this point, protein 
transfer, that increases the cellular proteome, is 
especially intriguing. As previously discussed, 
proteins acquired promote changes in cellular 
behaviour, can be re-presented to other cells to 
terminate or sustain immune responses, or can help to 
promote viral infection propagation. Moreover, 
synaptic intercellular transfer of molecules could 
assists cell-cell dissociation in order to get an 
efficient immune response (29, 100). All these 
hypotheses should be further tested. 
 
- To verify, in vivo, the observations performed by in 
vitro studies. The T cell synapse has been observed to 
form in vivo during the killing of virus infected 
astrocytes by CTL (101, 102). In addition, MHC class 
I acquisition by NK cells has also been observed to occur 
in vivo (103). However, it has not been studied so far the 
NK cell immune response in the 3D environment found in 
tissues and whether synaptic protein transfer and 
MCS/nanotubes formation play any essential role in vivo. 
How NK cells are activated/primed by contact with other 
cells, ECM components, or gradients of soluble 
factors during the recruitment to inflamatory sites 
also deserve further investigation. 
 
- To study the spatio-temporal regulation of the 
activitiy of signaling components (kinases, 
phosphatases, GTPases, etc…), and describe and 
quantify the functional connections among them. This 
will facilitate our understanding of how the NK cell 
immune response is orchestrated and how this precise 
regulation is altered during pathological processes. 
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