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The wide application of high-throughput transcriptomics using microarrays has generated a plethora of technical platforms,
data repositories, and sophisticated statistical analysis methods, leaving the individual scientist with the problem of choosing
the appropriate approach to address a biological question. Several software applications that provide a rich environment for
microarray analysis and data storage are available (e.g. GeneSpring, EMMA2), but these are mostly commercial or require an
advanced informatics infrastructure. There is a need for a noncommercial, easy-to-use graphical application that aids the lab
researcher to find the proper method to analyze microarray data, without this requiring expert understanding of the complex
underlying statistics, or programming skills. We have developed Robin, a Java-based graphical wizard application that
harnesses the advanced statistical analysis functions of the R/BioConductor project. Robin implements streamlined workflows
that guide the user through all steps of two-color, single-color, or Affymetrix microarray analysis. It provides functions for
thorough quality assessment of the data and automatically generates warnings to notify the user of potential outliers, low-
quality chips, or low statistical power. The results are generated in a standard format that allows ready use with both
specialized analysis tools like MapMan and PageMan and generic spreadsheet applications. To further improve user
friendliness, Robin includes both integrated help and comprehensive external documentation. To demonstrate the statistical
power and ease of use of the workflows in Robin, we present a case study in which we apply Robin to analyze a two-color
microarray experiment comparing gene expression in tomato (Solanum lycopersicum) leaves, flowers, and roots.

Since the first microarray experiments were per-
formed in the 1990s (Schena et al., 1995) a lot of effort
has been put into the development of this technique as
well as into approaches for the correct analysis of the
resulting data. Widespread use of the various array
technologies has been accompanied by the develop-
ment of many sophisticated statistical methods to
process the raw data, and to analyze the results to
infer new biological insights (Sreenivasulu et al., 2006;
Usadel et al., 2008; Winfield et al., 2009; Zanor et al.,
2009; and see below). The wealth of data and methods
leaves the individual researcher with the problem of

choosing the correct strategy since it is not directly
obvious to the inexperienced user which approach is
suitable for a given experimental design. Furthermore,
the wide application and technical improvement of
microarrays has also resulted in the establishment of
large publicly accessible expression data repositories
such as Gene Expression Omnibus, AtGenExpress, or
Genevestigator (Schmid et al., 2005; Barrett et al.,
2007). Data mining of these and other public collec-
tions is facilitated by descriptive meta data that is
attached to the expression data (MIAME and
MIAME/Plant [Brazma et al., 2001; Zimmermann
et al., 2006]; XEML [Hannemann et al., 2009]). How-
ever, choosing the correct approach to statistically (re)
analyze such data also inevitably requires expertise in
statistics.

One of the most advanced tools for the analysis of
high-throughput experimental data is the statistics
environment R. This open source project is constantly
being developed and refined by leading statisticians
(R Development Core Team, 2009). Together with the
R packages provided by the BioConductor project
(Gentleman et al., 2004), R provides a powerful, yet
flexible, platform for microarray data analysis and
quality assessment. The big disadvantage of R/Bio-

1 This work was supported by the Max Planck Society and the
GermanMinistry for Research and Technology in the Genomanalyse
im biologischen System Pflanze-MAPMEN program (grant nos.
0315049A and 0315049B).

* Corresponding author; e-mail lohse@mpimp-golm.mpg.de.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy
described in the Instructions for Authors (www.plantphysiol.org) is:
Marc Lohse (lohse@mpimp-golm.mpg.de).

[W] The online version of this article contains Web-only data.
[OA] Open Access articles can be viewed online without a sub-

scription.
www.plantphysiol.org/cgi/doi/10.1104/pp.109.152553

642 Plant Physiology�, June 2010, Vol. 153, pp. 642–651, www.plantphysiol.org � 2010 American Society of Plant Biologists



Conductor-based data analysis however, is its general
lack of an intuitive graphical user interface (GUI). The
largest part of the functionality of R can only be
accessed via a text console. This represents a consid-
erable obstacle for many biologists, who are inexperi-
enced in the use of such interfaces. Furthermore, full
use of the power of R/BioConductor-based data anal-
ysis requires programming skills.
Although several GUI applications have been de-

veloped that allow analysis of microarray data gener-
ated by different technical platforms, these are often
commercial (GeneSpring, GeneMaths XT, GeneSifter,
etc.), not very intuitive (limmaGUI, affylmGUI;
Wettenhall and Smyth, 2004; Wettenhall et al., 2006),
not available on all computing platforms (PreP+07;
Martin-Requena et al., 2009), or are Web-based solu-
tions that would either require uploading of poten-
tially sensitive, unpublished data or laborious local
installation such as CARMAWEB, EMMA 2, and
RACE (Psarros et al., 2005; Rainer et al., 2006; Dondrup
et al., 2009). Although packages like the TM4 suite
(Saeed et al., 2003) or MayDay (Dietzsch et al., 2006)
provide a collection of excellent tools for microarray
analysis, they do not offer a consistent, workflow-
oriented interface to the user due to their multipro-
gram (TM4) or plugin-based (MayDay) structure.
Additionally, the TM4 suite does not provide support
for single-color chip platforms like Affymetrix Gene-
Chips without further adaptation.
To address the need for a free, user-friendly, and

instructive open source tool for microarray analysis,
we have developed Robin. Robin provides a Java-
based GUI to up-to-date R/BioConductor functions
for the analysis of both two-color and single-channel
(Affymetrix GeneChip) microarrays and implements
wizard-like workflows that guide the user through all
steps of the analysis including quality assessment,
evaluation, and experiment design. Robin assists the
user in the interpretation of the results by automati-
cally issuing warnings if quality-check parameters
exceed or undercut conservatively chosen threshold
values, or statistical analysis indicates problems like
insufficient input data. During the whole workflow the
major attention is placed on simplicity and intuitive-
ness of the GUI. Advanced options to modify the
parameters of the analysis functions are, by default,
hidden from the user. Naturally, more experienced
users have the possibility to activate an expert mode,
which allows them to adjust the settings to meet their
individual needs, and even review and modify the
R scripts before they are executed by the embedded
R engine. The generated output includes informative
plots visualizing the quality-check and statistical
results, the R scripts that have been automatically
generated from the users’ input, and a complete sta-
tistical analysis of the response of gene expression in a
form that can directly be imported into common
spreadsheet applications, and meta-analysis tools
like MapMan for visualization. A detailed user’s man-
ual including step-by-step walk-throughs for the

different analysis workflows implemented in Robin,
examples for all types of quality checks, and compre-
hensive explanations of the statistical settings are
available online (http://mapman.gabipd.org/web/
guest/tutorials-manuals-etc; Supplemental Material
S2). To support users beyond the manual and to
provide a platform for discussion on improvements
and special-use cases, we set up a discussion forum for
Robin (please visit http://mapman.gabipd.org/web/
guest/forum).

RESULTS AND DISCUSSION

Robin implements standardized workflows for the
analysis of common microarray experiment designs,
including common reference and direct design two-
color experiments and simple multifactorial designs in
which more than one experimental condition is being
varied. Robin is not restricted to plant microarrays but
can be used to analyze data generated on most two-
color and non-Affymetrix single-channel microarray
platforms. It does also support all Affymetrix Gene-
Chip arrays that are included in the bioconductor proj-
ect (for an up-to-date list of supported Affymetrix chips
please see http://www.bioconductor.org/packages/
release/data/annotation/).

Installation and Scope

Robin is available as a stand-alone installer pack-
age including an embedded minimal R engine
(plus the required packages) for Microsoft Windows
(XP or higher) and Mac OS X (version 10.5 or higher)
from http://mapman.gabipd.org/web/guest/robin-
download. Installing these packages will leave an
existing installation of R on the target system un-
touched. For all other systems that support Java and R,
such as Linux, a lightweight package that can incor-
porate and configure an existing R installation for
usage with Robin is available. Currently, Robin is
released under the terms of the General Network User
Lesser General Public License version 3.0 and hence is
free open source software. It will stay freely available
for academic users in the future. The source code is
distributed as part of the installation package and can
optionally be installed alongside the program. Inter-
ested developers are free to inspect and reuse the
source code, if desired.

Importing Raw Data

The user can choose between three separate work-
flows, specialized for Affymetrix GeneChip, for
generic single-channel (e.g. Agilent etc), and for two-
color microarray data normalization and analysis.
Importing Affymetrix GeneChip data is very simple
and just requires the user to pick the raw data files that
will be included in the analysis. Since the Affymetrix
CEL data format is uniform and does not require
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further processing or configuration, the user can di-
rectly proceed to the quality assessment step. Due to
the various file formats in use for non-Affymetrix
microarray data, special care has been taken to provide
a versatile import wizard that assists the user in the
import of arbitrary tabular single- and two-color data.
The only restriction imposed is that the data has to be
in tabular text format.

The user chooses the chip grid layout from a list of
predefined layouts, or enters a custom layout. For
convenience, the layouts of several common plant
microarrays such as TOM1, TOM2, Medicago16K, and
Pisum6k (Alba et al., 2004; Hohnjec et al., 2005;
Thompson et al., 2005; CGEP [Cornell University,
Ithaca, NY]) are bundled with Robin as layout presets.
All settings of the import wizard interface can be
saved as an input data preset to speed up loading of
similar data. During the import, Robin tries to auto-
matically separate header information from the tabu-
lar data section in the input file and asks the user to
specify which columns contain the fields required for
analysis (i.e. red channel foreground and background,
green channel foreground and background intensities,
and a unique identifier for each measured signal).
When importing single- and two-color data, Robin
tries to determine whether the chip layout comprises
probes spotted in duplicates. After importing the data,
the user is asked to define the targets table by entering
the different RNA samples and specifying which
sample has been labeled with which dye on each
chip. For subsequent analysis, a reference sample must
be specified. In very simple experiments that only
comprise replicate chips of two different treatments
(possibly including dye swaps), Robin uses the first
entered sample as reference by default. If data con-
forming to a common reference design was entered,
Robin automatically detects the common reference
sample and prompts the user in case this sample was
not set as reference. During this step, Robin also
analyzes the input and tries to make sure that the
data is consistent, for example by verifying that the
samples are not disconnected. Import of Affymetrix
single-channel data does not cause such problems,
since the data format is uniform and it is not necessary
to define a targets table.

Quality Assessment

After importing the chip data, a variety of quality
assessment methods (Fig. 1) can be run to allow the
user to get an overview of the quality of input data and
subsequently exclude chips that show strong technical
artifacts individually. The various quality assessment
methods can be freely chosen and combined as re-
quired. For ease of use, robust standards are prese-
lected for the normalization, P-value correction, and
statistical analysis that yield reliable results in most
cases. However, the expert user can choose which
normalization, P-value correction, and statistical anal-
ysis approach (linear model or rank product based) to

use. These more advanced settings are not displayed
by default, but advanced users can take control of
analysis parameters and modify them according to
their needs.

To support the user in the evaluation of quality
assessment results, warnings are issued automatically
if quality measures of individual chips exceed conser-
vatively chosen threshold values (see “Materials and
Methods” section for details). Specifically, methods
available for quality assessment of single-channel data
are (1) RNA degradation analysis, (2) box plots, (3)
density plots of raw probe signal intensities, (4)
pseudo images of probe level model (PLM) residuals,
(5) scatter plots of the average probe intensity (A)
against the logarithmic fold change in expression (M;
MA plots), (6) scatter plots comparing all possible
combinations of two individual chips, (7) visualization
of principal component analysis and hierarchical clus-
tering of the normalized expression values, (8) box
plots showing the normalized unscaled SEs and rela-
tive logarithmic expression of the PLMs, and (9) false
color images of the background signal intensity for
non-Affymetrix arrays (Supplemental Fig. S1).

PLM-based methods are available for Affymetrix
arrays only, while the other functions can also be run
on generic single-channel chips. Methods available for
two-color chip quality assessment are (1) image plots
visualizing the chip background signal intensities, (2)
density plots of the probe intensity distribution before
and after normalization, (3) MA plots of raw and
normalized data for each chip, and (4) image plots
showing the M value for each probe color coded on a
pseudo chip (Supplemental Figs. S1 and S6).

All of the above-mentioned quality checks have
been implemented in R using functions provided by
the Bioconductor packages affy, affyPLM, affycore-
tools, simpleaffy, gcrma, plier, limma, marray, and
RankProd (Wang et al., 2002; Bolstad, 2004; Gautier
et al., 2004; Smyth, 2004; Wu et al., 2004; Affymetrix,
2005; Wilson and Miller, 2005; Hong et al., 2006; J.W.
MacDonald, unpublished data). Some functions were
modified to enhance the visual output. Depending on
the type of input data the user can choose between
different analysis approaches: In the case of single-
channel data, linear model-based (limma) or rank
product-based (RankProd) analysis is available. Two-
color data will always be analyzed using limma func-
tions. Quality analysis results will be summarized in a
scrollable list showing clickable thumbnail images of
the quality analysis plots. Individual chips showing
warnings may be manually excluded from the analysis
to prevent them from introducing technical bias in the
subsequent assessment of differential gene expression.

Experiment Design

When working with Affymetrix data, depending on
the statistical analysis strategy chosen, the user can
define two (when using rank product) to any number
(using limma) of groups of replicates, and assign the
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Figure 1. (Legend appears on following page.)
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imported data files accordingly. Unique labels identi-
fying the groups have to be chosen—these labels will
be used later on when defining the contrasts of inter-
est. Robin will generate a warning if groups contain
less than three replicates, which can lead to a lower
reliability of the results if too few data points are
available for the analysis of differential expression. It
should be noted that in this build of Robin, all replicate
experiments are treated as true biological replicates.
Entering data that is only technically replicated as an
independent replicate will lead to an overestimation of
significance when analyzing differential gene expres-
sion, however given the reliability of modern micro-
arrays, using technical replicates is most often no
longer necessary.

Subsequently, the replicate groups are depicted as
draggable boxes on the graphical designer panel. This
allows the user to visually lay out comparisons of
interests between the groups. To achieve this, one
simply has to draw an arrow by control-click-dragging
from one box to a second box, e.g. from wildtype to
mutant as shown in (Fig. 1). Robin interprets this
operation as the comparison wildtype minus mutant.
If more than one experimental condition is being
varied, the difference of differences can be extracted
using so-called interaction terms. These can be defined
by creating meta groups and drawing arrows between
them (Fig. 1). Specifically, the operation performed on
the meta groups shown in Figure 1 will be interpreted
as the interaction term (wildtype minus wildtype
stressed) versus (mutant minus mutant stressed) and
will extract those genes that respond to stress differ-
ently in mutant and wild type.

The expert settings box included on the experiment
designer panel again allows advanced users to change
all relevant parameters of the statistical analysis, like P
value and minimal log2 fold-change cutoff, correction
method for multiple testing, normalization (although
it is not recommended to use different normalization
methods for quality control and main analysis), and
the statistical strategy for multiple testing across con-
trasts. Additionally, expert users can choose to review
the R script that is generated from the inputs before it
is sent to the R engine and include custom code or use
Robin to quickly and comfortably generate skeletons
of analysis scripts that can then be used as starting
points for more sophisticated customized analyses.

ANALYSIS AND RESULTS

The statistical methods Robin employs to identify
differentially expressed genes are based on two differ-
ent approaches: Linear modeling (limma; Smyth, 2004)
and rank product-based analysis (RankProd; Breitling
et al., 2004; Hong et al., 2006). When analyzing Affy-
metrix data, the user can choose between these two
options, with the restriction that rank product-based
inference of differential expression is only available
when twogroups are to be compared. The twomethods
differ in the approach they take to the detection of
differentially expressed genes. While the linear model-
based method relies on advanced statistical modeling
and Bayesian inference, the rank product approach has
a closer resemblance to biological reasoning on the
data. For further details on the statistical methods,
please refer to Smyth (2004; Breitling et al., 2004; Hong
et al., 2006) and the RobinUsers’ Guide available online
(http://mapman.gabipd.org/web/guest/tutorials-
manuals-etc). Since rank product-based analysis is
limited to comparing two experimental conditions, the
linearmodel-based analysis offers farmoreoptions and
flexibility with respect to the available settings and
design of the experiment (e.g. if two factors, like geno-
type and treatment, are being varied in an experiment
and the user is interested in the interaction effect).

After collecting all necessary information from the
user, Robin generates an R script that is subsequently
executed by the embedded R engine. The script pro-
duces a comprehensive set of output files that are
organized in a folder structure. The results include
several informative plots summarizing the statistical
analysis: MA plots are created for each comparison, in
which the genes that are called as significantly differ-
entially expressed are highlighted in red (Supplemen-
tal Fig. S2). If less than five comparisons are defined,
Robin generates Venn diagrams visualizing the num-
ber of genes responding differentially and the overlap
of response between contrasts (Fig. 2). Dendrograms
showing the hierarchical clustering of the data based
on Pearson correlation of expression, and scatter plots
of principal component analysis provide an overview
of the internal structure of the data. Robin automati-
cally saves several tables containing the complete
statistical analysis for all the genes, and for the top
100 differentially expressed genes for each comparison
made. Summary tables that are formatted for direct
import and visualization in the meta-analysis tools

Figure 1. A, Screenshot of the quality assessment functions available for Affymetrix (R) chips. All methods can be freely combined
to obtain an overview of the input data quality. Short in-line explanations for each method are displayed in the info field on the
left side by clicking the question marks. The expert section at the bottom of the user interface provides more options for
customizing the analysis settings. By default, robust analysis methods are predefined and the section is hidden to provide a less-
cluttered interface to inexperienced users. B, Screenshot of the graphical experiment designer section. Comparisons between the
previously defined groups of biological replicate chips can be configured by dragging visual connections between them. The
arrowhead defines the direction of the comparison. For example, the arrow between the wildtype group and the wildtype stress
group is interpreted as the wildtype 2 wildtype stress contrast, meaning that genes showing a higher expression level in the
wildtype stress group will have a negative log2 fold-change value in the output and vice versa. Interaction terms can be defined
via metagroups, shown as orange boxes.
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MapMan and PageMan (Usadel et al., 2005, 2006)
allow Robin to be easily integrated with downstream
analyses. These files list the log2 fold change in ex-
pression for each gene in each comparison, plus a flag
denoting the results of the statistical testing (0 = not
significantly regulated, 1 = significantly up-regulated,
21 = significantly down-regulated). These flags can be
used for convenient filtering in MapMan (see Usadel
et al., 2009 for further details). Of course, thanks to the
simple tabular data format, the result files can also be
easily imported into network analysis tools like Cyto-
scape (Shannon et al., 2003). For Affymetrix data,
present and absent calls are calculated using the
mas5calls implementation provided by the affy Bio-
Conductor package (Gautier et al., 2004). All plots
generated in the quality analyses, processed input
files, the generated R source code, and a short text file
summarizing the analysis are written to the output
folder to completely document the analysis workflow
and ensure reproducibility of the results.

Case Study—Comparison of Tomato Tissues

Robin was used to analyze a data set generated by
analyzing gene expression in tomato flowers, roots,
and leaves, using TOM2 microarrays in a two-color
microarray experiment setup (see the “Materials and
Methods” section for details). Quality assessment
showed that there were no obvious or severe technical
artifacts visible on the chips when investigating the
background intensity images and the signal intensity
distributions plots (Supplemental Fig. S6). Warnings
were generated for all MA plots of the individual chips
because of a slightly elevated percentage (between
10.141% and 13.43%) of genes that showed a greater
than 2-fold change in expression.
These warnings are based on the assumption that

most of the genes will not show differential expression

in any given experiment, and are automatically issued
if the percentage exceeds 5%. However, when com-
paring very different tissue types, as it is the case in the
experiment described in this study, larger differences
in gene expression may be expected. Nevertheless,
having high percentages of differentially expressed
genes runs counter to the initial assumption that most
of the genes are not responding, and since the nor-
malization procedure is based on this assumption,
normalization might fail. Another reason might be an
overestimation of expression values due to an elevated
signal-to-noise ratio. As often observed in two-color
microarray experiments, the raw signal intensities
differ in the red and green channel (Supplemental
Fig. S6). This technical bias can largely be eliminated
by using the standard background subtraction and
scaling normalization approach in Robin, as shown on
Supplemental Figure S6. Since none of the chips
showed strongly outlying behavior in the quality
assessment step, all were included in the statistical
analysis of differential gene expression.

The three tomato tissues were compared against
each other using a direct design with three biological
replicates and dye swaps. In total, 418 genes were
found to be significantly differentially regulated be-
tween leaves and roots, 200 when comparing leaves to
flowers and 234 in the comparison of flowers to roots.
As indicated on the Venn diagram (Fig. 2), a substan-
tial number of genes showed differential expression
levels in more than one comparison.

The results obtained in Robin were then analyzed
using MapMan (Usadel et al., 2009) to gain insights
into the biological context of relevant differences in
gene expression. Using the biological pathway visual-
ization capabilities of MapMan, general differences
could be observed when comparing the aboveground
organs with roots. The most prominent changes were,
as could be expected, for genes related to photosyn-
thesis. The MapMan BINs (1.1 PS.light reaction, 1.2 PS.
photorespiration, 1.3 PS.calvin cycle, and 19 tetrapyr-
role synthesis) were strongly and very consistently
up-regulated in leaf and flower tissue (Fig. 3; Supple-
mental Table S2; Supplemental Fig. S3) compared to
roots. The difference between leaves and flowers was
much less pronounced, although still significant. This
result can clearly be attributed to the fact that leaves as
the primary sites of photosynthesis supply sink organs
like roots and flowers with assimilates and hence need
to maintain the photosynthetic machinery in a func-
tional state. These results indicate that the major
biological differences were readily identified by Robin
and MapMan and prompted us to investigate more
subtle differences.

In addition to the visual inspection of pathways
provided by MapMan, the built-in Wilcoxon rank sum
test function was used on all three comparisons to
identify significantly changed MapMan BINs (Supple-
mental Table S2). Other general processes that were
found to be significantly up-regulated in leaves
compared to both flowers and roots included starch

Figure 2. Venn diagram showing the numbers of genes called signif-
icantly differentially expressed when comparing tomato leaf, flower,
and root tissue. The numbers include both up- and down-regulated
genes. Genes that are differentially regulated in more than one com-
parison are depicted in the overlapping areas. As indicated by the
number in the lower right corner, 10,531 genes were not significantly
affected.
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synthesis and degradation. In line with the expecta-
tions, Suc-breakdown-related genes like Suc synthase
showed increased expression in roots. Suc synthase is
presumably involved in Suc breakdown to provide for
carbon supply in sink organs (Sun et al., 1992; Zrenner
et al., 1995). Surprisingly, invertases, which are re-
quired for normal root growth in Arabidopsis (Arabi-
dopsis thaliana; Barratt et al., 2009), showed slightly
stronger expression in leaves.

YABBY transcription factors have previously been
shown to be involved in the regulation of lateral organ
development (Street et al., 2008; Stahle et al., 2009).
They were found to be significantly up-regulated in
leaf (SGN-U603003) and flower tissue (SGN-U591723,
SGN-U577176, SGN-U603003; Supplemental Fig. S3).
The expression of YABBY proteins was strongest in
flowers, supporting their well-described prominent
role in flower development (Fourquin et al., 2007;
Ishikawa et al., 2009; Orashakova et al., 2009). In-
vestigation of the development-specific expression
pattern of Arabidopsis YABBY proteins using the
Genevestigator tool (Zimmermann et al., 2004) re-
vealed a similar expression pattern for the crabs claw
protein showing highest expression in mature flowers
(Supplemental Fig. S4). Similarly, the MADS-box tran-
scription factors showing high similarity to SEPAL-
LATA (SEP1/2) and AGAMOUS-like (AGL8/12) from
Arabidopsis that are known to regulate flower and
seed development (Mizukami et al., 1996; Pelaz et al.,
2000; for review, see Robles and Pelaz, 2005), show
strongest expression in flower tissues (Supplemental
Fig. S3), confirming the fidelity of the results generated
using Robin.

MapMan BINs that were primarily up-regulated in
root tissue included lignin biosynthesis (16.2.1),
plasma membrane intrinsic proteins like aquaporins
(34.19), and genes related to flavonoid synthesis and
metabolism of phenolic compounds. Although the
latter two were not significantly responding according
to the Wilcoxon rank sum, individual genes showed
significant responses. Since expression of flavonoid
biosynthesis genes in root tissue is induced in the light
(Hemm et al., 2004) the up-regulation of SGN-
U565166, SGN-U565164 (similar to flanonol synthase),
and SGN-U563058 (similar to flavonone-3-hydroxy-
lase) might indicate an artifact due to exposure of the
root to light during sample harvesting.

Flower tissue displayed a strong expression of cell
wall-degrading enzymes like pectin methyl esterase
(PME), pectate lyases, and polygalacturonases in com-
parison to both leaves and roots. PMEs catalyze the
demethylation of pectin, changing the gelating prop-
erties of pectin and making it amenable to cleavage by
pectate lyases and polygalacturonases. Apart from
their role in simple pectin degradation, recent studies
have also shown a prominent role of PMEs in control-
ling cell adhesion, organ development, and phylo-
tactic patterning (for review, see Wolf et al., 2009).
Previous screens of cDNA libraries derived from
maize (Zea mays) pollen have shown high expression
levels of pectin degradation related genes in flower
tissues (Wakeley et al., 1998) that are believed to play a
role in pollen tube elongation. Interestingly, two pu-
tative PMEs (SGN-U585819 and SGN-U585823) ex-
hibited deviating behavior with low expression in
flowers. Further investigations using the tomato

Figure 3. PageMan analysis of the
tomato case study. A Wilcoxon test
was performed, analogous to the
test implemented in MapMan, to
identify significantly differentially
regulated MapMan bins. Individual
bins that show distinct responses
are highlighted. The plot shows the
color-coded Z scores of the P
values computed in the test. CHO,
Carbohydrate.
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genome browser provided by the sol genomics net-
work (http://solgenomics.net/gbrowse/gbrowse/
ITAG_devel_genomic/) revealed that both genes are
located on the same chromosome in direct vicinity of
each other, possibly indicating that they originate from
a tandem duplication event (Supplemental Fig. S5).
The observations reported above were highly signifi-
cant both on the pathway level, as tested by the
Wilcoxon rank sum test, and on the level of individual
genes as confirmed by the statistical analysis of differ-
ential gene expression (see Supplemental Table S1 for
full details). The raw data files and the complete Robin
analysis project are available as supplemental material
(Supplemental Materials S1 and S3).

MATERIALS AND METHODS

Implementation of Robin

Robin was implemented in Java and R using free extension libraries devel-

oped by several software projects. Specifically, the NetBeans visual application

programming interface (http://graph.netbeans.org/) was used to develop the

visual experiment designer, and the AffxFusion (http://www.affymetrix.com/

partners_programs/programs/developer/index.affx) library was employed for

the extraction of detailed information from Affymetrix chips. Apache commons

(http://commons.apache.org/) was used to facilitate generic string operations.

To achieve an improved user experience and better integration into theMacOSX

platform, we used the AppleJavaExtensions provided by Apple, Inc., and the

QuaQua (http://www.randelshofer.ch/quaqua/) look and feel.

A stand-alone slim-line R engine is embedded in the Robin package, and is

independent of user-installed versions of R. All required BioConductor

packages have been included to provide an all-in-one package that works

directly after installation. Installer packages for different operating systems

were created using the free IzPack installer generator (http://izpack.org/).

We also provide a lightweight package without R that can be deployed on any

Java-enabled platform. On first use, this version of Robin will ask the user for a

path to a working R installation, check this installation, and automatically

download all required packages (if not already present), provided the com-

puter has a working internet connection.

Automatic Input Assessment and Generation
of Warnings

Robin tries to aid the user in assessing the quality of the microarray data by

automatically generating warnings if diagnostic measures are exceeding

preset threshold values. The assessment of global RNA degradation effects

as implemented by the AffyRNAdeg function (Gautier et al., 2004) yields

slopes for each of the degradation curves. If the slopes of individual RNA

degradation curves exceed a value of 3 or deviate by more than 10% from the

median slope of all curves, a warning message indicating the affected chips is

displayed in the quality-check result list. MA plots visualizing the log2 fold

change in expression of gene G under condition C versus condition D (M =

logGC 2 logGD) plotted against the average log2 probe or probeset intensity

(A=½3 [logGC + logGD]) are generated for each individual chip. In the case of

two-color microarrays the red channel signal intensity is compared against the

green channel signal intensity. To display MA plots for Affymetrix arrays, the

normalized expression values of each chip are compared against a synthetic

chip created using the median expression values of all probesets across all

chips in the experiment. Based on the assumption that most genes will not

respond differentially to a given treatment, Robin automatically warns the

user if more than 5% of the probesets on an individual chip are more than

2-fold up- or down-regulated. This threshold might be too restrictive in certain

experiments, e.g. where very different developmental stages of an organism

are compared or a drastic treatment is applied. Nevertheless, on data sets that

violate the assumption that most genes are not responding, the normalization

might fail and introduce artificial effects distorting the original data. Gener-

ally, though, a high percentage of differentially responding probesets might

indicate artifacts caused, for example, by a low signal-to-noise ratio or large

differences in probe signal intensity that could not be eliminated by normal-

ization or even pathogen attack. Again based on the aforementioned assump-

tion, the M values plotted on MA plots should be centered around M = 0. A

lowess fit (Cleveland, 1979) is calculated for the MA plots. In the ideal case the

lowess fit curve would be identical to the M = 0 line. As an estimate for a

strong deviation of the lowess fit from the M = 0 line, the area between the

lowess curve and theM = 0 line is calculated. If the area exceeds a value of 1, a

warning will be issued to notify the user of possible artifacts that might be

caused by, for example, a bimodal probe signal intensity distribution. Probe

signal intensity oversaturation is estimated by calculating the percentage of

probes whose raw signal intensity is equal to the highest intensity value

measured within that chip. Usually only one or a few probes display maximal

intensity (in the case of Affymetrix GeneChips the theoretically possible

maximal dynamic range of probe signal intensity is 0–216 due to the 16-bit data

precision of Affymetrix GeneChip scanning devices). If more than 0.25% of the

probes have maximal intensity, the chip is considered oversaturated and a

warning is generated, informing the user of the possible information loss.

Detection of spot replication relies on the spot identifiers and is based on

the assumption that if the gene spots are not duplicated but the controls are

duplicated, the number of unique identifiers will be greater than 50% of the

total number of spots. This should be true for all array types that have more

gene spots than control spots, but might not be the case for boutique arrays

that only contain few probes (e.g. custom arrays designed for small organellar

genomes). If replicate spots are detected, Robin sorts the input data by

identifier to make sure that replicates are consecutive, sets the number of

duplicates to two, and the spacing between duplicates to one. Obviously, this

is incorrect in cases where more than two replicates are spotted on the array.

When analyzing arrays on which the spacing of replicate spots is not uniform,

this approach might lead to overestimation of significance and underestima-

tion of correlation for replicate spots that are close together on the array. To

account for this possible bias, Robin generates a warning when replicates are

detected and informs the user of the assumptions made.

Since the rank product-based analysis does not accept duplicated spots on

one array, Robin checks the input data and collapses replicated values

identified by the same identifier to the median value within each array. If

replication is detected a file containing the replicated spot identifiers and

values will be written to disc. In addition to the warnings issued during the

quality assessment, Robin will also inform the user of problems that occurred

during the statistical analysis of differential expression, like low or imbal-

anced numbers of biological replicates and low significance of the results (e.g.

none of the probes tested is called significantly differentially expressed given

the chosen thresholds). At the end of the analysis workflow, Robin will present

a summary list of all generatedwarnings to ensure that the user is made aware

of possible shortcomings of the data.

Plant Material

Tomato (Solanum lycopersicum ‘M82’) seeds were allowed to germinate

directly on soil and were then transferred to a vermiculte-based growth

substrate and further cultivated as described in van der Merwe et al. (2009).

Plantmaterials formicroarray analysiswere harvested from6-week-oldplants.

Specifically, leaf sampleswere taken from the third to fourth node from the top,

roots were washed in tap water to remove growth substrate, and all fully

expanded flowers were collected. To minimize circadian effects, samples were

taken on two consecutive days at the same time of day within 1.5 h. Tissue

sampleswere immediately shock frozen in liquid nitrogen and stored at280�C.

Sample Preparation

Tomato RNA extraction was performed using a modification of the

standard TRIzol (Invitrogen GmbH) extraction protocol. Briefly, 500 mg of

frozen material was finely ground in a mortar and subsequently mixed with 5

mL of TRIzol solution by vortexing. After addition of 3 to 5 mL chloroform

and centrifugation for 20 min at 4,000g, the aqueous phase containing the

RNA was transferred to a fresh tube. RNA was precipitated overnight

following addition 0.5 volumes of precipitation solution (0.8 M sodium citrate,

1.2 M sodium chloride) and 0.5 volumes of 2-propanol. Precipitated RNAwas

recovered by centrifugation for 20 min at 4,000g and subsequently washed

twice by adding 5 mL of 70% ethanol and centrifuging for 5 min at 4,000g.

After complete removal of 70% ethanol, the RNA pellets were air dried and

finally dissolved in 40 mL of sterile water. cDNA synthesis and labeling was

carried out as described in Degenkolbe et al. (2005) using Dynabeads Oligo

(dT)25 (Dynal) to extract mRNA from the whole RNA samples.
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Chip Hybridization and Data Processing

The TOM2microarrays were obtained from the Boyce Thompson Institute.

Each microarray contains 11,890 oligonucleotide probes designed based on

gene transcript sequences from the Lycopersicon Combined Build # 3 unigene

database (http://www.sgn.cornell.edu). Following RNA extraction, chip hy-

bridization was performed as described in Degenkolbe et al. (2005) with the

following modifications: The slides were rehydrated over a 65�Cwaterbath for

10 s and UV cross-linked at 65 mJ. The prehybridization was performed for 45

min at 43�C in 53 SSC, 0.1% SDS, 1% bovine serum albumin, washed twice for

10 s in milliQ water (Millipore) and in isopropanol for 5 s and drained by

centrifugation at 1,500 rpm for 1 min. After hybridization the slides were

washed in 13 SSC, 0.2% SDS for 3 min at 42�C, and 3 min at room

temperature; after that the slides were washed again in 0.13 SSC, 0.2% SDS

for 3 min at room temperature, three times in 0.13 SSC for 3 min at room

temperature. The arrays were then drained by centrifugation at 1,500 rpm for

2 min. All three possible comparisons between the three tissues were

performed in three biological replicates, resulting in nine microarray hybrid-

izations. Raw signal intensity values were computed from the scanned array

images using the image analysis software GeneSpotter version 2.3 (Micro-

Discovery). The raw intensity values were normalized using Robin’s default

settings for two-color microarray analysis. Specifically, background intensities

estimated by GeneSpotter were subtracted from the foreground values and

subsequently a printtip-wise loess normalization (Yang et al., 2002) was

performed within each array. To reduce technical variation between chips, the

logarithmized red and green channel intensity ratios on each chip were

subsequently scaled across all arrays (Yang et al., 2002; Smyth and Speed,

2003) to have the same median absolute deviation. Statistical analysis of

differential gene expression was carried out using the linear model-based

approach developed by Smyth (2004). The obtained P values were corrected

for multiple testing using the strategy described by Benjamini and Hochberg

(1995) separately for each of the comparisons made. Genes that showed an

absolute log2 fold-change value of at least 1 and a P value lower than 0.05 were

considered significantly differentially expressed. The log2 fold-change cutoff

value was imposed to account for noise in the experiment and make sure that

only genes that show a marked reaction are recorded. The TOM2 chip

oligonucleotide annotation was updated based on BLAST (Altschul et al.,

1990) searches against the newest version of the SGN tomato unigene set

(Tomato 200607 build2, http://solgenomics.net/) and MapMan BINs were

assigned to each oligonucleotide on the chip based on the SGN tomato

unigene mapping. Wilcoxon rank sum tests were performed to test whether

there were bins that were significantly and consistently behaving different

than the other bins in the MapMan ontology using the built-in function in

MapMan.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Exemplary overview of the quality assessment

plots generated by Robin.

Supplemental Figure S2. MA plots of the three comparisons made in the

tomato case study experiment.

Supplemental Figure S3. Exemplary visualization of the most strongly

reacting bins using MapMan.

Supplemental Figure S4. Expression patterns of three YABBY transcrip-

tion factor homologs fromArabidopsis created using the Genevestigator

Web application.

Supplemental Figure S5. Genomic locations of two putative PMEs from

tomato (SGN-U585819 and SGN-U585823) as shown by the Gbrowse

genome browser (http://solgenomics.net/gbrowse/gbrowse/ITAG_

devel_genomic/).

Supplemental Figure S6. Summary of all quality-check plots generated for

the tomato case study experiment.

Supplemental Table S1. Detailed statistical results tables as produced by

Robin.

Supplemental Table S2. Wilcoxon rank sum test results generated by

MapMan.

Supplemental Material S1. Complete analysis results of the case study as

described in the text, including the processed raw microarray data.

Supplemental Material S2. Robin Users’ Guide.

Supplemental Material S3. Raw microarray data files of the case study

experiment.
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