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Abstract

The fluctuation theorem, which quantifies the probability that a system returns
energy to its power supply for small times, is shown experimentally and numer-
ically to hold for a deterministic, one-particle, chaotic system. This indicates
that the validity of this theorem is not restricted to many-particle systems or

stochastic processes, as has been previously assumed.

Introduction

In the last fifteen years a set of closely related formulations of the Fluctuation
Theorem (FT) have been proposed. This theorem describes deviations from the
Second Law of Thermodynamics for small systems at small time scales. (For
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reviews, see (1, 2, 3]). The FT is of fundamental importance for nanomachines
and for biophysical motors [3]. We consider here the formulation

p(Jr) _ &=
p(_Jf) a ’ (1)

where J, is the mean flux of heat, momentum, work, etc. during the time
7. Here, we consider the mean flux of the work W, i.e. the mean power
Jr = W, /7. p(J:) is the probability that the power supply enables the system
to perform a work W.., whereas p(—J.) is the probability that the system sends
the energy W, back to its power supply.

The FT was first shown to hold for shear-flow simulations [4]. Later on,
it was proven by considering time reversible (highly) chaotic Anosov systems
consisting of many particles [5]. Thereafter, experimental verfications were re-
ported for: i) fluctuations in turbulent flows of fluids [6, 7, 8]; ii) a brownian
particle in an optical trap, which is translated by forces in the order of pico-
Newton [9, 10]; and iii) voltage fluctuations of a resistor at currents in the order
of pico-Ampere [11].

At the turn of the millenium, several investigations [12, 13, 14, 15, 16]
showed that a many-particle system is not necessary for the validity of the FT,
provided stochasticity is assumed. Moreover, Feitosa and Menon [17] showed
that the validity of the FT is not restricted to processes governed by molecular
fluctuations. In fact, their experimental demonstrations were carried out with
a granular medium consisting of shaken mm-sized beads. Further extensions
of the FT to macroscopic systems were also performed in simulations of chains
of coupled nonlinear oscillators [18, 19] and of an earthquake model consisting
of chains of blocks connected by springs [20]. Further loosening of the condi-
tions for the FT is found in simulations of a single particle, which is shaken
chaotically in a Duffing potential [21]. In the present work we shall present mea-
surements of such a one-particle system. However, since the chaotic shaking in
a Duffing potential proved difficult to be implemented experimentally, we shall
investigate a periodically driven particle moving chaotically in a Sinai-billiard
configuration. We will compare the experimental results with simulations and
we will show that the FT, as given by Eq. (1), holds.

1 Experiments

A glass sphere (diameter: 1.2 cm; mass: m = 2.21 g) was placed in a box (15cm
x 15cm; height: 1.5cm) with 4x4 cylindrical steel pins (diameter: 0.5cm;
height: 1.5cm), which were fixed equidistantly on the bottom of the box. A
steel wall surrounds the box at its edges. The distance between the pins is
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Figure 1: Scheme of the boz that was used in the ezperiments. The black circles indicate
the (fized) pins and the open circle the (moving) sphere with an exemplary velocity indicated
by the arrow.

d = 3.75 cm, while the distance between the pins and the wall of the box is d/2.
A scheme of the box is shown in Fig. 1. The box with the sphere is placed
on a gyratory mixer (GM 1, Ratek Instruments, Australia). This gyratory
device operates in such a way that a perpendicular line fixed at the center of
the box’s bottom precesses about verticality with an adjustable frequency f
and angle a. A formal description of this movement is given in the following.
Given polar coordinates (r,#) on the bottom of the box (see Fig. 1), the
laboratory cylindrical coordinates are 7(r,0,t) = r cos(a), 6(r,0,t) = 6 and
Z(r,0,t) = r sin(a) cos(2m ft + #). This forced motion in z-direction supplies
the sphere with potential energy. The gravitational force F acting on the sphere
is:

F =mg sin(a) [sin(27 ft)& + cos(2m ft)7] (2)

with the gravitational acceleration g = 981 cm/s?. & and § are the unit vectors
on the bottom of the box. For this experiment we chose f = 0.6 Hz and o = 5°.
Although the driving of the system is periodical, the well-known divergence of
nearby trajectories in this Sinai-billiard geometry causes a chaotic motion of
the sphere.

The sphere was monitored by a video equipment every 3.6 x 10735 (278
fps). 1.2 x 107 frames (12 hours) were recorded. The position of the sphere
was tracked by image analysis and its velocity calculated from the positions in
successive frames.
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Figure 2: Ezperimental results. (a) Probability distribution functions of the mean power
Jr. 7 =01s (+), 0.4s (x), 0.6s (3), 0.7s (o), 0.8s (A) and 1s (¢). (b) Linearizations
obtained from the distribution functions shown in (a). (c) B+ = 7/Sr, where S; are the

slopes of the straight lines shown in (b).

Given a time 7, we determined
1 t+r
JT=-/ F.vdt 3)
T Ji

where ¥ is the recorded velocity of the sphere and F is the gravitational force
acting on the sphere. The time dependence of F', due to the inclination of the
box, was determined by registering the rotating motion of the corners of the
box.

Returning now to the Introduction, it is useful for the understanding of
these investigations to define the terms ”system” and ”power supply”. The
system in our case is the sphere; the power supply consists of potential energy
provided by the gyratory mixer to the sphere. During time intervals in which
F-> 0, the sphere will move downwards translating potential energy supplied
by the mixer into kinetic energy. During time intervals in which F.i< 0, the
sphere moves against gravity, i.e. it restores potential energy out of its kinetic
energy. The integral in Eq. (3) tells us which of the two processes (consump-
tion or storage of potential energy) predominates in the interval of duration 7.

Fig. 2a shows the measured probability distribution function p(J;). Note
that the integral over the negative tail of the curves (J, < 0) becomes smaller
as T increases. In other words, flows against gravity become, as expected from
the FT, increasingly improbable for increasing times of observation. For a
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Figure 3: As Fig. 2, but for simulations using restitution coefficients ep = ew = 0.7.
7=0.05s (+), 0.25s (x), 0.5s (3), 0.75s (o), 1.0s (A) and 1.25s (o).

quantitative check of the FT, as given by Eq. (1), we plotted In [p(J:)/p(—J7)]
versus J, in Fig. 2b. We obtain surprisingly linear relationships, confirming
Eq. (1). Furthermore, Fig. 2c shows 8; = 7/S, versus 7, where S; is the slope
of the straight lines in Fig. 2b. In accordance with original derivations of the
FT [1, 2, 5], as well as with a number of simulations [16, 20] and experiments
[6], Fig. 2c shows that (3, saturates for large 7 to an effective ”temperature”
foo = 25 erg.

2 Simulations

As an approximation, we simulated the system in two dimensions, considering
a circle (diameter: 1.2 cm) moving without friction and without rotation. The
dimensions of the box and the pins were chosen the same as in the experiments.
For the collision of the circle with the pins and with the wall, the component
of the velocity (after the collision) perpendicular to a pin or to the wall was
multiplied by the restitution coefficient. 4 x 107 snapshots were evaluated.

For the restitution coefficients (e, for collisions with the wall and e, for
collisions with the pins) we used two parameter sets: i) e, = e, = 0.7; and ii)
ew =1, e, = 0.7. The set i) was used to mimic the experimental situation,
while the set ii) was used to determine the effect of elastic collisions with the
wall. For o = 0 and e, = e, = 1 the system is equivalent to the ”classical”
Sinai-billiard found in the literature. In the latter, collisions with the wall are
equivalent to an absent wall and an infinite number of pins behind it. Fig.
3 shows the simulations using parameter set i) and Fig. 4 those using set ii).
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Figure 4: As Fig. 2, but for simulations using restitution coefficients ep = 0.7 and e = 1,
i.e. the collisions of the sphere with the wall are elastic. 7 =0.05s (+), 0.2s (x), 0.4s (OQ),
0.6s (o), 0.8s (A) and 1.0s (o).

3 Discussion

In order to check the robustness of experimental and numerical results with
respect to the number of evaluated points, we reduced this number to one
half and obtained invariant distributions p(J;) (Figs. 2a, 3a and 4a). We did
not obtain Gaussian distributions p(J;), as reported for other experiments and
simulations [6, 10, 15, 20]. However, as shown elsewhere [11, 22, 23|, Gaussian
distributions are not essential for the validity of the FT. In our distributions,
we observe a tendency to an enhanced p(J;) at J, = 0, which is due to the
slowing down of a sphere right after a collision.

In our simulations with inelastic collisions (Fig. 3c) we obtain an effective
"temperature” 3. ~ 108 erg. In the simulations with elastic collisions with the
wall (Fig. 4c), this "temperature” is 3/, = 197 erg. For a better understanding
of the deviations of 3/, and 3/, from the experimental value of 8 = 25erg,
we determined the mean kinetic energy (Fk;,) in the three cases. For the ex-
periments, (Frn) = 278erg. In the simulations with inelastic collisions (Fig.
3), (Ekin)’ = 2100erg, the deviations from the experimental value being ex-
plainable by the omission of friction (besides the omission of rotation and the
reduction to two dimensions) in the calculations. Even less dissipation occurs
in the simulations considering elastic collisions with the wall (Fig. 4); thus an
even larger mean kinetic energy, namely (Ejy;,)" = 2400erg, is obtained. As
expected, we find a positive correlation between the effective ”temperatures”

"

B < BL. < B and the mean kinetic energies (Ekin) < (Ekin) < (Ekin)"-
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Nevertheless, one should not overestimate the results concerning effective ” tem-
peratures” of a one-particle, macroscopic system. Instead, attention should be
paid to the linearity of Figs. 2b, 3b and 4b and the saturation for large 7 in
Figs. 2c, 3c and 4c.

4 Conclusions

We have shown here, both experimentally and numerically, that it is not neces-
sary to assume very small systems, a large number of particles or stochasticity
for the FT to hold. In fact, our macroscopic, deterministic, mechanical system,
consisting of only one chaotic particle can be described by the FT, as given by
Eq. (1).

The next step is in the hands of mathematicians: the loosening of conditions
necessary for the validity of the fluctuation theorem.
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