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Abstract

Background: The extensive subcellular compartmentalization of metabolites and metabolism in eukaryotic cells is widely
acknowledged and represents a key factor of metabolic activity and functionality. In striking contrast, the knowledge of
actual compartmental distribution of metabolites from experimental studies is surprisingly low. However, a precise
knowledge of, possibly all, metabolites and their subcellular distributions remains a key prerequisite for the understanding
of any cellular function.

Methodology/Principal Findings: Here we describe results for the subcellular distribution of 1,117 polar and 2,804
lipophilic mass spectrometric features associated to known and unknown compounds from leaves of the model plant
Arabidopsis thaliana. Using an optimized non-aqueous fractionation protocol in conjunction with GC/MS- and LC/MS-based
metabolite profiling, 81.5% of the metabolic data could be associated to one of three subcellular compartments: the cytosol
(including the mitochondria), vacuole, or plastids. Statistical analysis using a marker-‘free’ approach revealed that 18.5% of
these metabolites show intermediate distributions, which can either be explained by transport processes or by additional
subcellular compartments.

Conclusion/Significance: Next to a functional and conceptual workflow for the efficient, highly resolved metabolite analysis
of the fractionated Arabidopsis thaliana leaf metabolome, a detailed survey of the subcellular distribution of several
compounds, in the graphical format of a topological map, is provided. This complex data set therefore does not only
contain a rich repository of metabolic information, but due to thorough validation and testing by statistical methods,
represents an initial step in the analysis of metabolite dynamics and fluxes within and between subcellular compartments.
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Introduction

The partitioning of cellular functions and metabolism into

subcellular compartments is a fundamental feature of all

eukaryotic cells. Subcellular compartments are usually delineated

by a lipid bilayer to maintain compartment integrity and specific

microenvironments. Though physically and biochemically distinct,

these compartments and their metabolic contents are interlinked

by inter-compartmentally transported metabolites [1,2,3]. This

translocation, as well as the turnover of metabolites, can be

exceptionally fast [2,4], making the reliable determination of

metabolites in subcellular compartments challenging. Consequent-

ly, the development of methods and strategies to determine the

metabolic composition of these compartments is required to gain a

comprehensive understanding of the cellular biochemistry.

While subcellular distributions have been determined for a

limited number of metabolites using genetically encoded metabolic

sensors [5,6] or direct mass imaging methods on surface tissues [7],

the number of approaches devoted towards deciphering subcellu-

lar distributions of multiple metabolites is rather limited. The main

challenge using destructive approaches is that in order to prevent

the leakage of metabolites out of organelles the analysis needs to be

performed under anhydrous conditions thus rendering subcellular

metabolite analyses strikingly different from e.g. organelle oriented

proteomic studies [8].

Non-aqueous fractionation (NAF) is a powerful technique to

separate subcellular compartments, and their molecular composi-

tions, under conditions where biological activities are completely

arrested due to rapid freezing and dehydration of the sample

material [9,10,11]. Cellular constituents in proximity to each other

aggregate to small particles during lyophilization of the ground

sample material. These particles, mainly fragments of cellular

compartments, are then separated by their composition-dependent

density using equilibrium centrifugation in a non-aqueous gradient.

Using compartment-specific marker abundances throughout col-

lected gradient fractions, compartment enrichment and compart-
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mental separation can be assessed. As well, subcellular metabolite

distributions can be calculated, usually by applying a two- or three-

compartmental calculation strategy [10,11].

While NAF was first applied to study animal nuclei [9] and

mitochondrial high-energy phosphates in mammalian cells

[12,13,14], later on it has been used mostly in plant sciences in

order to determine the partitioning of photosynthetic assimilates in

leaves [10,11,15,16,17], storage organs [18,19,20], rose petals [21]

or for analysis of specific pathways [22].

In the past decade, technological breakthroughs in mass

spectrometry (MS) and nuclear magnetic resonance spectrometry

(NMR) [23] have paved the way for comprehensive analyses of an

organism’s metabolic composition [24,25]. Even though NMR

provides advantages for quantitative and structural metabolomics

[26], LC/MS- and GC/MS-based metabolite profiling have

become the methods of choice for a general overview of cellular

metabolism due to their high throughput, compound coverage,

and sensitivity [27]. Despite the increasing use of MS-based

metabolite profiling, it has only been combined with NAF in a

limited number of studies, basically to unravel the subcellular

location of primary metabolites in soybean leaves and potato

tubers by means of targeted analyses [20,28,29].

Here, we describe the subcellular distribution of a broad range

of polar and lipophilic compounds in leaves of the model plant

Arabidopsis thaliana obtained using three orthogonal MS-based

analytical approaches, namely GC-TOF/MS for primary and LC-

FT/MS analyses for lipids and semipolar, secondary metabolites.

The provided data, which can be regarded as a resource

documenting a metabolomic survey of a compartmentally

separated leaf, clearly distinguishes the cytosol, the plastids, and

the vacuole from one another. Using statistical approaches we

were able to demonstrate the robustness of our analyses, assign

chemical compounds to the resolved compartments, and to

validate our results using structurally annotated (known) metab-

olites. We further demonstrate that the localizations of several

known metabolites and structurally undetermined compounds

(unknowns) are difficult to unambiguously explain on the basis of

three compartments due to either unresolved compartments, or

the interconnections of subcellular metabolic networks.

Results and Discussion

Non-aqueous fractionation of Arabidopsis leaves allows
clear separation of three subcellular compartments

In order to analye the subcellular compartmentalization of the

plant metabolome, NAF was performed on three independent

replicates of pooled Arabidopsis leaves from soil grown plants

harvested three hours after the onset of light using an optimized

NAF protocol [22] (Text S1). NAF separates fragments of

subcellular compartments and organelles in a continuous density

gradient. Due to the variable composition-dependent density of

the fragments, their segregation reflects continuous compartmental

distributions throughout the gradient [11]. To unambiguously

assign a specific compartment to these distributions, abundances of

compartment-specific markers within the six collected gradient

fractions were determined. These marker distributions, which

must be sufficiently distinct from each other, were then used to

evaluate the compartmental enrichment and separation of distinct

organelles or subcellular spaces (Figure 1). Nitrate, as vacuolar

marker [22], showed a clear enrichment in the densest fraction F1

Figure 1. Distribution of compartment-specific markers in non-aqueous gradients from Arabidopsis thaliana leaves. (A) The
distribution of vacuolar (nitrate), cytosolic (UGPase), mitochondrial (citrate synthase), and plastidic (GAPDH) markers are shown as the average of
three independent gradients. The mean values and standard deviations of marker enzyme activities (UGPase, citrate synthase, GAPDH) or relative
concentrations (nitrate) in each fraction are depicted as percentage from total (scaled data). Significant differences (PBH,0.05, Benjamini-Hochberg
corrected) using t-test within each fraction compared to the cytosolic (cyt.) or mitochondrial (mit.) marker are shown as green colored boxes below
the graph. Grey boxes illustrate uncorrected significant (P,0.05) differences. (B) Western blots detecting LHC (plastidic) and vacuolar H+-ATPase
(vacuolar) membrane proteins in each fraction are shown for one representative gradient to confirm the distribution of the plastidic and vacuolar
compartment throughout the gradients. The pixel intensities quantified using ImageJ (http://rsb.info.nih.gov/ij) are drawn as bar diagrams.
doi:10.1371/journal.pone.0017806.g001
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with 40.162.1% (as mean 6 SD) which is in agreement with the

vacuolar H+-ATPase abundance (Figure 1). The cytosolic marker

UGPase [30] was relatively equally distributed across the gradients

with abundances ranging from 12.362.6% to 23.364.2%,

showing slight increases (F1: 18.961.5%; F6: 23.364.2%) in the

most distant fractions (Figure 1). Contrarily to nitrate, the plastidic

marker NADP-GAPDH [11] was clearly enriched in the lightest

fraction F6, with 66.863.4%, which is in agreement with the

abundance of the light harvesting complex (LHC) (Figure 1).

Citrate synthase, used as a mitochondrial marker [31] was

detected throughout the gradients and revealed a similar

distribution as observed for the cytosol, but with decreased

abundance in fraction F1 (9.362%) and an enrichment in fraction

F6 (34.869.7%; Figure 1).

Despite the clear intermediate distribution between the cytosolic

and plastidic compartment, the mitochondrial marker revealed a

relatively large standard deviation and was not enriched in any

fraction as compared to the other markers (Figure 1). Therefore,

and in agreement with previous reports [e.g. 10,20,22], the

mitochondrial compartment was not, even though a clear trend

could be observed, considered to be unambiguously delineated

from the cytosolic compartment. However, with the broad

separation of the other markers we were clearly able to obtain

an excellent separation of the vacuolar, the cytosolic, and the

plastidic compartments by non-aqueous fractionation of Arabidopsis

leaf material.

Non-aqueous fractionation produces consistent fraction
separation

A total of 18 fractions, resulting from three independent

gradients comprised of six fractions each, were subjected to the

three MS platforms for polar and lipophilic metabolite analysis

(Data S1, S2, S3). In the following, the MS data refers to the

analytical approach applied rather than the exact chemical

properties of the detected metabolites.

Using GC/MS, 203 analytes, comprising 88 unique metabolites,

were consistently identified with 93 (45.8%) and 110 (54.2%)

analytes of known and unknown chemical structure (Data S4).

High-resolution LC/MS analyses of lipophilic and secondary

metabolites resulted in the consistent monitoring of 2,804 and 910

mass spectrometric features (afterwards analytes) comprising 726

and 461 non-redundant peaks (T/S clusters, Text S1). Database

searches revealed that 88 (3.1%) and 31 (3.4%) analytes of lipophilic

and secondary metabolite profiling represented known metabolites

and further 362 (12.9%) and 224 (24.6%) produced database hits

with single or multiple potential chemical structures (Data S4).

In order to test whether the individual metabolome data are

consistent among the independent gradients and discriminative

with respect to fraction separation, principal component (PCA)

and hierarchical cluster (HCA) analyses were performed on the

scaled and, for the PCA, additionally log2-transformed metabolite

data (Figure 2). Non-parametric ANOVA using the Mantel test

[32] supported separation of the six fraction groups despite low

matrix correlations of r = 0.43, r = 0.28, and r = 0.45 (P,0.001) for

primary, lipophilic, and secondary metabolite data, respectively.

Sequential expanding of the fraction grouping (Figure S1) showed

significant (P,0.001, r = 0.97) differences between the F6 and the

other fractions for lipophilic metabolites (Figure 2E). Primary

(r = 0.84) and secondary (r = 0.89) metabolite data statistically

(P,0.001) support the distance of the plastidic (F6) and vacuolar

(F1) enriched fractions from the remaining ones, even though

relatively high matrix correlations (r = 0.63 and r = 0.66, P,0.001)

are observed if the two further clusters, comprising the

intermediate-dense fractions F2-F3 and F4-F5, are not merged

(Figure S1). Mantel tests between sample distance matrices, to

determine the overall similarity in terms of similar fraction

separation underlying the different metabolome data, showed a

very high correlation of r = 0.92 (P,0.001) between primary and

secondary metabolite data. However, both primary and secondary

metabolite data revealed significant but lower correlations with

r = 0.82 (P,0.001) and r = 0.63 (P,0.005), respectively, when

compared to the lipophilic metabolite data.

In essence, the three metabolite data sets showed consistency

among the data derived from the independent gradients and

supported, visually (Figure 2) and statistically (see above; Figure

S1), the separation of compartmental-enriched fractions. The

plastidic (F6) and to a lesser extent the vacuolar enriched fraction

(F1) are distinct from the majority of the intermediate-dense

fractions (F2–5). Gap statistics suggested overall less well-separated

clusters (Figure S1D–F), likely because there is a continuous

distribution of compartments and their metabolite content

throughout the gradients (Figure 1).

Non-aqueous fractionation results in robust
compartmental fractionation

As NAF in combination with the MS-based analysis is a complex

procedure, various error sources can affect the compartmental

separation and downstream estimation of subcellular distributions.

To evaluate the consistency and robustness of NAF-derived data

further markers were measured or selected from our MS data.

Starch was used as additional plastidic marker, as it is synthesized

and stored as semi-crystalline granules in plastids during the day

[33]. Digalactosyldiacylglycerol (DGDG), a group of galactolipids

with high abundances in both envelope and thylakoid membranes

[34] were further utilized as plastidic markers. Many classes of

secondary metabolites like glucosinolates and flavonoids are

reported to be commonly stored in the vacuole (or vacuolar

inclusions) of several different plant species [e.g. 35,36,37,38,

39,40,41,42] and thus, represent ideal vacuolar markers. Therefore,

based on a targeted analysis we selected a number of glucosinolates

and flavonoids/sinapate esters (afterwards for simplicity called

flavonoids) (cf. Data S4) reported to be found in Arabidopsis

(KNApSAcK database and references therein [43]; [44]). As

additional markers for the cytosol, triacylglycerides [45] and

glyceroceramids, a class of lipids within the sphingolipid group

localized to the plasma membrane and to a lesser extent to the

tonoplast [46], were used. The results for all nine marker

distributions are shown in Figure 3 and demonstrate a high

reproducibility of the marker distribution between the three

gradients. Likewise, the between-gradient variation of markers

designating the same compartment are relatively small with

coefficients of variation of 2968.5%, 19.165.8%, and 21.86

7.7% for the plastidic, cytosolic, and vacuolar compartment,

respectively (all as mean 6 SD; Figure S2A).

Use of multiple markers results in robust compartmental
designation and assignment

As described above, in addition to the three markers used to

assign subcellular compartments we took advantage of the fact that

within our metabolite data several compounds could be assigned

to a specific compartment in an unambiguous way. The

availability of these additional markers allowed us to rigorously

test the reproducibility of the fractionation procedure and to assess

the magnitude of cohesion within and separation between the

three delineated compartments.

Classical multidimensional scaling (CMD; Figure 4) and HCA

on normalized Manhattan distances (Figure S2A) among

Arabidopsis Subcellular Metabolite Distributions
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markers and gradients clearly demonstrate the separation of the

three considered compartments (Figures 4 and S2). The

individual clusters reveal high silhouette information with

0.7160.05, 0.6060.06, and 0.6160.05 for the plastidic,

cytosolic, and vacuolar compartment, respectively, with a

cluster-solution average of 0.6460.07 (all as mean 6 SD). Thus,

a high cohesion within and separation among the clusters is

observed, which is supported by gap statistic (Figure S2B) and

non-parametric ANOVA using Mantel test (P,0.001, r = 0.77).

The spread of compartmental clusters, estimated as the

clusterwise average of their normalized Manhattan distances,

within- and between-gradients is very similar (data not shown),

possessing low between-gradient cluster spreads of 0.1260.05,

0.1160.03, and 0.1160.03 (all as mean 6 SD) for the plastidic,

cytosolic and vacuolar compartment, respectively. Interestingly,

the plastidic compartment revealed the largest cluster diameter

based on the maximum clusterwise normalized Manhattan

distance (0.1660.02; 0.24) compared to the cytosolic (0.136

0.03; 0.17) and vacuolar (0.1460.01; 0.19) compartment (within-

gradient diameter as mean 6 SD followed by between-gradient

diameter).

For further robustness evaluation, fractions were systematically

assembled into all possible non-redundant artificial combinations

(simulated gradients) and the computed normalized Manhattan

distances subjected to CMD analyses. Markers representing the

same compartment (Figure 4) are in close proximity to each other

and do not reveal large variations within their distribution in

principal coordinates space. With respect to compartmental

clusters, the 95% confidence ellipses and gap statistic (data not

shown) clearly support their separation as neither they, nor any

data point overlap with any other cluster (Figure 4).

As initially observed, the mitochondrial marker citrate synthase

is clearly distributed between the plastid and cytosol with overlap

towards the cytosol (Figure 4). When including the mitochondrial

compartment the silhouette information of the cluster solution

drops (0.560.2) with clusterwise values of 0.5560.10,

20.0160.10, 0.5060.14, and 0.6160.05 for the plastidic,

mitochondrial, cytosolic, and vacuolar compartment, respectively

Figure 2. Principal component (PCA; A–C) and hierarchical cluster (HCA; D–F) analyses of metabolite data. Both PCA and HCA plots
demonstrate a good separation of the six fractions from each other independent of the three major compound classes, (A, D) primary, (B, E)
lipophilic and (C, F) secondary metabolites. PCA and HCA were performed on scaled data. For PCA, data were additionally log2-transformed; HCA
analyses are based on Euclidean distances among samples. Identical gradient fractions are encoded with the same color and shape as depicted in the
graph legend. The 95% confidence ellipse is drawn as a grey dotted line on the basis of the mean, standard deviation, and correlation of the three
independent gradient replicates per fraction. To aid interpretation of HCA graphs (D–F) same fractions are identically color-coded (see PCA legend) at
the bottom sidebar. The unbiased cluster P-values, calculated using multiscale bootstrap resampling, are depicted as red-colored numbers at each
node. The fraction groups explaining the highest variance of data and revealing a good cohesion within and separation among assigned fractions are
depicted at the bottom of the HCA plots. Fraction groups, evaluated using resampling and gap statistic, were assembled by sequential merging of
neighboring sample clusters with fractions assigned using membership majority voting (Figure S1). All graphs clearly support that the plastidic
enriched, lowest density fraction F6 (group A) and to a lesser extent the vacuolar enriched, most dense fraction F1 are separated from the
intermediately-dense fractions F2 to F5, even though for primary and secondary metabolite data two less-well separated fraction groups (F2–F3 and
F4–F5) can be assumed (solid and dotted line; Figure S1).
doi:10.1371/journal.pone.0017806.g002
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(all as mean 6 SD). The mitochondrial compartment itself

revealed a large between-gradient cluster spread of 0.2060.003

and diameter of 0.20 compared to the other compartments (see

above; Figure 4). In addition, a fourth cluster (mitochondrial) is not

fully supported by gap statistic (Figure S2B).

As we lack further unambiguous markers to clearly distinguish the

mitochondrial compartment, we therefore prefer to not consider the

contribution of this compartment from our NAF gradients.

Interestingly, the problem of unequivocally separating mitochon-

dria was already described in previous NAF studies [10,20,22].

Reasons for this might be the small size and dispersed localization of

mitochondria in the plant cell, as they exist as a population of

physically discrete organelles [47]. They are also highly motile

within the cell, associating with specific compartments, as seen

under stress conditions [48], through association with the actin

cytoskeleton [49]. In consequence, the cytosolic compartment must

be considered in a broader sense as it represents metabolites with

clear cytosolic and/or possible mitochondrial localization.

Figure 3. Side-by-side bar plots of marker distribution representing the same subcellular compartment throughout the three
independent gradients. For all graphs scaled data were used. Marker names are provided as graph headers including the compartmental
representation, i.e. cpl. - plastidic, vac. - vacuolar, and cyt. – cytosolic compartment. The bars are colored as follows: gradient 1 - black, gradient 2 –
white, and gradient 3 – grey. For DGDG (cpl.), GlcCer (cyt.), TAG (cyt.), glucosinolates (vac.), and flavonoids (vac.) the abundance per fraction is based
on the robust average of multiple analytes representing the individual compound class (Data S4).
doi:10.1371/journal.pone.0017806.g003
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Different computational strategies to estimate
subcellular distributions result in similar downstream
findings and demonstrate statistical robustness

As the compartment-specific markers support an enrichment

and robust separation of the three compartments, they enabled a

marker-based determination of subcellular metabolite distributions

for these compartments (Data S4).

Two different computational algorithms were used, namely the

non-negative least square (NNLS) algorithm by Lawson and

Hanson [50] and the best fit algorithm (BFA) by Riens [11].

Essentially, both approaches solve a system of linear equations

defined by the subcellular compartments (designated by marker

abundances throughout the gradient) to find the relative

assignment of a metabolite to the compartments by minimizing

the discrepancy between the measured and computationally

estimated (fitted) fraction abundances of this metabolite. NNLS

is based on an active-set approach and seeks linear least square

solutions that are also non-negative by minimizing the Euclidean

distance [50], which corresponds to the square root of the residual

sum of squares (Eq. 1). BFA is based on a heuristic approach and

tests all possible subcellular distributions using 1% intervals, i.e.

(1st) vacuole 100%, cytosol 0%, plastid 0%, (2nd) vacuole 99%,

cytosol 1%, plastid 0% and so forth, by minimizing the Q-value

(Eq. 2), the Euclidean distance divided by the number of fractions

– 1 [11]. Whereas BFA solutions add up to 100% across the

considered compartments, the NNLS solutions, as no other

constraints other than non-negative values are given, can sum to

above or below 100% (Data S4).

Application of both BFA and NNLS revealed that the average

of the estimated subcellular distributions from the three

independent gradients are very similar, characterized by a mean

difference of about 20.162.3% (as mean 6 SD) where 95% of

the BFA-to-NNLS differences lay in a range of 25% to 4% with

tailing at about $100% due to the abovementioned algorithms

differences (Figure 5A). Comparison of the BFA solutions derived

from the independent and simulated gradient data revealed

overall small differences of the averaged subcellular distributions

with a mean difference of about 061.2% (as mean 6 SD) where

95% of the differences lay in a range of 23% to 2% (Figure 5B).

Figure 4. Consistency and robustness of compartmental separation within and between gradients. Manhattan distances among
markers for each gradient were converted into a principal coordinates (PCo) space using classical multidimensional scaling (CMD) for the three
independent and 729 non-redundant combinations of randomly assembled gradients. Shapes colored in magenta show the data points for the three
independent gradients (G1, G2, and G3 as depicted in the figure) of each selected marker. Data points from simulated gradients are depicted as
circles with coloration according to the individual compartments: green – chloroplasts, blue – cytosol, and grey – vacuole. For each compartment the
95% confidence ellipse is drawn as a dashed grey line on the basis of the mean, standard deviation, and correlation of the 729 non-redundant
gradient combinations. The mitochondrial compartment (yellow circles) shows an overlapping distribution with the cytosol where the majority of
data are in between the plastidic and cytosolic compartments. The principal coordinates 1 and 2 explain together in average about 96.7% of the total
variance of the underlying distance matrices. For each of the three resolved compartments the distribution of average abundances including their
standard deviations throughout the three independent gradients is depicted as bar plots.
doi:10.1371/journal.pone.0017806.g004
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A similar behavior was observed when using the NNLS solutions

(cf. Data S4).

As both BFA and NNLS resulted in similar estimates of subcellular

distribution, and computation on simulated gradients revealed the

overall statistical robustness, we used the BFA solutions estimated on

the three independent gradient data for all further analyses.

A three-compartmental distribution strategy sufficiently
explains the majority of observed analyte distributions

As criteria for a best fit, the mathematically related measures

Euclidean distance, residual sum of squares, or the Q-value are

usually considered (see above and Eq. 1–3). A tight fit is reflected

in small values of the outputs from these equations, however

‘small’ is difficult to define. Therefore we used the normalized

Manhattan distance (Eq. 3), the sum of absolute differences

between the measured and fitted data, as it ranges from 0 to 100%

(or 0.0 to 1.0 if expressed relative) on scaled NAF data. Thus, it

describes the total percentage discrepancy (TPD) between the

model and the measurements. Subcellular distributions were

considered as insufficiently explained (‘unexplained’, cf. Figure 6) if

both the average TPD exceeded 10% and the TPD from

individual gradients exceeded 10% in $50% of the cases. The

10% cutoff was chosen because the difference of individual

markers to their respective compartment-specific average was

6.961.8% (as mean 6 SD) with a maximum of 10.3%.

Using BFA the subcellular distributions of 3,198 (81.5%) out of

all 3,922 analytes are considered as sufficiently explained by the

averaged compartment-specific markers using a three-compart-

Figure 5. Diagnostic plots showing the differences in estimated subcellular distributions using (A) BFA and NNLS algorithm on the
three independent gradients, and (B) using BFA algorithm on the three independent and 729 simulated gradients. The difference
versus average plot (left) shows the differences (D) in dependence of the averages (A) of estimated subcellular distributions in a compartment (C,
estimated as percentage) between two computational strategies (S): Di = Ci [S1] – Ci [S2], and Ai = 0.5 x (Ci [S1] + Ci [S2]). The corresponding
computational strategies depicted in the plots are for (A) S1 = BFA and S2 = NNLS solutions, and for (B) S1 = 3 (GRD) and S2 = 729 (SIM) gradients. The
histogram plot (right) shows the distribution of the M values in 1% intervals with blue solid lines indicating the 2.5% and 97.5% quantiles (95% range
of observed differences). For all comparisons the average of estimated subcellular distributions (based on 3 or 729 gradients) are used.
doi:10.1371/journal.pone.0017806.g005
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mental calculation strategy, considering the vacuolar, cytosolic,

and plastidic compartments (Table 1; Data S4 and S5).

Consequently, the subcellular distributions of 724 (18.5%) analytes

are insufficiently explained. Classification based on the compart-

ment-specificity of the three nearest neighboring markers using k-

nearest neighbor algorithm (kNN, with k = 3) facilitated the

assignment of 487 (67.3%), 174 (24.0%), and 63 (8.7%) of these

insufficiently explained analytes into the cytosolic, plastidic, and

vacuolar compartments, respectively (Table 1). Interestingly, the

mitochondrial marker citrate synthase was considered as insuffi-

ciently explained but, as mentioned before, it showed a more

cytosol-like distribution and therefore was assigned to the cytosol

(Data S4). Similarly, sucrose, a metabolite which is synthesized in

the cytosol and transported into sink organs via the phloem, was

assigned to the cytosol (Data S4). Earlier conducted NAF studies

[10,11] have already indicated that the observed sucrose

distribution could not clearly be ascribed to the cytosolic, plastidic,

or vacuolar compartment, most likely due to the greatly higher

amounts present in sieve tubes [11].

Therefore, analytes revealing insufficiently explained subcellular

distributions may indicate the presence and influence of

unconsidered compartments, as the compartment-specific markers

used do not encompasses their distribution and thus are

inadequate to precisely explain the observed distributions.

Guilt by association – a three-compartmental distribution
strategy facilitates compartmental classification of
metabolites

Several metabolites are known to localize to more than one

specific compartment; similarly, in our analysis we have observed

compounds present in more than one compartment. Explanations

for these observations can be the occurrence of biochemical

Figure 6. Manually constructed classification tree for the partitioning of analytes into compartments and intermediate units based
on their estimated subcellular distribution as well as compartmental abundance and variability. The classification tree was used to
assign an analyte into a group defining its subcellular distribution type (type) and an associated mode (mode) which represents one of the resolved
compartments or the overlap between them. Assignments are based on the mean and standard deviations of the subcellular distribution, estimated
using the best fit algorithm (BFA), for each analyte based on the three independent gradient data. Analytes with insufficiently explained subcellular
distributions according to the selected compartment-specific markers are accounted as unexplained and are not further considered in this tree.
Analytes revealing sufficiently explained fits are accounted as ‘shared’ if the minimum of the percentage value (min = mean - SD) in the most
abundant compartment is overlapping with the maximum percentage value (max = mean + SD) of any other considered compartment. The
corresponding mode is defined by the overlapping compartments regarding the most abundant compartment. Analytes are considered ‘specific’
with the mode according to the estimated most abundant compartment, if the minimum of the most abundant compartment is $75% and the
values of all other (low abundant) compartments are negligible, i.e. #10%. If the minimum in the most abundant compartment is larger than the sum
of the maxima among the other compartment and $66.67% (2/3 compartments), analytes are accounted as ‘dominantly’ distributed in the respective
compartment. Analytes are accounted as ‘enriched’ in a compartment, if the value of the most abundant fraction is $50% than the sum of the other
compartment. If none of this decisions result in an assignment the analyte is considered as being shared but with enrichment in a particular
compartment (‘shared*’).
doi:10.1371/journal.pone.0017806.g006
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pathways in multiple compartments as well as transport of

compounds between compartments. In order to account for these

situations, analytes were classified into specific compartments or

intermediate assignments based on their compartmental abun-

dance using a classification tree (Figure 6). Five classes were

considered:

(i) ‘specific’,

(ii) ‘dominant’ where, for both, the analyte pool sizes are

located dominantly but to different degrees within a

designated compartment,

(iii) ‘enriched’ where the pool size in the most abundant

compartment is roughly higher than the sum of the others,

(iv) ‘shared’ between compartments,

(v) shared with enrichment in a specific compartment

(‘shared*’).

These classification results (Table 1; Figure S3) have been

visualized as a topological map of the compartmentalized

metabolome (Figure 7; for single analytes see Data S6). In detail,

82 GC/MS analytes (40.4%) were classified as specific or

dominant and 47 (23.2%) as shared between compartments. Of

the specific or dominant class, 48.8% of analytes were assigned to

the cytosol, 22% localized to the plastids, and 29.3% were

localized to the vacuole. Of the 488 (53.6%) specific and

dominantly assigned analytes derived from secondary metabolism,

48% were assigned to the vacuole, 42% to the cytosol, and only

10% were localized to the plastid. 1,657 (59.1%) out of all

lipophilic analytes displayed specific and dominant subcellular

distributions. Of them, the majority, 63%, were assigned to the

cytosol and 36.8% to the plastids. Lipophilic compounds showing

specific or dominant pool sizes in the vacuole are negligible (0.2%).

Overall the compartmental assignment varies regarding the

major compound classes (Table 1; Table S1, S2, S3). Many

lipophilic metabolites can be found localized to plastids and the

cytosol, as both encompass large internal membrane systems. As

well, plastids are the site of plant fatty acids synthesis [34,51]. In

contrast, many secondary metabolites are dominant or even

specific for the vacuole and cytosol, reflecting their synthesis and

storage location as has been supported by protein localization

studies [e.g. 36,41,52]. Analytes of primary metabolism revealed

the largest diversity regarding compartmental class assignments as

these compounds are crucial constituents for many pathways.

They are localized to each compartment, with 29.6% analytes

revealing shared pool sizes.

Literature confirmation of selected metabolites
demonstrates robustness, relevance, and facilitates
hypothesis deduction

As described above we followed a comprehensive approach to

assign as many analytes into specific compartments as possible. To

the best of our knowledge, this study, with respect to its

comprehensiveness, is the first of its kind. Therefore we decided

to validate the data by linking it to prior knowledge.

In our study, most of the amino acids were highly abundant in

the cytosol and chloroplasts (Table S1), which is in agreement with

results obtained for leaves of other plant species [11,53]. Proline,

which is synthesized in chloroplasts and the cytosol of mesophyll

cells [54], is dominantly plastidic localized (6766%; Table S1).

This localization fits its function as ROS scavenger and singlet

oxygen quencher during photosynthesis [55]. Methylglucopyrano-

side (MeG), a secondary metabolite synthesized by direct transfer

of methanol onto glucose in the cytosol of Geum montanum, is

rapidly transported into the vacuole where it accumulates to more

than 95% [56]. The high vacuolar abundance of MeG (9569%;

Table S1) indicates that MeG metabolism in Arabidopsis might be

similar, at least in terms of storage. Recently, it was shown that

myo-inositol accumulates in the cytosol and not in the vacuole of

Mesembryanthemum crystallinum [57] supporting its cytosolic localiza-

tion (10061%) in Arabidopsis (Table S1). Phytol is released during

chlorophyll degradation by a chloroplast-located pheophytinase

[58]. The free phytol residue is redirected into chloroplast lipid

metabolism [59] which would support an abundant plastidic pool

(90610%) as shown (Table S1).

Malate and fumarate were localized mainly in the cytosol and

did not accumulate in the vacuole (Table S1) which is in contrast

Table 1. Overview of compartmental assignment results.

Compound (cpd.)
class unexplained specific dominant enriched shared/shared* total

(cpl) (cyt) (vac) cpl cyt vac cpl cyt vac cpl cyt vac

cpl
,.

cyt

cyt
,.

vac

cpl
,.

vac other

primary cpd. 8 24 9 7 12 9 11 28 15 4 10 6 15 24 1 20 203

41 (20.2%) 28 (13.8%) 54 (26.6%) 20 (9.9%) 60 (29.6%)

lipophilic cpd. 146 342 24 326 288 0 284 756 3 49 125 0 270 102 1 88 2804

512 (18.3%) 614 (21.9%) 1043 (37.2%) 174 (6.2%) 461 (16.4%)

secondary cpd. 20 119 30 10 161 158 39 44 76 14 14 21 48 55 22 79 910

169 (18.6%) 329 (36.2%) 159 (17.5%) 49 (5.4%) 204 (22.4%)

others (+) 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 1 5

2 (40%) 1 (20%) 0 (0%) 0 (0%) 2 (40%)

total 174 487 63 344 461 167 334 828 94 67 149 27 334 181 24 188 3922

724 (18.5%) 972 (24.8%) 1256 (32%) 243 (6.2%) 727 (18.5%)

Classification of analytes into classes is based on the BFA-estimated subcellular distributions (Data S4) derived from three independent gradients using a classification
tree (Figure 6). Venn diagrams are depicted in Figure S3. Analytes with insufficiently explained (unexplained) distributions using the selected compartment-specific
markers are classified by the kNN algorithm using the three nearest neighbor (k = 3) compartment-specific markers.
doi:10.1371/journal.pone.0017806.t001
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to reports indicating a large vacuolar pool [10]. However, in C3

plants malate accumulates during the day with a maximum at the

end of the light period, only being transported into the vacuole

after reaching a threshold concentration [60]. A further observa-

tion concerns the predominant aliphatic glucosinolate in Arabi-

dopsis, 4-methylsulfinylbutyl glucosinolate (glucoraphanin), which

revealed a dominant pool size within the vacuole (88619%; Table

S3). Glucoraphanin can be hydrolyzed by myrosinase into 5-

methylsufinylpentylnitrile, which was dominantly localized in the

cytosol (80618%). In Arabidopsis myrosinase is localized in the

vacuole of idioblastic cells of the phloem parenchyma [61],

whereas glucosinolates are commonly reported to be stored in the

vacuole, indicating that substrate and enzyme are likely not co-

localized in the same cell [36,61,62]. The detection of glucor-

aphanin in the vacuole and the degradation product 5-methylsu-

finylpentylnitrile in the cytosol (Figure 7B) therefore provides

evidence for the transport and catabolism of glucosinolates under

physiological conditions that does not involve tissue disruption by

herbivore attacks. Even though little is known about glucosinolate

catabolism in plants, their concentrations can significantly vary in

leaves during diurnal cycle [63,64] or specific glucosinolates can be

degraded during developmental processes [65].

Based on the within-compartment distance of the three markers,

the plastidic compartment seemed to be resolved to a higher

resolution than the others. Whereas starch is stored within the

plastidial stroma [33], the galactolipids, MGDG and DGDG

(Table S2), are found in both envelope and thylakoid membranes

[34]. Surprisingly, NADP-GAPDH, an enzyme found within the

stroma, is clearly deviant from both (Figure 4), and also showed a

very similar distribution and close proximity to chlorophyll

(Figure 7B; Data S6) and the light harvesting complex

(Figure 1B). Studies in spinach [66] and Synechocystis [67] have

provided circumstantial evidences that the Calvin cycle multien-

zyme complex seems to be bound to thylakoid membranes and

thus may indicate a partial separation of the thylakoid and the

stroma of plastids under our NAF conditions.

Recurring distribution patterns throughout the gradients
suggests the existence and contribution of previously
unconsidered compartments

As described above, the vast majority (81.5%) of analytes could

be assigned to one of the five classes. In contrast, the subcellular

distributions for another 724 analytes (18.5%) could not be

sufficiently estimated as the compartment-specific markers did not

encompass their distribution (Table 1; Data S4). These include

aspartate, asparagine, glutamate, glutamine, serine as well as the

mitochondrial marker citrate synthase amongst others. Consider-

ing that the distribution for these metabolites resembles, to some

extent, the situation for the mitochondrial compartment, which

also could not be unambiguously delineated, therefore we

speculated that unresolved or unconsidered compartments may

contribute to the recurring and unexplained distribution patterns.

To test this hypothesis on the 724 analytes we tried to identify

analyte groups characterized by similar, yet distant and reproduc-

ible distributions using a marker-‘free’-based classification by k-

medoids clustering, allowing only the cytosolic compartment to be

partitioned into different clusters without being assigned to

another compartment.

This resulted in the identification of seven clusters of which two

are represented by the cytosolic compartment (Figure S4A; Data

S4). Out of the 724 analytes with insufficiently explained

distributions 339 (46.8%) were assigned into one of the two

cytosolic, 125 (17.3%) into the plastidic, and 26 (3.6%) into the

Figure 7. A topological map of the compartmentalized Arabidopsis thaliana leaf metabolome for (A) all and (B) selected analytes. The
classification for the partitioning of analytes into compartments and intermediate units is based on the best fit - estimated subcellular distribution as
well as compartmental abundance and variability for each analyte (for details see Figure 6). The topological map (cf. Data S6 for single analytes) of the
classification results for (A) all and (B) selected metabolites is visualized in principal coordinates (PCo) space on the basis of averaged Manhattan
distances among analytes for the three independent gradients. To aid interpretation, analytes of the classes ‘specific’ and ‘dominant’ were both
assigned into the respective compartment and color-coded accordingly: green – chloroplast, blue – cytosol, and grey – vacuole. Analytes assigned as
being shared between two compartments are color coded as depicted in the figure. With exception of analytes with insufficiently explained
(unexplained) subcellular distributions, all other analytes not belonging to one of the above-mentioned classes are defined as ‘others’.
doi:10.1371/journal.pone.0017806.g007
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vacuolar cluster. Further 234 (32.3%) analytes were assigned into

three novel clusters (Figure 8). Mantel tests performed as non-

parametric ANOVA revealed significant (P,0.001) and interme-

diate matrix correlations of r = 0.5160.02 (as mean 6 SD). The

same approach, but restricted to the clusters reflecting the three

considered compartments, resulted in a higher average matrix

correlation of r = 0.8260.01. Using gap static both biologically-

driven cluster solutions are supported, however it indicated that

the seven considered clusters are less well-separated (Figure S4C).

Despite a certain degree of cluster overlap, line plots displayed

robust intermediate cluster distributions in between the delineated

subcellular compartments (Figure 8).

Specifically, the largest intermediate cluster ‘cpl-cyt’ (n = 94)

showed similarity to the robust consensus distribution of the

plastidic compartment, displaying increased abundance in fraction

F5 and a decreased abundance in fraction F6 (Figure 8). Amongst

others aspartate, glutamate, asparagine, and the mitochondrial

marker citrate synthase are assigned into this cluster. Interestingly,

it was shown that the glutamine synthase GLN2 is targeted

between both chloroplasts and mitochondria and facilitates

ammonium recovery by transferring ammonium to glutamate

during photorespiration [68]. Aspartate aminotransferase activity

in mitochondria indicates that aspartate, as its substrate, is also

present [69]. Together with the mitochondrial marker citrate

synthase this intermediate cluster may represent metabolites

captured in transport between the plastids and mitochondria but

as well as the cytosol, as serine, involved in photorespiration, is

assigned into one of the cytosolic clusters (Data S4).

The cluster ‘vac-cyt’ comprises 80 mainly unknown analytes

(Data S4) and has similarity to the robust consensus distribution of

the vacuolar compartment. The abundances in the densest

fractions F1 and F2 are similar, whereas for the vacuolar

compartment the abundance in fraction F1 is about 2-fold higher

compared to F2 (Figure 8).

The smallest cluster ‘cyt-vac’ comprises 60 members of which

59 are unknown secondary metabolites (Data S4). It strongly

overlaps with the cytosolic and the ‘vac-cyt’ clusters, and shows the

highest abundances in the fractions F2 and to a lesser extent F3

(Figure 8). Interestingly, most of these analytes are relatively large

(average m/z 640) and have a relatively late retention time (53

with RTs greater than 14 min), indicating that these compounds

could be very hydrophobic. At this point it might appear

speculative to hypothesize about the provenience of these

compounds since many reasonable explanations seem possible,

Figure 8. Scatter and distribution plots of analytes with compartment-specific and unresolved subcellular distributions. Analytes
with compartment-specific distributions were identified using a classification tree based assignment (Figure 6). Analytes with insufficiently explained
subcellular distribution were grouped according to k-medoids clustering (Figure S4A). For visualization, Manhattan distances among analytes for each
of the three independent gradients were averaged and then converted into a principal coordinates (PCo) space. Analytes were color-coded according
to their cluster membership. For each identified cluster the distribution of members throughout the gradients (grey lines) and the robust average
distribution including standard deviations (black lines) are depicted as line plots. Despite the overlap of the intermediate clusters with the resolved
compartments, recurring and stable distribution patterns have been observed.
doi:10.1371/journal.pone.0017806.g008
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still it is tempting to propose that this unusual cluster with specific

distribution (as for the cluster ‘vac-cyt’) could be a derivative of the

highly heterogeneous vacuole [70]. Another likely explanation

could be that we are capturing some vesicles channeled between

compartments [71,72] or that we simply see an unconsidered

compartment like the endoplasmatic reticulum (ER). The later

would be supported by the structurally annotated metabolite 4-

hydroxybenzoate, a precursor for the synthesis of the antimicrobial

metabolite shikonin [73,74] as well as an intermediate in

ubiquinone biosynthesis. In both cases the biosynthetic reactions

involving 4-hydroxybenzoate are localized in the ER and Golgi

apparatus [75,76] or in small vesicle derived from the ER

[73,77,78]. A targeted proteomic or immunological approach

towards the enzymes involved in these reactions might strengthen

or dismiss this hypothesis.

Nevertheless, despite the identification of robust recurrent

distribution patterns (Figure 8), the observed distributions are

generally not distinctive enough when compared to the defined

subcellular compartments. However, when this approach was

applied on all analytes (Figures S4B), the intermediate cluster ‘cpl-

cyt’ was supported (cf. Figures S4D), demonstrating that the

observed intermediate distributions can be robustly identified.

Even though a further subcellular compartment cannot be

unambiguously delineated, the subcellular distributions of analytes

with sufficiently explained distributions assigned into this cluster

might be partially overestimated as this cluster comprises the

mitochondrial marker and therefore metabolites shared between

the mitochondria and plastids/cytosol (see above; Data S4).

Concluding remarks
By using an untargeted metabolic approach in combination

with the development of an advanced method for critical analysis

of NAF-derived metabolic data, we have gathered a comprehen-

sive description of a compartmentalized (with regard to the cytosol

(including the mitochondria), chloroplast, and vacuole) metabo-

lome of an eukaryotic organism. The resultant comprehensive

metabolic map of Arabidopsis leaves provides a resource that can

serve as a basis to identify constraints and key processes as targets

for biotechnology or for systems-biology driven research.

A precise understanding of how metabolites are synthesized,

stored, and transported is critical for a better understanding of

subcellular biochemical networks which will be important in

biotechnological applications, as well as providing a basis to

refine metabolic models by considering the subcellular localiza-

tion of dominant pool sizes. This fact is of particular importance

for plant energy metabolism which is closely linked with the

plant plastid, mitochondria, and cytosol. In frame with this it will

be of interest to sufficiently delineate not only the mitochondria

from the cytosol but also to uncover novel subcellular

distributions. While marker-‘free’ reconstructions showed the

contribution of unconsidered compartments in our data, an

unambiguous designation and biological description for these

compartments could not be achieved as they are mainly

comprised of structurally unknown analytes. Currently, this

represents one of the main limitations in NAF studies, as even

the subcellular localization of structurally identified (known)

metabolites are often not described in literature and even then

their localization might still be variable. Therefore it is clear that

a comprehensive framework of markers needs to be established

to align and assemble metabolites based on the measurement of

known, unambiguously localizable molecules. For this purpose it

will be necessary to include, along with the metabolic data, more

protein analyses. These could be either provided using more

antibody-based assays or by performing proteomic measure-

ments on the gradient fractions. Nevertheless, having developed

the presented metabolomics resource we have also laid the

groundwork needed in order to perform and analyze more

complex experiments, such as a time course or changing

environmental conditions.

With the biological validation of the dataset, and the promise in

the future to be able to name some of the unknowns, this

topographical map can aid in the discovery of novel transporters,

biosynthesis enzymes, and generate hypotheses for undiscovered

pathways. As NAF and the whole metabolomics platform are

applicable to any eukaryotic organism, the provided optimized

protocol (Text S1) for Arabidopsis and statistical workflow should be

adaptable to many other organisms.

Materials and Methods

Plant growth
All wild-type Arabidopsis thaliana Col-0 plants were grown on soil

for two weeks under short day conditions (8 h light) before being

transferred for three weeks to long day conditions (16 h light) with

140 mmol m22 s21 photon flux density and a temperature of 21uC
at 50% relative humidity. A total of 4–8 g pooled plant leaf

material from individual plants was harvested at the beginning of

the light period (about 3 h after light switched on), snap-frozen in

liquid nitrogen, and stored at 280uC until use.

Non-aqueous fractionation
For determination of subcellular metabolite levels, cellular

compartments were separated using density gradient centrifuga-

tion under non-aqueous conditions according to the methods for

leaf material [11] with optimized conditions [22] (Text S1). Frozen

Arabidopsis leaf material was homogenized using a ball mill, pre-

cooled in liquid N2 to avoid thawing, instead of using a mortar as

mortar-ground material was insufficiently filtered through a 20 mm

nylon net (used instead of quartz wool (data not shown)). The

gradient volume, composed of the non-polar solvents tetrachlor-

ethylene/heptane, was increased from 12 to 28 mL using a much

smaller linear density r from 1.43 g cm23 to 1.62 g cm23. Most of

the sample material was focused in the middle fractions with

exception of the plastidic compartment enriched within the top

fractions (data not shown). By testing several centrifugation

velocities and durations, equilibrium distribution was already

achieved at 5,000 g and 50 min instead of 25,000 g and 180 min

[cf. 11], shortening the exposure time of sample material to the

non-aqueous solvents.

SDS–PAGE and Western blotting
SDS–PAGE and Western blotting were conducted as described

[79]. Western blots were blocked with skimmed milk and probed

with polyclonal primary antibody against the light harvesting

complex (LHC) from Pisum sativum or the subunit E of the vacuolar

type H+-ATPase (V-ATPase; Abcam plc, Cambridge, UK). Anti-

rabbit horse radish peroxidase-conjugated secondary antibodies

were used to detect primary antibodies. All blots were developed

using ECL Western blotting kit (GE Healthcare, Munich,

Germany).

Enzyme and metabolite assays
Enzyme assay extracts were prepared according to Geigenber-

ger and Stitt [80]. NADP-dependent glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, EC 1.2.1.12) was measured as described

by Stitt et al. [81]. Uridine diphosphate (UDP)-glucose-pyropho-

sphorylase (UGPase, EC 2.7.7.9) was assayed according to

Zrenner et al. [82]. Citrate synthase (EC 2.3.3.1) activity was
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determined as described [83]. Chlorophyll was extracted twice

with 80% (v/v) and once with 50% (v/v) hot ethanol (30 min,

95uC) and determined as outlined by Arnon [84]. Starch was

measured from the remaining pellet of ethanolic extracts

according to Hendriks et al. [85]. Nitrate was analyzed by

enzymatic reaction as described [86].

Metabolite profiling
For GC-TOF/MS analyses, dried fraction aliquots were

extracted with cold 10:3:1 (v/v/v) methanol:chloroform:water

(MCW) solution and two extract aliquots (100 mL, 150 mL) were

derivatized and analyzed as described [87] with m/z acquisition of

85–750. The established GC/MS protocol allows quantification of

sugars, sugar alcohols, organic and amino acids, ascorbate and

some lipophilic compounds [87,88,89].

For LC/MS analyses lipophilic and secondary metabolites were

extracted from dried fraction aliquots with cold 2.5:1:1 (v/v/v)

MCW solution under shaking and sonication. After phase

separation, aliquots of the upper, aqueous phase and lower,

organic phase were dried and resuspended in ddH20 (secondary

metabolites) or 50:20:25 (v/v/v) isopropanol/hexane/water (lip-

ids). Extraction and derivatization of individual soluble thiols

(cystein, c-glutamylcysteine, glutathione) were performed as

described [90]. UPLC separation of soluble thiols, secondary,

and lipophilic metabolites were performed on a Waters Acquity

UPLC system (Waters, Mildford, MA, USA) equipped with a BEH

C18 (thiols), a HSS T3 C18 (secondary metabolites), or a BEH C8

(lipids) reversed phase column (Waters) coupled to a Fourier

Transform Ion Cyclotron Resonance Mass Spectrometer (thiols)

or an Exactive Orbitrap (secondary and lipophilic metabolites)

(both Thermo Fisher Scientific, Bremen, Germany). Mass spectra

were recorded in full scan, positive ion mode with m/z acquisition

of 100–1500 and 200–600 using 25,000 and 50,000 ppm

resolution for soluble thiols and secondary or lipophilic metabo-

lites, respectively (Text S1).

MS data analyses
GC/MS data were processed and aligned as described [87]

using a curated library of authentic standards and unknown

Arabidopsis compounds comprising 1,032 unique spectral entries

(Krall et al., in prep.). The aligned data with 413 found library

entries, were evaluated and curated (Text S1). The filtered raw

GC/MS data comprises 40 samples and 203 curated analytes with

1 (0.01%) missing value. All GC/MS data were expressed relative

to U-13C-sorbitol and extract replicates averaged after TIC

normalization (Data S1).

High-resolution MS data were aligned or peaks extracted

using GeneData (v5.3.7, Basel, Swizerland) and Xcalibur (v2.06,

Thermo). Aligned FT-MS data, comprising 16,262 and 53,785

time-m/z features (afterwards analytes) of lipophilic and

secondary metabolites, were filtered for consistently found

analytes (Text S1). These resultant peak lists were then searched

against KEGG [91] and KNApSAcK [43] for secondary

metabolites using an in-house developed database search tool

(GoBioSpace, Hummel et al., unpublished) while the lipid data

was searched against an in-house compiled lipid database

(Giavalisco et al., submitted). These filtered and uncurated data

were derived from 20 samples comprising 2,804 and 910

analytes with 1,125 (2%) and 457 (2.5%) missing values for

lipophilic and secondary metabolites, respectively (Data S2–S3).

These analytes were annotated onto three levels: unknown, if no

database hit could be assigned; match if an unverified database

hit was assigned; and known for orthogonally validated database

hits. The validation of known metabolites does not include the

use of authentic reference standards, but instead relies on

previously described compounds for Arabidopsis, the use of

validated fragmentation patterns, and mass shifts of 13C, 15N,

and 34S isotope labeled Arabidopsis thaliana samples (Giavalisco

et al., submitted). In order to estimate the number of potential

non-redundant analytes within the FT-MS data, a correlative

approach similar as described [92] was conducted by defining

time/similarity (T/S) clusters (Text S1).

The individual MS data were assembled into a joint data set

including metabolites measured by targeted MS approaches

(thiols) and metabolic assays (chlorophyll, starch) (Data S4).

Statistical analyses and visualization
All statistical analyses were performed if not otherwise stated

according to Sokal and Rohlf [32] using R 2.9.1.

Metabolite data were normalized to adjust for sample amount

variations using the total ion count within and among gradients

(Text S1). Analyte abundances were expressed as percentage from

total (scaled data). Missing values were imputed by principal

component analyses (PCA) [93]. Outliers, extreme deviations from

the respective fraction means, were detected by a boxplot

approach and replaced with the corresponding fraction mean to

promote extraction of biological relevant and robust information

(Text S1). The processed, i.e. normalized, imputed, and outlier-

removed data are provided as supplemental data (Data S1, S2,

S3).

Robust consensus distributions throughout gradients were

computed using Tukey’s biweight. The t-test was performed

two-sided with equal or unequal variance determined using F-test.

P-values were adjusted by Benjamini-Hochberg correction (PBH)

[94] to control the false discovery rate. Mantel tests were

performed as Pearson’s matrix correlations (r) between distance

matrices or as non-parametric ANOVA. HCA using average

linkage clustering were performed on Euclidean (Eq. 1) or

Manhattan distances. P-values for cluster nodes were computed

with R’s pvclust [95]. Classical multidimensional scaling (CMD;

[96]) on normalized Manhattan distances (Eq. 3) among analytes

was used to reflect distances as points in principal coordinates

space. This approach was used to visualize and assess the

proximity of a metabolite (or compartment) to the delineated

compartments. Gap statistic was performed to estimate the

number of clusters [97].

To estimate the robustness of downstream results, fractions were

randomly assembled into a total of 729 (726 random +3 original

combination) non-redundant artificial gradients and analyses were

repeated.

Compartmental distribution and assignment
Subcellular metabolite distributions were computed using the

BestFit command line tool (available upon request) by a three-

compartmental distribution strategy utilizing the best fit (BFA) [11]

and non-negative least square (NNLS) [50] algorithm. The

abundances of all markers delineating the same compartment

were averaged for each gradient separately prior to computation.

Analytes were assigned onto the three resolved subcellular

compartments using a k-nearest neighbor (kNN) approach [98]

with k = 3 nearest neighbors (estimated using cross-evaluation) on

normalized Manhattan distances (Data S4). Refined compartmen-

tal assignments (Data S4) were performed using a classification

tree based on observed subcellular distribution (Figure 6) and

marker-‘free’ by means of robust k-medoids clustering (PAM,

partitioning around medoids). The number of clusters (k) was

determined by allowing only the cytosolic compartment (repre-

sented by three compartment-specific markers) to be partitioned
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into different clusters without being assigned onto another

compartment. The validity of identified cluster numbers was

evaluated using gap statistics. Non-parametric ANOVA by means

of Mantel test was performed on 5 randomly selected cluster

members for each cluster and repeated 999 times.

Equations
(Eq. 1) Euclidean distance dE

dE(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(xi{yi)
2

s
~

ffiffiffiffiffiffiffiffiffiffi
RSS
p

RSS = residual sum of squares

(Eq. 2) Q-value

Q(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(xi{yi)
2

s

n{1
~

dE(x,y)

n{1

(Eq. 3) Normalized Manhattan distance dm (on scaled data)

dm(x,y)~
dM (x,y)

200
with 0:0ƒdmƒ1:0 (relative scale) ð3aÞ

dm(x,y)~

dM (x,y)

2
with 0%ƒdmƒ100% (percentage scale)

ð3bÞ

with dM~
Pn
i~1

xij {yij (Manhattan distance)
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