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Abstract

Molecular phenotyping technologies (e.g., transcriptomics, proteomics, and metabolomics) offer the possibility to
simultaneously obtain multivariate time series (MTS) data from different levels of information processing and metabolic
conversions in biological systems. As a result, MTS data capture the dynamics of biochemical processes and components
whose couplings may involve different scales and exhibit temporal changes. Therefore, it is important to develop methods
for determining the time segments in MTS data, which may correspond to critical biochemical events reflected in the
coupling of the system’s components. Here we provide a novel network-based formalization of the MTS segmentation
problem based on temporal dependencies and the covariance structure of the data. We demonstrate that the problem of
partitioning MTS data into k segments to maximize a distance function, operating on polynomially computable network
properties, often used in analysis of biological network, can be efficiently solved. To enable biological interpretation, we also
propose a breakpoint-penalty (BP-penalty) formulation for determining MTS segmentation which combines a distance
function with the number/length of segments. Our empirical analyses of synthetic benchmark data as well as time-resolved
transcriptomics data from the metabolic and cell cycles of Saccharomyces cerevisiae demonstrate that the proposed method
accurately infers the phases in the temporal compartmentalization of biological processes. In addition, through comparison
on the same data sets, we show that the results from the proposed formalization of the MTS segmentation problem match
biological knowledge and provide more rigorous statistical support in comparison to the contending state-of-the-art
methods.
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Introduction

Time-resolved data from different cellular processes hold the

promise of identifying the dynamics and relations of key system

descriptors mapped into putative metabolic reactions, allosteric

regulations, and entire signaling pathways. These data are usually

referred to as multivariate time series (MTS) since high-throughput

technologies allow for simultaneous monitoring of multiple

biological entities (i.e., genes, proteins, metabolites) over time.

MTS data can capture the dynamics of cellular states constantly

adjusting to signals from the environment.

Data from time-resolved experiments contain important tem-

poral and process information, i.e., not only are two (not

necessarily consecutive) time points inherently dependent, but

also there is a relationship between the instantaneous levels of two

measured components due to their proximity in a pathway [1]. An

important problem in systems biology is then that of developing

methods which would allow for MTS-driven automated construc-

tion of time-resolved models that could explain the observed multi-

level dependencies [2].

An apparent solution is to determine a representation of the

MTS data by which the transient states, corresponding to

particular cellular phases, can be extracted. Time segmentation is

one solution whereby a single time series T~ftlgn
l~1 of length n is

first partitioned into k non-overlapping contiguous segments,

P~f½i0,i1�,½i1z1,i2�, . . . ,½ik{1z1,ik�g, 1ƒijvijz1ƒn, 0ƒjvk,

that span the whole series, i.e., i0~1 and ik~n. Each segment is

represented by either a single quantity, e.g., the mean/median of

the time series elements in the segment or the slope of the line

yielding the best fit [3]. The difference between a given segment

and its representative is measured by using some distance measure

d (e.g., Euclidean distance).

The SINGLE k-SEGMENTATION problem is that of determining the

partition P of a given time series into k segments together with the

corresponding segment representatives rj , 1ƒjƒk, which mini-

mize the following objective function D~
Pk{1

j~0

Pijz1

l~ij
d(tl ,rj).

The SINGLE k-SEGMENTATION problem can be solved in polynomial

time in the order of O(n2k) by using dynamic programming [3,4].

Moreover, for a long time series (i.e., large n), there exist algorithms

which solve the problem in subquadratic time with provable

constant approximation ratios [5,6]. The problem has also been

formalized and efficiently solved in a Bayesian framework [7], and

has found various applications in data mining, classification, and

change-point detection (see the review [8]). In contrast, the related

SINGLE (k,h)-SEGMENTATION problem of selecting k from a set of h

given representatives to optimize the objective D is NP-hard when
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hvk, and an 3-approximation algorithm has been proposed in the

case when d is the Euclidean distance [9].

While in the SINGLE k-SEGMENTATION problem, the partition of a

time series is induced by the chosen distance measure with respect

to a well-defined representative, this is often not the case when

multiple time series are considered. Finding a partition in which

multiple time-resolved variables unanimously agree is nontrivial:

What constitutes a segment in one variable may not be a segment

in another. Moreover, the changes in time-resolved behavior of

different variables may not follow the same scale. In addition, to

provide a relation to well-established statistical approaches, it is

necessary that the segmentation captures the changes in the

covariance structure of the MTS data. Therefore, the generaliza-

tion of the SINGLE k-SEGMENTATION problem to MTS data has

several potential applications, such as: inferring the critical events

occurring in temporally changing systems, detecting periodic or

unusual patterns in system’s functions [10,11], and extracting

temporal abstractions for model development [12–15].

The existing approaches for segmentation of MTS data are

heuristic, and can be classified into three groups based on the

employed methods: (1) clustering, (2) graphical models, and (3)

genetic algorithms. One of the most important issues with MTS

segmentation is the assessment of the resulting partition of

segments, as established reference solutions do not exist. All of

the existing heuristics thus postulate that an adequate MTS

segmentation optimizes a pre-specified function/measure whose

solution is in turn regarded as a reference. In a biological setting,

the reference state is usually obtained from expert knowledge, one

which we rely in this study.

The clustering approaches rely on the homogeneity assumption

within segments. They model the segmentation problem of MTS

data by grouping time points with the constraint that the data in a

cluster must belong to successive time points [11]. Another

method based on clustering relies on finding segments for which

the distribution of clustered entities approaches the uniform

distribution [12,15]. While this state-of-the-art method has found

application in automated model reconstruction, its outcome

depends on supervised selection of parameter values. Some of

these parameters include the minimum, lmin, and maximum, lmax,

length of segments. Approaches based on k-nearest neighbor

search in conjunction with common principle components [16],

Bayesian clustering [17], fuzzy maximum likelihood clustering of

MTS data have also been investigated [18].

A combination of graphical models and maximum likelihood

estimation (MLE) has been considered in the second class of

methods for MTS segmentation. The idea is to capture mutual

dependencies between multiple time series while considering the

temporal dependencies within individual series. To this end, the

time series are modeled as a special class of random processes

[10,19–21]. In the third class, MTS segmentation is addressed

with genetic algorithms by which an objective function is

optimized. For instance, in [22], SINGLE k-SEGMENTATION is

extended to MTS data by considering the slope variance for each

segment as an objective function to be minimized. Moreover, the

change of the cross-correlation between two variables has also

been used as an optimization criterion [23].

Here we propose a network-based formulation for segmentation

of MTS data. Our premise is that cellular transition states are

reflected in the changes of multiple interrelated biological entities,

which can be effectively captured via networks reconstructed from

the data. In this way, one accounts for the dependence not only of

time points but also of the considered entities. We then investigate

to what extent the properties of the reconstructed networks reflect

the transition states. Given a polynomially computable distance

measure, we demonstrate that finding the partition with minimum

number of segments which maximize the sum of distances over all

consecutive segments can be solved in polynomial time. This

problem can be solved by determining the longest path in a

directed acyclic graph derived from the MTS data. In addition, we

propose a breakpoint-penalty (BP-penalty) which penalizes the

inclusion of breakpoints. Coupling of the BP-penalty with the

maximization of a distance function allows the investigation of the

interplay between the weight of a path, derived from the MTS

data, the number of considered segments as well as the distribution

of segment lengths. Further, we explore the advantages and

shortcomings of using the proposed formulation in obtaining

biologically meaningful interpretations. The resulting framework is

shown to outperform the state-of-the-art methods on synthetic as

well as transcriptomics MTS data sets from Saccharomyces cerevisiae

(yeast).

Methods

Network Properties
Several network properties of biological networks, obtained

from existing biological knowledge or reconstructed from data,

have already found important applications in biological studies

[24,25]. Network properties can be defined on global, local, and

local-global level depending on the information required for their

computation and the network entities to which they pertain.

Global network properties, such as: the number of edges, number

of nodes, independence number, or chromatic number, charac-

terize and require knowledge of the entire network. On the other

hand, the degree of a node u is a local property defined as the

number of edges incident on u. It can be used to quantify the

overall activity of the biological entity, modeled by the node u, in

experiments from which the network has been reconstructed. This

network property can be extended on the global level by taking the

average degree over all nodes.

Betweenness centrality of a node u is defined by the number of

shortest paths which pass through u [26]. This is a local-global

property as its computation requires information about the entire

network, but characterizes a single node. It can be seen as a

measure of the control power the node has over information

transfer in the network [27]. The average betweenness centrality

over all nodes can then be regarded as a global property for the

network. Closeness centrality of a node u is defined by the inverse

of the average length of the shortest paths to all other nodes in the

given network [28]. This local-global property can be regarded as

a measure of how well the node is integrated in the network. Local

and local-global network properties, such as: degree and

betweenness centrality, have been used to characterize and predict

essential genes in protein-protein interaction and co-expression

networks [29,30]. Moreover, other centrality measures have been

associated to genes and proteins playing a key role in cellular

processes [27,31,32].

Distance Measures for Network Properties
The distance between two graphs, G and H, over the same set

of nodes, i.e., V(G)~V (H), can be expressed in terms of: (1)

local(-global) and (2) global network properties. Given a network

G, let X denote a local(-global) property, and let xi be the value of

the property X for a node i. A network G on m nodes can then be

described by the vector XG~½x1
G, . . . ,xm

G �. The distance between

two networks G and H , can then be defined with the l-norm of the

vector (XG{XH ):

Time Series Segmentation
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dX (G,H)~
Xm

i~1

xi
G{xi

H

� �l

 !1
l

, ð1Þ

where l§1. Note that for l~2, Eq. (1) is the Euclidean distance

between the vectors XG and XH . For the second case, let X be a

global property, and let xG denote its value for a graph G. The

distance between two networks G and H can be defined in terms

of the global property as follows:

dX (G,H)~
x(GDH)

x(G|H)
, ð2Þ

where GDH and G|H denote the symmetric difference and the

union of G and H, respectively. For instance, if X is the relative

density of a network G, defined as the ratio of the number of edges

to the number of nodes in G, then the distance is:

dX (G,H)~
DE(GDH)D
DE(G|H)D

: ð3Þ

Note that a greater value for the distance measure in Eq. (3)

implies a sparser network intersection.

Network Construction and Problem Definition
Time-resolved high-throughput data are usually summarized in

a matrix Mm|n, where m is the number of investigated biological

components and n is the number of different measurements at the

corresponding time points. Thus, each row of the matrix M
represents a time series data profile for a biological entity. In the

simplest case, network representations can be efficiently extracted

by applying a similarity measure m (e.g., Pearson correlation,

Euclidean distance, mutual information) on all pairs of data

profiles. This yields a similarity matrix Sm|m. One can then build

a network G~(V ,E) with m nodes, corresponding to the

biological entities; there is an edge between two nodes i,j[V (G)
if and only if the element sij of S is above an a priori estimated

threshold t.

The threshold t is derived by permutation test such that it

ensures a statistical significance at level a~0:01 of the observed

correlation between the time series profiles of two biological

entities. However, a simple randomization strategy neglects the

time-course nature of the employed datasets, and, thus, ignores the

statistical dependence of successive time points, effectively

reducing the degrees of freedom. Therefore, we employ a

randomization strategy that retains the dependence of adjacent

time points in the permuted data [33]. As a result, the obtained

null distributions for each dataset exhibit a heavier tail as

compared to distributions based on simple shuffling. As a

consequence, this results in a higher value for the threshold t
required for significance when keeping dependencies in the

original data. In the same fashion, one can reconstruct a similarity

matrix S and the resulting graph G by considering only a subset of

consecutive columns corresponding to a segment between two

time points.

Given MTS data over n time points, there are (n{1) possible

segmentation positions. For a fixed segmentation position j,
1ƒjƒn{1, the possible number of segments to the left and to the

right of this position are j and (n{j), respectively. The segments to

the left and right of position j can be combined in j(n{j) pairs.

Each pair of segments allows for the reconstruction of two

networks G and H , from which values for the distance measures in

Eqs. (1) and (2) can readily be computed.

Let spqr denote the value for the distance measure for graphs

Gp,q and Gqz1,r reconstructed from the MTS data on the segments

½p,q� and ½qz1,r�, 1ƒpvqvrƒn, respectively. Note that one has

to calculate the distance measure for each of theXn{1

j~1
j(n{j)~

(n{1)n(nz1)

6
segment pairs. We now define

the following bi-optimization problem:

MULTIPLE SEGMENTATION (MULTSEG).

INSTANCE: Given an integer n and (n{1)n(nz1)
6

real positive

weights spqr.

OBJECTIVES: Determine the minimum number k of

weights fspiqiri
gk

i~1, p1~1, rk~n, piz1~qiz1 and qiz1~ri,

where 1ƒiƒk{1, which maximize D~
Pk

i~1 spiqiri
.

As an illustration, we consider 14 time series over 25 time points

shown in the upper panel of Fig. 1. There are 2600 pairs of

segments to consider, for which spqr can be determined in terms of

network properties according to Eqs. (1) and (2). If spqr is obtained

with the relative density as a global network property, according to

Eq. (3), the solution to the MULTSEG is k~4 segments resulting

in the maximum value D~2:40. In this paradigmatic example,

the networks are shown below each time series segment, colored

grey in Fig. 1. The symmetric difference and union of networks for

all pairs of consecutive segments used in obtaining the value of D

Figure 1. Illustration of the MULTSEG problem. (Upper panel) 14
time series over 25 time points; (Middle panel) Networks reconstructed
from the shown series. The networks correspond to the 4 optimal time
series segments, depicted with light grey rectangles in the upper panel.
The color coding of nodes correspond to the colors of the time series;
(Lower panel, the last two rows) Symmetric difference and union
networks from the consecutive segments resulting in the optimal value
of 2.40 for the objective D, with relative density as a distance measure.
doi:10.1371/journal.pone.0062974.g001

Time Series Segmentation
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are visualized in the last two rows of Fig. 1, denoted by GDH and

G|H, respectively.

Polynomial Algorithm for MULTSEG
In the following, we show that the MULTSEG problem is

polynomially solvable for distance measures which are computable

in polynomial time. To this end, we first transform an instance of

the problem into an edge-weighted directed acyclic graph (DAG),

F , as follows: (1) include two special nodes, a source o and a target

t, (2) for each of the
(n{1)n(nz1)

6
values spqr, establish a

corresponding node upqr, (3) there is a directed zero-weight edge

from o to each upqr, where p = 1, (4) a directed edge from upqr to t

is included if r~n, and is assigned a weight of spqr, and, finally, (5)

a directed edge of weight spqr is established from node upqr to node

up’q’r’ if and only if qz1~p’ and r~q’. An illustration of the

resulting graph for n~4 is given in Fig. 2. The resulting directed

acyclic graph F has
(n{1)n(nz1)

6
z2 nodes and O(n3) edges.

Finding the minimum number of weights spqr as the first objective

while maximizing the second objective D is then equivalent to

determining the path of maximum weight with the smallest length

(i.e., the minimum number of edges) in F .

Theorem 1: The MULTSEG problem can be solved in

polynomial time in the order of O(DV (F )DzDE(F )D).
PROOF. Let topoOrder(F ) denote the sequence of nodes of F in

topological order. A topological ordering of a directed acyclic

graph is a linear ordering of its nodes in which each node appears

before all other nodes to which it has outgoing edges. It can be

obtained in polynomial time in the order of O(DV (F )DzDE(F )D)
[34]. Let L denote the array with f ~DV (F )D elements initialized to

zero, and P be a predecessor array. Furthermore, let the weight of

a path in F be the sum of edge-weights on the path and the length

of the path be the number of edges. The largest weight of a path

from the source o to the target t equals the sum of the largest

weight of the path from o to a predecessor of t and the weight of

the edge from the predecessor to t. Determining the path of

maximum weight in F can be solved by the dynamic program-

ming approach given in Algorithm 1 (Fig. 3). The number of

segmentation positions k can then be determined as the minimum

number of edges on the path of maximum weight in F . The claim

follows from the fact that the algorithm considers all nodes and

edges.

The algorithm’s performance can be improved if one requires

that the segment length be greater than a given threshold. This

strategy can be used to ensure that the network representatives for

the considered segments are obtained in statistically rigorous

manner. While determining the path of largest weight with the

smallest number of segmentation points provides a theoretically

optimal way of finding a network-based segmentation of MTS

data, it may not carry biologically relevant information (see

Supporting Information S1 for examples). This is due to the fact

that the DAG formulation does not consider the coupling between

the weight D and the length of a path. Therefore, such an

approach may result in paths of maximum weight which are much

longer compared to the segmentations slightly away from the

global optimum. To resolve this issue, we provide a (biological)

penalization for paths in the considered DAG.

Formulation of the Problem with Penalty
In the solution to the MULTSEG problem given in Algorithm 1

(Fig. 3), the edge between the node v and its successor node w, in

the constructed DAG, will be considered for inclusion to the

optimal path (i.e., path of maximum weight) if it fulfills the

inequality in Line 7. Therefore, the optimal path from source o to

node w is calculated by the following:

OPT(w)~max(OPT(w),OPT(v)zweight((v,w))), ð4Þ

where OPT(w) and OPT(v) denote the optimal sum of weights of

the paths from source o to the node w and v, respectively. Note

that in Eq. (4), the weights are added irrespective of the number of

segments in the optimal path. Therefore, this formulation does not

consider simultaneous optimization for the number of breakpoints

(i.e., directed edges from the DAG).

To address this problem while still maintaining the generality of

the network-based dynamic programming formulation of the

MTS segmentation, we define the penalized version of the optimal

path (i.e., path of maximum weight) algorithm Algorithm 1 (Fig. 3)

which considers a BP-penalty for adding a new segment (break-

point) to the path.

There are two criteria which can be considered in the

formulation of the BP-penalty: (1) the number of segments or (2)

the distribution of lengths of the segments included in a path. In

general, the expression for the optimal path from source o to node

w is modified to Eq. (5), whereby the optimal path from o to w is

penalized for inclusion of the breakpoint w, as follows:

OPT(w)~max(OPT(w),OPT(v)zweight((v,w))

{BPpenalty(w)):
ð5Þ

Lines 7 and 8 in Algorithm 1 (Fig. 3) are accordingly modified.

If criterion (1) is used, the BP-penalty for adding the node w to the

optimal path here will be calculated based on the following:

BPpenalty(w)~e(
n�depthw

n ), ð6Þ

where n is the maximum possible number of breakpoints for the

given time series, depthw is the number of segments in the path

from source o to the node w (i.e., it corresponds to the depth (level)

of the node w in the DAG) and n is a tuning parameter which

Figure 2. Directed acyclic graph (DAG) used as input in
Algorithm 1 (Fig. 3). The DAG F for n~4 time points is depicted.
It contains f ~12 nodes, including the special nodes o and t. The label
p,q,r of each node corresponds to the time points p, q, and r.
doi:10.1371/journal.pone.0062974.g002

Time Series Segmentation
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alters in the predefined range. The lower and upper bounds for the

tuning parameter n are assigned based on the weight of the path

(i.e., distances between pairs of the segments), such that the lower

bound is equal with log (
min (weights)

n
) and the upper bound is,

log (

P
weights

n
). We note that while the penalty function may

assume other forms, it should relate to the value used in defining

the weight of a path. This requirement stems from the observation

that there is no trivial reference which the weight of a path should

satisfy, unlike in other problems readily solvable by dynamic

programming (e.g., segmenting least squares [4]).

The penalty of a path p is the sum of BP-penalties for S
segments and based on Eq. (6) is then equal to:

Penalty(P)~
XS

j~1

qj~
1{qS

1{q
, ð7Þ

where q~e
n
n.

If criterion (2) is used, the BP-penalty for adding the node w to

the optimal path here is defined as:

BPpenalty(w)~e
( n
n�lengthw

)
, ð8Þ

where lengthw is the number of time points in the new segment

needed for including the node w in the path. The lower and upper

bounds of the tuning parameter n are estimated the same as for the

first criterion. The penalty of a path p is the sum of BP-penalties

for S segments:

Penalty(P)~
XS

j~1

q
1

lengthj , ð9Þ

where q~e
n
n, j is the number of segments (breakpoints) in the path.

Like with the first criterion, here, too, the BP-penalty function may

assume another form, depending on applications, but should

nevertheless consider dependence on the range of the values for

the employed network property.

In the formulation of the first criterion, the penalty grows with

the number of segments. On the other hand, by the formulation of

the second criterion, the penalty decreases with the length of the

segment (due to the reciprocal relationship in Eq. (8)).

Our goal is to find a path corresponding to MTS segmentation

which then optimizes the function that combines the weight of the

path with the number of segments or the distribution of segment

lengths. Our tests with synthetic and real-world data indicate that

the first criterion for penalizing a path may be better suited to

address the penalized version of the MTS segmentation problem

(see Supporting Information S1). Therefore, the results presented

and discussed in the remaining sections are based on BP-penalty

according to Eq. (6), above.

Results

Synthetic Data
To investigate the performance of the algorithm, we created

synthetic time series data for 70 variables over 36 time points (see

Fig. 4). The segmentation points correspond to the time points 7,

12 and 21. To create these segmentation points, a number of data

profiles were generated for each segment by simulating a zero-

mean autoregressive moving average (ARIMA) model by using

arima.sim in R [35]. The number of profiles simulated for the four

segments, [1,7], [8,12], [13,21], [22,36], was set to 2, 6, 3, and 7,

respectively. Each of the 70 variables was obtained by randomly

sampling a characteristic data profile in each segment. In addition,

a normally distributed error term, N(0,1), was added to the

sampled profile value at each time point. Finally, to simulate the

temporal dependence between two adjacent segments, the

boundaries between two segments of each variable were smoothed

using a discrete linear filter approximating a Gaussian kernel. To

this end, for each obtained profile, the simulated measurement xi

at time-point i, where i is the left boundary of each segment, i.e.,

i[½8,13,22�, was replaced by x’i~
(xi{1z2xizxiz1)

4
.

The proposed theoretical framework was used in the analysis of

the synthetic data with four different network properties, namely:

degree (local), closeness and betweenness (local-global), and

relative density (global). The results are presented in Table 1,

and the best performing result is graphically depicted in Fig. 4, for

20 equidistant values for the tuning parameter in the intervals

given in Table 1. The predictions from the relative density, as a

global network property, are closest to the simulated segmentation.

As expected, the global properties provide more meaningful results

Figure 3. Algorithm 1 - Optimal number of segments. It presents the algorithm for computing the optimal segmentation based on the longest
path in a directed acyclic graph.
doi:10.1371/journal.pone.0062974.g003

Time Series Segmentation
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since they capture the global changes in the network topology over

the considered time domain. Although, the predictions of the

simulated segmentation included an additional time point, this can

be explained by the structure of the DAG. By the proposed

penalization of paths, the BP-penalty is calculated for adding a

new breakpoint to the optimal path, while in traversing the DAG

from the source node o to its first neighbors, two new breakpoints

are necessarily added. Thus, the BP-penalty for adding this node

to the path is not taken into account. Therefore, it is expected that

the first actual segment in the time series is split into two finer

segments. In contrast, the best solution from the state-of-the-art

method of [15] was obtained by setting the parameters lmin~4 and

lmax~9; however, this solution is also included the extra break-

point at the time point 29, which shows that both algorithms

perform almost the same (see Table S1).

Yeast’s Metabolic and Cell Cycles
Motivated by the accurate predictions from applying the

framework on the synthetic data set, we next investigated the

MTS segmentation of transcriptomics data sets from the

Saccharomyces cerevisiae metabolic cycle [36] (YMC), cell cycle [37]

(YCC), and the experiment capturing the effect of oxidative stress,

induced by hydrogen peroxide (HP), on the yeast’s cell cycle [38].

In all data sets, we filtered the genes which: (1) contain missing

values, (2) have not been annotated with any GO term, and (3)

have coefficients of variation smaller than 1.

We first investigate the transcriptomics time series from YMC

data set. The yeast metabolic cycle consists of the following three

successive phases spanning each * 5 h: (1) a reductive charging

(R/C) phase, involving non-respiratory metabolism (glycolysis and

fatty acid oxidation) and protein degradation, (2) oxidative

metabolism (OX), in which respiratory processes are used to

generate adenosine triphosphate (ATP), (3) reductive metabolism

(R/B), marked by a decrease in oxygen uptake and dominance of

DNA replication, mitochondrial biogenesis, ribosome biogenesis,

and cell division [36]. The data set includes the time-resolved

expression of 6555 genes (with 9335 probes) over 36 time points

(separated by * 25-min intervals) over three consecutive

metabolic cycles. Clustering of the obtained transcript profiles

was employed in Tu et al. [36] to show that YMC controls the

timing of key cellular and metabolic processes to allow coordina-

tion of anabolic and catabolic processes for efficient energy

production and usage. Therefore, this data set can serve as a

benchmark for testing of our proposed algorithms for MTS

segmentation.

With the filtering step, the number of genes was reduced from

6555 to 255. The latter were employed to determine the

segmentation based on four network properties: degree, between-

ness, and closeness, according to Eq. (1) with l~2, as well as the

relative density, given in Eq. (3). Only segments of length at least 4

were considered in order to ensure statistical significance of the

Pearson correlation used in network reconstruction. We estimated

the thresholds for the Pearson correlation over all considered

segment lengths, at significance level a~0:05, by employing an

empirical permutation test and the randomization procedure from

Kruglyak and Tang [33], which allows us to consider a

dependence structure of adjacent time points.

The range for the tuning parameter for each used network

property together with the resulting segmentations and number of

segments are summarized in Table 2. Due to the presence of

recurrent changes on the global level, two segmentation points,

corresponding to time points 12–13 and 24–25 and delineating the

three considered cell cycles, should be detected. In addition, due to

the presence of the alternation phases in the metabolic cycle, each

of the three cycles should contain at least one more segmentation

point. Altogether, this biological reasoning implies the existence of

six to seven segmentation points in the investigated time domain.

Figure 4. Illustration of the segmentation for synthetic data
with relative density as network property. The resulting partitions
are highlighted in light grey and the simulated segmentation points are
marked with red bars.
doi:10.1371/journal.pone.0062974.g004

Table 1. Optimal segmentation for synthetic data.

Network property Type k Segments nmin nmax

relative density G 5 [1–4],[5–8],[9–12],[13–21],[22–36] 0.05 6.00

degree L 5 [1–4], [5–8], [9–12], [13,24], [25–36] 1.50 11.13

closeness LG 4 [1–4], [5–15], [16–20], [21–36] 0.05 4.47

betweenness LG 7 [1–4], [5–8], [9–12], [13–17], [18–21], [22–29], [30–36] 1.06 12.10

Existing method k Segments lmin lmax

Ramakrishnan et al. [15] 5 [1–7], [8–12], [13–21], [22–29], [30–36] 4 9

The upper part of the table shows the result of the optimal segmentation for synthetic data based on dynamic programming, while the lower part contains the result
based on the method of Ramakrishnan et al. [15]. In the upper table, the first and second columns show the name and the type of network properties used to
determine the distances: G stands for global, L for local, and LG for local-global. The third column includes the number k of segments that maximize the objective D

with the dynamic programming approach. The resulting segments are given in the forth column, while the fifth and sixth columns contain the corresponding values of
lower (nmin) and upper (nmax) bound of the tuning parameter n. The lower part also includes minimum and maximum length of the segments, i.e., lmin and lmax , as
parameters of the contending method.
doi:10.1371/journal.pone.0062974.t001
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Inspection of the results in Table 2 indicates that when using the

BP-penalty, the degree resulted in the most biologically meaning-

ful prediction for the segmentation points in the first two cell

cycles, where the starting of each of the three phases is nicely

delineated. A similar behavior is observed for the betweenness

centrality. However, none of the properties results in the

identification of an additional breakpoint in the third cycle. The

method of Ramakrishnan et al. [15] with lmin~4 and lmax~7
(Table S2 and Figure S1) also results in eight segments which

resemble our results (Fig. 5) particularly for the first two cell cycles.

We next analyzed the results for the other two data sets, YCC

and HP. As summarized in the Tables S3 (for YCC) and S4 (for

HP), our method could identify coarser segments typical for the

two investigated processes. In contrast, the contending method

results in much finer partitions, in which the segments often

contain only three time points, for which statistical significance of

the findings is difficult to establish. Each yeast cell cycle (YCC)

includes the following phases: M/G1, G1, S, G2, and M, such that

the M/G1, G1 and S phases last 2 time points each while the G2

phase lasts only one time point, as described in Ramakrishnan

et al. [15]. This corresponds to the following segmentation for the

YCC data set: [1–3],[4–7],[8–11],[12–14],[15–18]. As shown in

Table S3, the segmentation based on the relative density and

betweenness matches the expected M/G1, G1, and S phases, but

lumps G2 and M together due to the lower bound on the segment

length (of 4). In contrast, the contending method provides a

uniform distribution of segment lengths, which coincides to the

parameter lmin~3, employed in this setting. Moreover, similar to

the YMC data set, the segmentation from betweenness in the case

of the oxidative stress induced by hydrogen peroxide (HP) supports

the biological evidence for four phases of the cell cycle, namely,

G1, S, G2, and G2/M (see Table S4).

Discussion

Biological systems are exposed to perpetual changes of

environmental conditions to which they adapt via complex

mechanisms. Analysis of MTS data can be used to identify the

key biological processes involved in the adjustment of the cellular

states. Thus, segmentation of time series lends itself as a means for

automatic discovery of the transition states leading to cell vitality.

Here we provided a network-based formalization of the MTS

segmentation problem following the dynamic programming

approach, where we investigated the differences of network

properties upon segmentation, and examined the extent to which

transient cellular states are reflected in the chosen network

representation. The framework relies on distance measures based

on local, local-global, and global network properties. We presented

polynomial-time algorithms for the problem of determining the

segments which maximize the objective function–the sum of the

distances between networks reconstructed from consecutive time

segments. In addition, we proposed path penalization to simulta-

neously consider the number of segments as a factor in

determining the optimal path for segmentation. Moreover, we

demonstrated that the penalized version of the longest path

algorithm allows extraction of biologically meaningful paths on

real data sets, as judged by expert knowledge. The predictions

from the empirical analysis of synthetic data, specifically tailored

for MTS segmentation, and transcriptomics data from yeast

showed that local-global network properties can be used to

distinguish changes dominate the alteration of the system. Our

analysis highlights that even simple distance measures based on

relative network density can fairly accurately determine the first

two phases of the yeast metabolic cycle.

In addition, as shown in the Supporting Information S1, we

demonstrated that the proposed method reveals the phases based

on a data sets from yeast’s cell cycle experiment and the phases of

the cell cycle in oxidative stress induced by hydrogen peroxide,

largely supported by local-global properties, like in the case of the

yeast metabolic cycle. Therefore, these findings further demon-

strate that the change of network properties over time caries

important biological information with respect to segmentation of

MTS data. Furthermore, it remains to investigate the results from

applying the proposed method to other high-throughput data and

their combinations.

The novel formulation of the problem requires that the

distances between networks reconstructed from each pair of

consecutive segments are known a priori. This is of practical

importance since the networks can be pre-computed and stored

for further analysis. The dynamic programming formulation can

be easily obtained, since our solutions require building an edge-

weighted directed acyclic graph. We believe that our approach for

using network-based segmentation is a first necessary step towards

determination of patterns in the dynamics of biological processes

from temporal data sets, which will lead to automated model

extraction.

Table 2. Optimal segmentation for data from yeast.

Network property Type k Segments nmin nmax

relative density G 6 [1–4],[5–9],[10–13],[14–20],[21–31],[32–36] 0.05 5.60

degree L 8 [1–4],[5–8],[9–12],[13–16],[17–20],[21–24],[25–32],[33–36] 4.35 13.50

closeness LG 6 [1–4],[5–9],[10–17],[18–21],[22–31],[32–36] 0.05 4.24

betweenness LG 6 [1–4],[5–8],[9–12],[13–20],[21–24],[25–36] 3.80 14.52

Existing method k Segments lmin lmax

Ramakrishnan et al. [15] 8 [1–6],[7–10],[11–14],[15–18],[19–22],[23–26],[27–31],[32–36] 4 7

The upper part of the table shows the result of the optimal segmentation for synthetic data based on dynamic programming, while the lower part contains the result
based on the method of Ramakrishnan et al. [15]. In the upper table, the first and second columns show the name and the type of network properties used to
determine the distances: G stands for global, L for local, and LG for local-global. The third column includes the number k of segments that maximize the objective D

with the dynamic programming approach. The resulting segments are given in the forth column, while the fifth and sixth columns contain the corresponding values of
lower (nmin) and upper (nmax) bound of the tuning parameter n. The lower part also includes minimum and maximum length of the segments, i.e., lmin and lmax , as
parameters of the contending method.
doi:10.1371/journal.pone.0062974.t002
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Supporting Information

Figure S1 Segmentation for yeast’s metabolic cycle
based on the method of Ramakrishnan et al. [15]. The

partitions found by applying the method of Ramakrishnan et al.

[15] are highlighted in light grey. The phases of the yeast’s

metabolic cycle are indicated with colored rectangles above each

panel following Tu et al. [36]. R/C stands for reductive charging,

OX oxidative metabolism, and R/B, reductive metabolism. The

minimum length lmin and the maximum, lmax are included in the

top left corner.

(TIFF)

Table S1 Optimal segmentation for synthetic data. The

first part of the table comprises the result of the optimal segmentation

for synthetic data based on general longest path algorithm Algorithm

1 (Fig. 3). The second and the third parts show the results based on

penalized longest path algorithm using number of segments and

distribution of length of the segments to calculate the penalty of a

path, respectively. The lower part contains the result based on the

method of Ramakrishnan et al. [15]. In the first part of the table, the

first and second columns show the name and the type of network

properties used to determine the distances: G stands for global, L for

local, and LG for local-global. The third column includes the

number k for each of the three methods and the resulting segments

are given in the forth column. The fifth and sixth columns in the

second and third parts present the values of lower (nmin) and upper

(nmax) bound of the tuning parameter n with dynamic programming

approach. The lower part also includes minimum and maximum

length of the segments, i.e., lmin and lmax, as parameters of the

contending method.

(PDF)

Table S2 Optimal segmentation for yeast’s metabolic
cycle (YMC) data with the same preprocessing has been
applied in Ramakrishnan et al. [15]. The first part of the

table comprises the result of the optimal segmentation for synthetic

data based on general longest path algorithm Algorithm 1 (Fig. 3).

The second and the third parts show the results based on penalized

longest path algorithm using number of segments and distribution

of length of the segments to calculate the penalty of a path,

Figure 5. Segmentation for yeast’s metabolic cycle. The partitions found by applying our method are highlighted in light grey. The phases of
the yeast metabolic cycle are indicated with colored rectangles above each panel following Tu et al. [36]. R/C stands for reductive charging, OX
oxidative metabolism, and R/B, reductive metabolism. (a) shows the segmentations caught by relative density as global property; (b) illustrates the
segmentations based on degree; (c) and (d) demonstrate segmentations with local-global properties, betweenness and closeness, respectively. The
segmentations in panel (a) performs particularly well due to the global changes in the form of global cycles in the data set from yeast.
doi:10.1371/journal.pone.0062974.g005
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respectively. The lower part contains the result based on the

method of Ramakrishnan et al. [15]. In the first part of the table,

the first and second columns show the name and the type of

network properties used to determine the distances: G stands for

global, L for local, and LG for local-global. The third column

includes the number k for each of the three methods and the

resulting segments are given in the forth column. The fifth and

sixth columns in the second and third parts present the values of

lower (nmin) and upper (nmax) bound of the tuning parameter n with

dynamic programming approach. The lower part also includes

minimum and maximum length of the segments, i.e., lmin and lmax,

as parameters of the contending method.

(PDF)

Table S3 Optimal segmentation for yeast’s cell cycle
(YCC) data. The first part of the table comprises the result of the

optimal segmentation for synthetic data based on general longest

path algorithm Algorithm 1 (Fig. 3). The second and the third parts

show the results based on penalized longest path algorithm using

number of segments and distribution of length of the segments to

calculate the penalty of a path, respectively. The lower part contains

the result based on the method of Ramakrishnan et al. [15]. In the

first part of the table, the first and second columns show the name

and the type of network properties used to determine the distances:

G stands for global, L for local, and LG for local-global. The third

column includes the number k for each of the three methods and the

resulting segments are given in the forth column. The fifth and sixth

columns in the second and third parts present the values of lower

(nmin) and upper (nmax) bound of the tuning parameter n with

dynamic programming approach. The lower part also includes

minimum and maximum length of the segments, i.e., lmin and lmax,

as parameters of the contending method.

(PDF)

Table S4 Optimal segmentation for data from oxidative
stress, induced by hydrogen peroxide (HP), on yeast’s
cell cycle. The first part of the table comprises the result of the

optimal segmentation for synthetic data based on general longest

path algorithm Algorithm 1 (Fig. 3). The second and the third

parts show the results based on penalized longest path algorithm

using number of segments and distribution of length of the

segments to calculate the penalty of a path, respectively. The lower

part contains the result based on the method of Ramakrishnan

et al. [15]. In the first part of the table, the first and second

columns show the name and the type of network properties used to

determine the distances: G stands for global, L for local, and LG

for local-global. The third column includes the number k for each

of the three methods and the resulting segments are given in the

forth column. The fifth and sixth columns in the second and third

parts present the values of lower (nmin) and upper (nmax) bound of

the tuning parameter n with dynamic programming approach.

The lower part also includes minimum and maximum length of

the segments, i.e., lmin and lmax, as parameters of the contending

method.

(PDF)

Supporting Information S1 It includes a detailed de-
scription of the data sets used in the computational
analysis.

(PDF)
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