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Environmental fluctuations lead to a rapid adjustment of the physiology of Escherichia coli,
necessitating changes on every level of the underlying cellular and molecular network. Thus far, the
majority of global analyses of E. coli stress responses have been limited to just one level, gene
expression. Here, we incorporate the metabolite composition together with gene expression data to
provide a more comprehensive insight on system level stress adjustments by describing detailed time-
resolved E. coli response to five different perturbations (cold, heat, oxidative stress, lactose diauxie,
and stationary phase). The metabolite response is more specific as compared with the general
response observed on the transcript level and is reflected by much higher specificity during the early
stress adaptation phase and when comparing the stationary phase response to other perturbations.
Despite these differences, the response on both levels still follows the same dynamics and general
strategy of energy conservation as reflected by rapid decrease of central carbon metabolism
intermediates coinciding with downregulation of genes related to cell growth. Application of co-
clustering and canonical correlation analysis on combined metabolite and transcript data identified a
number of significant condition-dependent associations between metabolites and transcripts. The
results confirm and extend existing models about co-regulation between gene expression and
metabolites demonstrating the power of integrated systems oriented analysis.
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Introduction

The response of biological systems to environmental perturba-
tions is characterized by a fast and appropriate adjusting of
physiology on every level of the cellular and molecular
network. Stress response, as reflected on the level of gene
expression, displays some conserved features largely indepen-
dent of the organism.

Gene expression stress responses are transient, leading to
new steady state levels similar to the unstressed cells even in
the presence of a persistent stress (Lopez-Maury et al, 2008).
Stress response is usually represented by a combination of
both specific responses, aimed at minimizing deleterious
effects (e.g. catalase during oxidative stress), or repairing
damage (e.g. protein chaperones under temperature stress)
and general responses which, in part, comprise the down-

regulation of genes related to translation and ribosome
biogenesis (Hengge-Aronis, 2000). This in turn is reflected
by growth cessation or reduction observed under essentially
all stress conditions and is an important strategy to adjust
cellular physiology to the new condition.

Escherichia coli has been intensively investigated in relation
to stress responses (Zheng et al, 2001; Chang et al, 2002; Patten
et al, 2004; Phadtare and Inouye, 2004; Gadgil et al, 2005;
Durfee et al, 2008). Major components of the general and
specific response regulate key cellular processes ensuring
global control upon perturbation. ss (RpoS) is a central
regulator during the response to many stress conditions. ss

controls expression of 4140 genes involved in metabolism,
protein processing, stress adaptation, transport, and transcrip-
tional regulation (Weber et al, 2005). Another important global
regulator is (p)ppGpp, involved in the stringent response, one
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of the mechanisms bacteria use to tune metabolism to
available resources. The stringent response is observed when
depleting the system of amino acids, and during carbon
starvation (Irr, 1972).

The majority of global analyses of the E. coli response to
environmental changes have been limited to just one level of
information processing, transcription. Although this may be
explained by both the central importance of gene expression
and the availability of mature techniques, which permit the
study of transcriptional changes on a genome-wide level, it is
also true that similar approaches on different molecular levels
are largely missing. Specifically, comprehensive analyses of
changes on the level of metabolites are very rare (Brauer et al,
2006). This is particularly true for the integrated and parallel
analysis of the systems response on two levels of genome
information processing such as the transcriptome and the
metabolome (Bradley et al, 2009).

To better understand system response to perturbation, we
designed a time-resolved experiment to compare and integrate
metabolic and transcript changes of E. coli using four stress
conditions including non-lethal temperature shifts, oxidative
stress, and carbon starvation relative to cultures grown under
optimal conditions. The resulting data set allowed us to
identify parallel and distinct response patterns, represented by
conserved patterns on both the metabolic and gene expression
levels, across all stress conditions, which indicates a systema-
tic adjustment to suboptimal growth conditions through the
impediment of energy demanding growth-related processes. In
addition to this conserved component, each response dis-
played a large amount of stress specificity, thus allowing the
clear discrimination of the various stresses through clustering
of the metabolomic or transcriptomic data. Performing a time-
resolved analysis of the response, however, showed a higher
degree of stress specificity for the metabolomic response when
compared with the transcriptomic response during the early
time points after stress application. As well, metabolic profiles
of cultures entering stationary phase are, in contrary to
transcript changes, highly dissimilar to metabolic responses
to all other tested perturbations.

Clustering and canonical correlation approaches were
followed to identify coordinated changes on the transcriptome
and the metabolite level, which revealed previously known
specific pathway regulations (such as Kleefeld et al, 2009) as
well as potential new ones that will require biological
validation through further experimentation.

Results and discussion

Experiment design

An established metabolic profiling platform was used to
characterize the metabolic responses of an E. coli to four
different environmental perturbations, comprising oxidative
stress, glucose-lactose diauxic shift, heat and cold treatments,
and using an unperturbed culture as a control. Each experi-
mental condition was independently repeated three times and
in each of these three biological repetitions, three technical
replicas were made, thereby yielding a total of 4550 samples.
Metabolic profiles containing 188 metabolites (95 could be
positively identified, 58 could be chemically classified, and 35

of unknown structure) from E. coli cultures before, during, and
after acclimation to the four perturbations plus controls were
obtained.

In parallel to gas chromatography mass spectrometry
(GC-MS) measurements, microarray-based transcript profiling
was carried out for samples from time points 10–50 min post-
perturbation plus two control time points before each
perturbation for all conditions except the oxidative stress
experiment in which all samples (12 time points) were used for
transcript profiling covering the entire growth curve, including
the stationary phase. Again, three biological replicates were
analyzed for each time point, but in contrast to the metabolic
profiling no technical repetitions were performed.

The overall measurement reproducibility was determined
for all independently performed biological experiments.
Relative standard deviation (RSD) of technical and biological
replicates was calculated, and showed high reproducibility
(Supplementary Figure 1). Median RSD of metabolic measure-
ments for all biological replicates lay within the range of 19.5
(cold) to 27.1% (oxidative stress).

The experiments were designed to both compare and
contrast the growth phases within any single applied condi-
tion, and also of similar (parallel) time points from the
different perturbations on both the metabolic and transcript
level. However, of greatest interest was the dynamic response
of the system to each of the different conditions applied.
Therefore, each experiment was sampled with at least 11 non-
linear time points with the highest sampling resolution during
the adaptation phase of the culture immediately after
perturbation. The five experimental conditions resulted in
three distinct growth curves. Exponentially growing cells
confronted with oxidative stress and glucose-lactose shift
arrested growth for B40 min and then resumed logarithmic
growth (40–210 min after stress) until reaching stationary
phase at about 210 min after stress. After both heat and cold
stress application, E. coli stopped growing for approximately
40–50 min and then slowly recovered growth (50–260 min)
although at a much slower rate. Within the time frame of the
experiment (260 min after stress application), heat and cold
stressed cultures did not reach stationary phase. Unperturbed
control cultures reached stationary phase about 210 min after
having reached optical density (OD) 0.6 (the time point of
stress application for the treated cultures). Further details
about the growth and sampling time points can be found in
Supplementary Figure 2.

Growth phase has a predominant influence
on metabolic profiles

Here, we describe the significant metabolic changes (Pp0.05,
ratio X2) relative to time points before perturbation, illustrat-
ing the influence growth phase has on the metabolic
composition. We first analyzed the changes of the metabolite
composition across all time points of all conditions. As
cultures were harvested before perturbation in mid-logarith-
mic growth, a comparison of the metabolic response from each
condition to the average of metabolites taken before perturba-
tion is possible (Figure 1).

Figure 1 shows the metabolic profiles of all identified
metabolites for all four stress conditions and the control
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relative to time points before perturbation. One of the most
striking features of the heat map is the strong influence of the
growth phase on metabolite levels.

During both temperature experiments (cold and heat stress),
the temperature was maintained at the altered level after the

initial shock treatment. In consequence, no resumption of
exponential growth was observed (Supplementary Figure 2).
In this sense, the applied cold and heat stresses are
‘permanent,’ which is largely reflected in the metabolic
readout. After application of cold or heat, metabolic levels
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Figure 1 Metabolite changes during growth and as a result of stress treatment. Median for metabolite levels based on three independent biological repetitions of each
stress condition plus control growth relative to time points before perturbation are shown in columns. Hierarchical clustering was performed on those 95 with known
annotations. Within each condition, time points are ordered chronologically, the numbering refers to the numbering given in Supplementary Figure 2. Sampling time is
shown in a panel at the top of the figure indicating the time after application of the different stresses in minutes. The color of the panel indicates the growth phase: blue-
exponential growth, magenta-growth reduction or cessation. Time points before stress application are indicated by their optical density. Source data is available for this
figure at www.nature.com/msb.
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stay fixed or gradually recover after the initial perturbations
immediately after stress. This is in contrast to the more
transient changes seen after hydrogen peroxide treatment and
carbon source shift, which both restore exponential growth
after 40 min post-perturbation. A detailed description of the
metabolite changes is given in the Supplementary information.

The conserved metabolic response pattern is in
agreement with the energy conservation program

The requirement to conserve energy is an important feature of
all stress responses, and this necessity has been associated
with many stress response mechanisms including the stringent
response (Durfee et al, 2008), and the general stress response
(Weber et al, 2005). The implementation of the latter has been
shown through gene expression studies to reduce energy
expenditure through the repression of genes involved in
growth, cell division, and protein synthesis (Weber et al,
2005). The repression of transcripts involved in aerobic
metabolism has also been seen in response to oxidative stress
(Chang et al, 2002) and carbon starvation (Nystrom, 2004).
It has been shown that the stringent response involves the
downregulation of transcripts involved in transcription and
translation (Barker et al, 2001).

In light of these transcriptome-based observations, we
decided to see whether the general decrease of central
metabolism is also reflected on the metabolite level across
the different stress conditions. As induction of the general
stress response takes place directly after perturbation, we
concentrated on the changes specifically during the first
40 min after application of the stress, the time where cells
had not yet resumed growth (Supplementary Figure 2).
Metabolic profiles of all identified metabolites are presented
in Figure 1, whereas all significant changes are shown in
Supplementary Table 1.

Consistent decrease in the levels of metabolites related to
glycolysis, the pentose phosphate pathway (p.p.p.), and the
TCA cycle is one of the most pronounced effects of the stress
application (Supplementary Figure 3). Those include rapid
decrease of glucose-6-phosphate (glc-6-P), glyceric acid-3-
phosphate (3PGA), pyruvic acid followed by decrease of
succinic acid, erythrose-4-phosphate (E-4-P), and ribose-5-
phosphate (ribose-5-P) within 40 min, and 6-phosphogluconic
acid 90 min after heat-stress application. After oxidative stress
application within 20 min, glc-6-P, 3PGA, malic acid, and
2-ketoglutaric acid decreased. Levels of 2-ketoglutaric acid
decreased also 10 min after glucose-lactose shift. At 90 min
after cold stress, levels of malic acid and ribose-5-P signifi-
cantly decreased. Noteworthy is the decrease in levels of
ribose-5-P, which is precursor of the nucleotide biosynthesis.
The decrease in nucleotide biosynthesis is strongly reflected
also on transcript level (see below), being one of the most
pronounced responses common to different stress conditions
(Gasch et al, 2000).

The only glycolytic intermediate that accumulates during
the adaptation phase is phosphoenolpyruvic acid (PEP), which
transiently increases 10 min after the glucose-lactose shift. As
PEP serves as phosphate donor for the phosphotransferase
system responsible for glucose import, swift accumulation of

PEP was recently proposed to be a direct effect of decreased
glucose import caused by low-glucose concentration in the
medium (Brauer et al, 2006).

Another general effect of stress application is the accumula-
tion of various amino acids (Supplementary Figure 3). During
the adaptation phase, levels of alanine, asparagine, lysine,
isoleucine, methionine, leucine, aspartic acid, glutamic acid,
phenylalanie, and homoserine significantly increase under
cold; isoleucine, threonine, phenylalanine, lysine, alanine,
asparagine, glutamic acid, and homoserine under heat;
asparagine in lactose shift; and alanine and asparagine in
oxidative stress experiment.

The increase in amino-acid levels could be, at least in part, a
result of increased protein degradation (Mandelstam, 1963).
Degradation of proteins can be caused by the need to eliminate
abnormal proteins formed as a result of stress, or can be
interpreted as a means to increase the availability of amino
acids required for the synthesis of new proteins important for
survival under the new, less favorable condition (Willetts,
1967). It has been shown that protein degradation is
influenced by the increase of ppGpp levels during amino acid
and carbon starvation, and this degradation was suggested to
be dependent on the action of Lon and Clp proteases (Kuroda
et al, 2001). Proteins that are preferentially degraded by
proteases are free ribosomal proteins, tagged with a polypho-
sphate chain, which stimulates proteolytic attack (Kuroda
et al, 2001). In line with those findings, we observed a massive
increase in the levels of various amino acids on the entry to the
stationary phase of growth starting from 210 min after
oxidative stress, lactose shift, and in parallel time points in
the control cultures (Supplementary Table 1).

Although many amino acids accumulate, some do show a
decrease. Methionine levels significantly decrease after both
heat and oxidative stress (Supplementary Table 1), which is in
agreement with methionine synthase (MetE) being very
sensitive to oxidation. The addition of methionine to the
growth medium leads to increased survival of E. coli during
heat stress and a shortened growth lag during oxidative stress
(Hondorp and Matthews, 2004). As oxidized MetE is inactive,
the resulting methionine limitation might affect protein
translation (Gold, 1988). In line with these findings, we
observe an increase in methionine levels on growth resump-
tion in the oxidative stress experiment (Figure 1; Supplemen-
tary Figure 3).

Taken together, the changes observed on metabolic level,
specifically the decrease in most measured metabolites of the
TCA cycle and the glycolysis pathway (cf. also Supplementary
Figure 3 for a better presentation of these metabolites), are in
agreement with the general energy conservation strategy
previously reported for the transcriptomic response.

Major changes at the metabolic and transcript
level coincide with growth transitions

As discussed in the Introduction, both specific Figure 1 and
general responses (Gasch et al, 2000; Weber et al, 2005) were
observed. To further probe conserved and non-conserved
responses, we analyzed time points displaying the highest
number of changes. To this end, the number of metabolites and
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transcripts that significantly differ (change) between two
neighboring time points (the time point of interest and the
directly preceding one) within each condition were calculated.

When performing this analysis for all conditions, a highly
conserved pattern emerged for both transcripts and metabo-
lites (Figure 2A and B). Thus, on both levels, the largest
number of changes is observed within the first time point after
stress application with the largest number of changes on the
transcriptome level displayed by the heat-stress conditions. As
to the metabolite pattern, the diauxic shift displays the largest
number of changes followed by cold stress, oxidative stress,
and heat stress. It is important to note that no significant
changes were observed for the control cultures during this
growth period (mid-log growth phase), indicating that
exponential growth phase is represented on both levels by
few if any changes on the level of transcripts and metabolites,
which is in agreement with transcript level observations
(Chang et al, 2002).

Overrepresentation analysis of functional categories (based
on gene ontology—GO) of genes, which change at 10 min past
stress application reveals a conserved pattern across all
conditions. Genes associated with amino acid, amine, nucleo-
tide, and ribonucleotide biosynthetic processes and ATP
synthesis, proton transport were downregulated (Supplemen-
tary Figure 4). These findings are in agreement with compar-
able experiments performed for both yeast and E. coli (Gasch
et al, 2000; Chang et al, 2002; Durfee et al, 2008). Interestingly,
we observed downregulation of genes assigned to ‘flagella
motility’ GO term across all conditions. As flagella motility
requires a steep proton gradient between the periplasmatic
space and the cytoplasm, decreased cell motion could indicate
energy deficiency. Other biological processes that depend on
proton gradient are ATP synthesis and transmembrane transport.
However, in contrast to genes involved in ATP synthesis, which
decrease after all perturbations, genes encoding general transport
increase during glucose-lactose shift and oxidative stress. This
could indicate that transport of external carbon sources is favored
over chemotaxis (Lemuth et al, 2008).

The coincidence of the response on both levels can indicate
that the changes on the metabolic level are not transcription-
ally dependent. Global proteomics analyses indicated that
protein levels, post-translational modifications, and stability
are directly affected by different perturbations (for review see
Kultz, 2005). As enzyme abundance and activity have
predominant influence on biochemical reactions, the possibi-
lity that metabolic changes are caused by enzymes, directly
influenced by environmental conditions, cannot be excluded.
This possibility could be tested by application of transcription
inhibitors (e.g. Rifampicin) and analyzing the kinetics of
metabolic response. It would be interesting to further extend
this concept by applying protein synthesis or protein post-
translational modifications inhibitors.

Stress response displays higher specificity on the
metabolite as compared with the transcript level
with respect to the individual stress applied

As described above, the general response pattern on both
metabolite and transcript level is similar with respect to its

kinetics within 40 min post-perturbation. To see whether this
pattern is due to similar or rather dissimilar responses, we
determined which metabolites and transcripts change sig-
nificantly (for significance thresholds see Materials and
methods section) during the different stress treatments in
comparison to the relative time points from control. Subse-
quently, we asked whether the observed changes display a
significant overlap between different conditions by applying
Fisher exact test. This analysis enables us to compare the
specificity (as defined in the Materials and methods section) of
E. coli response to perturbation on the metabolome with the
transcriptome. Figure 3 displays these results for all pairwise
comparisons of experimental conditions in a binary form: 1
encodes a significant overlap or dependence of the response of
two conditions, whereas a 0 entry corresponds to no
significant overlap, that is an independent response. The
absolute numbers of changing genes and metabolites are
shown in Supplementary Figure 5).

With respect to the metabolites as shown in Figure 3A for the
first post-perturbation time point (10 min), stress specificity is
high with only one of the six possible comparisons displaying
significant similarity (heat and oxidative stress). At later time
points (20 and 30 min post-perturbation), three out of six
conditions show overlap, whereas after 40 min, only heat and
oxidative stress still overlap. We summarize these findings by
the positive predictive value (PPV) of the metabolic response
of 71%.

We next analyzed the overlap on the transcriptome level.
However, as the number of metabolites analyzed is less than
the number of transcripts, a direct comparison between both
data sets would be biased. Moreover, this could lead to a higher
level of conservation on the transcript level due to the
inclusion of many general transcriptional responses (as
exemplified by ESR in yeast, Gasch et al, 2000) not paralleled
by any metabolite data. Therefore, the transcriptome analysis
included only those 288 genes, which are directly linked to
metabolic enzymes (based on EcoCyc), by considering genes
where either the substrate or the product was contained in the
metabolite data set (Supplementary Table 2). In contrast to the
metabolite data, more pairwise comparisons of different
conditions show dependence in the transcriptome response
(Figure 3B). Our results show a significant overlap for three
comparisons within 10 min, and five pairwise comparisons
20 min after stress (Figure 3B). The number of dependent
responses decreases with increasing time; specifically, the
response of the diauxic shift experiment loses similarity to
other responses correspondingly to the metabolic response
(Figure 3A). The highest similarity was found for the response
toward heat and oxidative stress at both levels. This
corroborates the link between responses to heat and oxidative
stress observed in earlier studies (Farr and Kogoma, 1991) and
is in further agreement with the results of the HCA presented in
Supplementary Figure 7.

Taken together, the response on metabolic level is obviously
more specific as the PPVon the metabolites is 71% in contrast
to 42% on the transcript level. Our observation that the
metabolic response displays a higher level of specificity as
compared with the transcriptomics response cannot be
explained in a straightforward way. One interpretation is that
metabolism has both the capacity to react faster and the need
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Figure 2 Different perturbations result in similar dynamics of responses on metabolite and transcript level. Number of changing metabolites (A) or transcripts (B) between
neighboring time points is shown as a histogram for time points 10–90 min after stress (for significance threshold see Materials and methods section). The actual numbers of
changes are shown above each bar. The dotted gray line indicates the growth curve, whereas the solid gray line represents the expression of genes indicative for each condition:
oxidative stress-katG; heat stress-clpB; glucose-lactose shift-lacZ; cold stress-cspB).
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to react more specifically compared with the more mid-term
adjustment based on reprogramming of the transcription–
translation machinery. A fast delivery of metabolites needed to
protect the system could be crucial for the initial survival of the
system before more massive changes brought about by
changes on the gene expression program come into play.
One example of such mechanism is osmotic stress response in
Synechocystis, where concentration of compatible solute is
regulated on the post-transcriptional level of protein activity
triggered directly by the stress and paralleled by a more time-
consuming induction of gene expression (Hagemann, 1996).

In contrast to the highly conserved transcriptional
response pattern, the metabolite response is
different for growth arrest induced by stress and
by reaching stationary phase

E. coli responds to stress by ceasing or reducing growth. It has
been shown previously that changes on the transcript level, as
a result of stress-induced growth arrest, significantly overlap

with changes observed when cells cease to grow due to
entering stationary phase (Chang et al, 2002; Weber et al,
2005). In light of the observation that the stress-induced
changes on the metabolite level in the initial response phase
display a higher stress specificity compared with the transcript
level, we were interested to determine the degree of similarity
of the changes on the metabolite level observed in response to
the two different growth cessation conditions.

To this end, we compared time points from the stress
adaptation phase and time points taken 210 min after stress
application (for details see Materials and methods section). At
this time point, the lactose shift, oxidative stress, and the
control experiment had entered the stationary phase (Supple-
mentary Figure 2). Both temperature stress experiments were
excluded from this comparison as, due to the maintained
temperature stress, these cultures do not resume exponential
growth and therefore do not run out of nutrients and enter
stationary phase.

When comparing only the metabolic profiles for the three
stationary phase samples, a high degree of similarity is seen
(Figure 4A) in agreement with the results of the HCA shown in

A
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Supplementary Figure 7, suggesting an underlying common
cause. Among the metabolites that change consistently in all
stationary phase conditions PEP, isoleucine, and phenylala-
nine all increased, whereas homoserine consistently de-
creased. A decrease in homoserine levels and an increase in
PEP has previously been shown under carbon and nitrogen
starvation (Brauer et al, 2006). The assumption of carbon
starvation as the common underlying source is further
supported by transcriptome data revealing an upregulation
of carbon starvation-induced genes (csiD, csiE, cstA).

The metabolites that significantly change their concentra-
tion upon entry into stationary phase (210–260 min) were
subsequently compared with those whose levels changed
within 10–40 min after the respective perturbation. Only 1 of
the 12 pairwise comparisons of metabolic responses, (heat-
stress response versus stationary phase of the oxidative stress)
resulted in a significant similarity as based on the Fisher exact
test (Figure 4B; see Supplementary information for a discus-
sion regarding the overlap between stationary phase and heat
stress). This indicates a high degree of dissimilarity
(PPV¼92%) between metabolic responses during growth
cessation as induced through stationary phases or through
various stress applications, which is in strong contrast to the
high level of overlap reported for the response on the transcript
level (Chang et al, 2002).

To assure ourselves that the difference described above
between metabolite and transcript characteristics is not due to
differences in experimental conditions, we performed the
same comparison between the transcriptome changes ob-
served during growth cessation due to stationary phase as
compared with induced by stress application on our own data
set. To this end, stationary phase samples from the oxidative
stress experiment were analyzed for the transcriptome and
compared against the transcriptome changes occurring as a
result of stress application. With the exception of the cold
stress response, a highly significant overlap between station-
ary phase-induced growth arrest and stress-induced growth
arrest was observed (PPV¼25%), thus further strengthening
the significance of the observed disparate behavior for the
metabolite response (Figure 4C).

The level of coordination between transcript and
metabolite data is strongly influenced by the
environmental conditions

As outlined in the Introduction, biological systems respond to
changes in their environments by adjusting their entire
physiology to the new condition involving different levels of
the system. In this study, we have monitored responses in
parallel on the transcriptome and the metabolite level thus
allowing one to compare the level of coordination between
both molecular readouts.

To perform this analysis, we followed two different
approaches, an untargeted (holistic) co-clustering approach
and a targeted approach using prior biological knowledge in
conjunction with canonical correlation analysis (CCA).

In the co-clustering approach, metabolites and transcripts
were jointly subjected to a k-means clustering. The resulting
clusters were subsequently analyzed for overrepresentation of

transcripts and metabolites from the same biochemical path-
way (see Materials and methods section for details). When
applying this approach to the entire data set, that is combining
the measurements of all individual stress conditions, no co-
clustering of metabolites and transcripts from the same
pathway could be observed (data not shown).

Applying this co-clustering approach respectively to each
growth phases of each stress condition separately (e.g. all time
points from the oxidative stress condition), we were able to
identify several metabolites and transcripts from the same
pathway within the same cluster, although the overall
enrichment is restricted to E10% of the derived clusters.
Furthermore, several gene–metabolite pathway associations
are not preserved and were found for only one of the
conditions. Interestingly, the oxidative and cold stress condi-
tions exhibit the largest number of associations (Supplemen-
tary Table 3 for a full representation of the results).

One striking observation immediately apparent was the
overrepresentation of amino acids in the gene–metabolite
associations and more specifically the association between
amino acids and genes involved in amino-acid catabolism (cf.
Figure 5 that shows in an exemplary manner a schematic view
of the corresponding pathway and the representation of the
corresponding transcript and metabolite levels). Thus, aspar-
agine levels are highly associated with transcript levels of the
asparaginase gene ansB threonine and its precursor—aspartic
acid correlate with expression of the tdh and kbl genes, and
arginine correlates with expression of genes involved in the
arginine and ornithine degradation pathway. Glutamine levels
correlate with a number of transcripts associated with arginine
biosynthesis that might possibly indicate a common regulation
by glutamate, which is a precursor for both arginine and
glutamine synthesis.

In contrast to the numerous associations between amino-acid
catabolism genes and amino acids, only few associations are
observable for amino acids and corresponding genes encoding
biosynthetic enzymes. Examples for this type of association are
observable between valine and one of the enzymes from the
valine biosynthesis pathway—IlvC and between histidine and
genes coding two enzymes involved in histidine biosynthesis
HisB and HisC. The only association observed for a non-amino
acid as a metabolite and a related gene is the co-clustering of
trehalose and the gene treA encoding its degrading enzyme
trehalase under stationary phase (Figure 5).

Most of the data described here and in other studies indicate
that environmental changes are most profound in central
metabolism especially with respect to the early response.

In a second approach, we therefore limited the analysis to
particular pathways covering parts of central metabolism,
which bears the further advantage of significantly reducing
data complexity especially with respect to the transcripts, thus
allowing other algorithms to be applied. More specifically,
metabolites from glycolysis, the TCA cycle, the p.p.p., and
anaerobic respiration were subjected to a CCA together with
transcript data of all enzymes from those pathways as derived
from EcoCyc. As we are also interested in general regulators,
we further included several global transcriptional regulators,
known to be involved in metabolism control (ArcA, ArcB, Cra,
Crp, Cya, Fnr, Mlc). A complete list of all metabolites and
transcripts covered is given in Supplementary Table 4.
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Figure 6 shows in an exemplary manner the canonical
structure correlation plot as a result of the CCA, applied to the
control condition data (see Supplementary Figure 8 for the
remaining two conditions discussed in this section). The
results for the three conditions are summarized in the form of
projection onto pathways in Figure 7A–C.

When applying CCA to all conditions separately, multiple
associations were observed only for three conditions: control
growth, heat stress, and stationary phase. The visualization of
the canonical structure correlations with the first two
canonical variates (see Materials and methods section) shows
a number of metabolites in close proximity to genes coding
enzymes, which catalyze their biochemical conversions. For
the remaining three conditions, cold stress, oxidative stress,
and diauxic shift, very few or no intuitive associations were
observed.

Under control conditions, two groups of highly associated
metabolites and transcripts are observed (Figures 6 and 7A,
colored in magenta and blue). The first comprises all measured
metabolites from the oxidative p.p.p. (glc-6-P, 6-P-gluconic
acid, ribose-5-P, and E-4-P) in addition to metabolites from the
glycolytic pathway (3PGA and PEP in addition to glc-6-P)
forming a strong association with two genes encoding pathway
enzymes, that is rpe encoding ribulose phosphate 3-epimerase
and pps encoding PEP synthase.

The high association of metabolites and transcripts from
these two pathways is only observed under optimal growth
conditions and is largely lost under all other conditions
analyzed such as heat stress and during the stationary phase

(see Supplementary Figure 8A and B). This tight coupling
between glycolysis and the p.p.p. might reflect the strong
demand of fast growing cells for synthesis of high levels of the
nucleotide precursor ribose-5-P. It is known that exponentially
growing cells metabolize glc-6-P into fructose-6-phosphate
(fru-6-P) and 3PGA by glycolytic enzymes, and next use
transketolase and transaldolase enzymes from p.p.p. to
convert two molecules of fru-6-P and one molecule of 3PGA
into three molecules of ribose-5-P (Berg et al, 2006). Finally,
these data suggest that both rpe and pps could have a major
regulatory function mostly exerted through transcriptional
regulation of both genes.

The second group of coordinated metabolites and genes
found under optimal growth conditions form part of the TCA
cycle. Thus, the expression of the mqo gene encoding malate-
quinone oxidoreductase (MQO) is associated with all TCA
cycle intermediates measured: 2-ketoglutaric acid, fumaric
acid, malic acid, and succinic acid. In addition, pyruvic acid,
which is located at the key point between glycolysis and the
TCA cycle, shows association with mqo. MQO catalyses the
irreversible oxidation of malate to oxaloacetate (Kather et al,
2000) that in turn regulates the activity of citrate synthase,
which is a major rate determining enzyme of the TCA cycle
(Frederick and Roy Curtiss, 1996). Although the conversion of
malate to oxaloacetate is also catalyzed by other enzymes
including the NAD-dependent malate dehydrogenase (mdh),
it was recently suggested that under optimal growth condi-
tions, MQO is the major route of malate oxidation (van der Rest
et al, 2000). The strong association between mqo gene
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expression and multiple members of the TCA cycle as well as
pyruvate suggest mqo expression to have a major function for
the regulation of the TCA cycle, which need to be experimen-
tally validated.

The tight coupling between the oxidative p.p.p. and
glycolysis is lost, however, under non-optimal growth condi-
tions. Thus, during stationary growth, no association is
observed between any metabolites and transcripts related to
those pathways (Figure 7C). In contrast, under heat stress
(Figure 7B; Supplementary Figure 8B), the expression of zwf
gene encoding the glc-6-P dehydrogenase correlates with three
intermediates of the p.p.p. including glc-6-P, 6-phosphoglu-
conic acid, and E-4-P, suggesting a control of the flux through
p.p.p. by changes in zwf expression. Expression of zwf gene
that encodes the first key enzyme from p.p.p. is among others
controlled by the SoxRS regulon in response to oxidative stress
(Fawcett and Wolf, 1995). Correlation of expression of zwf and
p.p.p. metabolites under heat stress indicates a similar
redirection of p.p.p. under heat-stress conditions again
emphasizing the similarity between heat and oxidative stress.

Analysis of the stationary phase data reveals among others
the association of three metabolites of the TCA cycle including
malic, fumaric, and succinic acid with the expression of
several genes including fumarate reductase (frd C,D), fumar-

ase B (emphfumB), and fumarate-succinate antiporter (dcuB).
This is a most interesting observation as fumaric acid is known
to serve as an alternative electron acceptor during anaerobic
respiration further regulating the expression of genes asso-
ciated with anaerobic respiration including the four genes
mentioned above (Jones and Gunsalus, 1987; Zientz et al,
1998; Golby et al, 1999). The mechanism of this regulation
includes activation of the DcuS-DcuR two component system
by fumaric acid, which subsequently stimulates expression of
target genes (Kleefeld et al, 2009). Our data confirm this model
and in addition show that this regulation only holds true under
stationary phase characterized among others by limiting
oxygen availability. This model can be further extend based
on the tight coordination between the expression of both
fumarate reductase genes (frdC, frdD) also with malic and
succinic acid that expression of these genes might be regulated
by levels of all three metabolites, which is in agreement with
previous studies (Kleefeld et al, 2009).

A complex picture different from both the stationary phase
and the optimal growth conditions emerge from the analysis of
the heat-stress experiment concerning the TCA cycle. Inspec-
tion of the canonical loadings shows among other associations
a high similarity between the expression levels of pflB gene
coding pyruvate formate-lyase (PFL) and concentration of
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pyruvic acid. Pyruvic acid further is strongly associated with
the transcriptional regulator FNR (fnr). This association is in
full agreement with a model developed for anaerobic condi-
tions (which are approximated by heat stress), which suggests
that expression of pflB is regulated in an FNR-dependent
manner by pyruvic acid (Sawers and Bock, 1988). It is
interesting to see that also two other genes from upper
glycolysis (pgk and pgi) are in close proximity of fnr, pflB,
pyruvic acid, and 3PGA (Supplementary Figure 8B). Both of
these genes seem to have an important function in anaerobic
metabolism. The expression of hpgk encoding phosphoglyce-
rate kinase is induced under anaerobiosis (Nellemann et al,
1989), whereas a mutation in pgi was shown to reduce the
expression of several anaerobically induced genes, including
PFL, with glucose as the sole carbon source (Rasmussen et al,
1991). Interestingly, the effect of the pgi mutation could be
overcome by addition of pyruvic acid (Rasmussen et al, 1991).
This, together with our data, might suggest that the induction
of PFL expression is dependent on the presence of glycolytic
metabolic intermediates, whose synthesis is blocked in pgi
mutant, most likely pyruvic acid (Leonardo et al, 1993).

This leads to the hypothesis that products of both pgk and
pgi could have important functions under hypoxic conditions
by controlling the levels of pyruvate, which is then converted
by PFL in anaerobic respiration.

Conclusion

The time-resolved and combined analysis of the transcrip-
tomic and metabolomic response of E. coli to four different
stresses reveals conserved and specific responses on both

levels of information processing. Different stress conditions
have similar global impact on cell metabolism, which consists
on energy conservation strategy as is evident on the transcript
and metabolic level. Co-occurring responses on the transcript
and metabolic level were observed as peaks of maximal
changes directly post-perturbation irrespective of the stress
applied. The co-occurrence of metabolic and transcript
responses was observed for functionally related genes and
metabolites and proposed to be an effect of strong co-
regulation of both levels of response. Specificity of the
response is higher on the metabolome as compared with the
transcriptome level especially during early time points after
perturbation. Stress-induced growth cessation is similar to
stationary phase growth cessation when compared on the level
of the transcriptome, but different when compared on the level
of the metabolome.

Application of co-clustering and CCA on combined meta-
bolite–transcript data identified a number of condition-
dependent significant associations between metabolites and
transcripts. The results obtained confirm and extend existing
models about co-regulation between gene expression and
metabolites demonstrating the power of integrated systems
oriented analysis.

Materials and methods

E. coli culture conditions

For all experiments, E. coli strain MG1655 was used, which was
obtained from the American Type Culture Collection (ATCC 700926).
The minimal medium used for all experiments was a modification of
MOPS (morpholinopropane sulfonate) minimal medium (Neidhardt
et al, 1974) obtained from Teknova, CA (product number M2006),
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Figure 7 Examples of the condition specific associations between metabolites and transcripts (A–C). Canonical correlation analysis (CCA) reveals condition-
dependent association between response dynamics on the transcript and metabolite level: comparison of metabolite–transcript associations of central metabolism
between control growth, heat stress, and stationary phase. Metabolites and genes displaying a close association in the CCA were extracted (Figure 6; Supplementary
Figure 8) and projected on a schematic representation of the TCA cycle, glycolytic pathway, and p.p.p. Dotted lines indicate optional anaerobic pathways. Measured
metabolites are indicated in bold. Biosynthetic genes are circled and regulatory genes are displayed in diamond shape. Transcripts and metabolites showing a close
association in the CCA are indicated by the same color. With respect to heat stress, a selected part of the associations are shown.
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which contains 86 mM NaCl, 9.5 mM NH4Cl, 5 mM K2HPO4 and 0.2%
glucose.

All cultures were grown aerobically in a thermostatically controlled
371C culture room. Cultures (150 ml culture volume) were stirred by
magnetic stirrers at 330 r.p.m. (Thermo Scientific Variomag Multipoint
6in) 1000 ml Erlenmeyer flask. Analysis of gene expression data for
transcripts indicative for anaerobiosis showed the absence of any
oxygen shortage under optimal growth conditions and rather in
contrast showed a slight induction of genes associated with aerobic
respiration for example ubiquinone oxidoreductase (nuoH, nuoN,
nuoL). Induction of expression of genes associated with hypoxia was,
however, observed after glucose-lactose shift, oxidative stress, and
more pronounced during heat and stationary phase. Temperature and pH
were carefully monitored during growth. Starting cultures were
inoculated from a single colony and grown overnight. Each experimental
culture was then inoculated from such an overnight culture at a dilution
of 1:20 into 150 ml fresh MOPS minimal medium in a 1000 ml flask.
Growth of cultures was monitored by measuring OD at 600 nm using an
Eppendorf Biophotometer. All cultures were grown until early mid-log
phase (OD 0.6), at which point each of the perturbations was applied.

Oxidative stress
A measure of 200mg/ml of 30% pre-warmed hydrogen peroxide
(Fluka) was added to 150 ml constantly stirred (330 r.p.m.) cultures
kept in 1000 ml flasks. The amount of hydrogen peroxide used for the
stress was calculated to cause a non-lethal 40 min lag phase. This was
monitored by plating on solid LB medium and calculating viable cell
number.

Cold stress
Cultures were transferred from 371C into an ice cold water bath to
lower the temperature, whereas stirring, to 161C in o2 min. When
161C had been attained, flasks were transferred to a 161C water bath
while constantly stirring (330 r.p.m.).

Heat stress
Cultures were transferred from 371C to a 501C water bath. While
stirring, the temperature of each culture was raised to 451C in o2 min.
The constantly stirring (330 r.p.m.) cultures were then transferred to a
451C water bath to maintain this temperature. In both temperature
treatments, the temperature was constantly monitored ensuring both
temperatures are constant.

Glucose-lactose shift
Carbon source concentrations of 0.15% lactose and 0.05% glucose
were used (150 ml culture in 1000 ml flasks, 330 r.p.m. stirring). This
meant that the growth lag phase was observed at OD 0.6.

Sampling

The first two time points were taken before stress at OD 0.5 and 0.6, in
case of glucose-lactose shift additional time point before stress was taken
at OD 0.3. After stress application, the subsequent sampling time points
were at 10-min interval for up to 40min (lactose shift and oxidative stress)
or 50 min (cold, heat, and control). Rapid filtering using 2.5 cm diameter,
0.45mm pore size Durapore filter disks (Millipore Corporation, MA) and a
vacuum manifold and pump was used. Metabolite (1ml) and transcript
(3 ml) samples were taken simultaneously. Filters with adhering bacteria
were rapidly transferred into 2 ml centrifuge tubes and flash frozen in
liquid nitrogen. The whole process took o5 s (metabolites) or 10 s
(transcripts) per sample from sampling to flash freezing in liquid nitrogen
and has been shown to be superior to methods such as quenching or
centrifugation (Bolten et al, 2007).

For GC-MS metabolite analysis, each of the filter discs with adhered
bacteria was extracted in 500ml Methanol (Merck) at 41C, as this has
previously been shown to be superior to hot methanol, hot ethanol,
cold perchloric acid, hot alkaline, and cold methanol/chloroform

extraction protocols (Maharjan and Ferenci, 2003). The extraction
solution contained 0.1mg/ml cholesterol as an analytical internal
standard. Tubes were subsequently shaken at 41C for 10 min at
1000 r.p.m. and again frozen in liquid nitrogen. This freeze-thaw cycle
was repeated to ensure cell membrane rupture. Finally, filters were
removed, samples centrifuged for 3 min at 14 000 r.p.m. at 41C
(Eppendorf model 5417R), and 450ml of the supernatant transferred
into new 2 ml centrifuge tubes. These samples were then dried to
complete dryness in a rotary vacuum centrifuge device. Dried samples
were subsequently stored at �201C for a maximum of 2 weeks before
analysis.

GC-MS analysis

Before GC-MS analysis, samples must be derivatized. A variation on
the two-stage technique used by Roessner et al (2001) was used to
firstly protect carbonyl moieties through methoximation, through a
90 min 301C reaction with 5ml of 40 mg/ml methoxyamine hydro-
chloride (Sigma-Aldrich) in pyridine (Merck), followed by derivatiza-
tion of acidic protons through a 30 min 371C reaction with the addition
of 45ml MSTFA (N-methyl-N-trimethylsilyltrifluoroacetamide) (Mach-
ery-Nagel). A measure of 1 ml of the derivatized sample was injected
onto the column and analysis was commenced in non-split mode. GC-
MS hardware comprised an Agilent 6890 series GC system fitted with a
7683 series autosampler injector (Agilent Technologies GmbH,
Waldbronn, Germany) coupled to a Leco Pegasus 2 time-of-flight
mass spectrometer (LECO, St Joseph, MI). Identical chromatogram
acquisition parameters were used as those described earlier (Weck-
werth et al, 2004). Chromatograms were processed using Leco
ChromaTOF software (version 3.25) and analytical peaks determined
using the method of Lisec et al (2006), with a modified peak picking
algorithm that searches for local apex intensity from all mass traces in
raw chromatograms. All data were normalized to cell number and the
chromatographic internal standard.

General statistical analysis

All samples were normalized to the median of time points taken before
stress to minimize technical influence. To ensure proper alignment of
different biological replica, the expression of stress-specific marker
genes was used as an anchor marking the actual moment of stress. In
the case of the control culture, all time points were normalized to the
average of time points taken at OD 0.5 and 0.6. HCA presented in
Figure 1 is based on the log2 Euclidean distance measure and average
linkage aggregation method, whereas this from Supplementary Figure
3 is based on Pearson correlation with complete linkage method. Both
heat maps were created using MultiExperiment Viewer software
available from http://www.tm4.org/. Dendrograms from Supplemen-
tary Figure 7 (log2 transformed, Euclidean distance measure and
Ward’s linkage method) were created using R software (Version 2.6.1,
available from http://www.r-project.org) on the same data set.

To calculate the changes between neighboring time points (Figure
2A and B) multiple t-tests and ratios (fold change on a linear scale)
between the time point of interest and the directly preceding one were
calculated. The following significance thresholds were applied:
Pp0.05 and ratio X2 for metabolic data and Pp0.05, ratio X3 for
transcript data. To determine the overlap of responses between
different conditions, the number of significant changes between time
points from all stress conditions and parallel time points from control
culture were calculated using the same strategy as described for
neighboring time points, but additionally the direction of change
(relative to control) was included. The number of significantly
changed features in the same direction across different conditions
was calculated, and the significance of overlaps between all pairwise
comparisons was tested using the Fisher exact test (Pp0.05)
implemented in the R software package.

Responses to stationary phase and different stress conditions were
compared in the following way. Metabolites and transcripts that
change significantly (significance thresholds the same as above)
within 10–40 min post-perturbation (relative to time points before
perturbation), respectively, 210–260 min during stationary phase
(relative to time points 90–150 min that reflect the resumption of
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growth) were compared and the significance of potential overlaps
(same direction of the change) was tested using Fisher exact test with a
significance level of Pp0.05).

Transcript analysis

Array design
For transcript analyses, customized arrays were generated on the basis
of the Agilent one-color microarray technology platform. The bases for
the probe set design are the full genome and sequence annotation files
of E. coli K12, which were downloaded from the NCBI genome FTP
directory (ftp://ftp.ncbi.nih.gov/genomes/, 11 August 2006). The
genome sequence file was parsed according to the annotation files to
generate a full sequence list of coding and non-coding regions. The
probes were designed using OligoArray 2.1.3 (Rouillard et al, 2002)
covering all open reading frames. For each of the designed probes, a
probe statistic was generated covering the position from 50 end, the
probe length, the melting temperature, the number of potential cross-
hybridizations, the relative GC frequency within the probe, the longest
homeomeric run, and the Agilent base composition (BC) score. On the
basis of this list, probes with o10 overlapping nucleotides, a minimal
sequence length of 50 nt and the best BC score by minimal differences
to the arbitrary melting temperature of 88.51C were selected and
filtered. Only probe sets covering open reading frames were analyzed
and used for quantification of signal intensity.

Sample preparation
RNA was extracted using the Qiagen RNeasy Mini Kit (74104) and
mechanical cell disruption with glass beads but without enzymatic
lysis. This was carried out in the Qiagen RNeasy kit lysis RLT buffer
with b-mercaptethanol, according to the manufacturer’s recommen-
dations. Mechanical cell disruption was completed through shaking
for 5 min using a Retsch mill (Retsch MM200) on maximum speed.
RNA was subsequently cleaned on-column with an additional DNase
treatment (Qiagen 79254). The quality of extracted RNA was
determined with an Agilent 2100 bioanalyzer having used an Agilent
RNA 6000 Nano Kit according to the manufacturer’s recommenda-
tions. The labeling and hybridization of cDNA microarrays was
performed by the out-sourced service provider imaGene GmbH
(Berlin, Germany) and was based on Agilent technology.

Array data extraction and normalization
For further analyses, the processed signal intensities of all coding
regions and RNA genes were extracted and used. Variance stabilization
and normalization of the extracted intensities were performed with the
vsn packages (Huber et al, 2002) of the R software environment (R
Development Core Team, 2009) and back-transformed to normal
intensity scale. For each probe set, for example all probes representing,
for example, a single-coding gene, outliers were removed by boxplot
statistics and the outlier-removed probe intensities were averaged in a
robust way by computing the Tukey biweight. The complete transcript
data are available at http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc¼GSE20305.

GO term enrichment analysis

The analysis of overrepresentation of GO terms describing biological
processes was done using PageMan software freely available from the
following web site: http://mapman.mpimp-golm.mpg.de/pageman/.
The significance of overrepresentation of GO terms was assessed by
Bonferroni corrected Fisher exact test (Pp0.05).

Specificity of E. coli ’s response on metabolite
and transcript level

To compare the specificity of the response to perturbations between
the metabolite and transcript levels, we rely on the variables (i.e.
metabolites and transcripts), which show differential behavior over all

examined conditions with respect to the control and over all time
points. For a given time point, t, we then attempt to determine whether
the overlap of the variables showing differential behavior arises by
chance. To this end, for two conditions a and b, at time t, we build a
dichotomous 2� 2 contingency table, denoted by Tt. The contingency
table Tt has the following entries:

Here, A denotes the set of variables with a differential behavior under
condition a and analogously B corresponds to variables of condition b.
Then, |A-B| denotes the number of variables showing differential
behavior under both conditions a and b. Furthermore, j �A \ Bj and
jA \ �Bj denote the number of variables showing differential behavior
only under condition b or a, respectively. Finally, j �A \ �Bj represents
the number of variables not changing under both conditions.
Illustrations of Tt contingency tables can be found in the Supple-
mentary information.

Let H0 denote the null hypothesis that the numbers of condi-
tion-specific variables with differential behavior for a and b are
independent, that is, the overlap results by chance. By using Fisher
exact test, we are able to either verify the null hypothesis or reject
it in favor of the alternative hypothesis H1. Fisher’s test gives the
probability of the observed configuration for the contingency table
under H0 regardless of the sample size (Agresti, 2002). This is
important, because the sample size (equal to the sum of all entries in
Tt) for the metabolites includes 191 variables, whereas the transcript
sample consists of 288 variables. In our analysis, we consider a level of
significance Pp0.05. If the null hypothesis is valid, we will call the
systems response to the conditions a and b specific.

Finally, we quantify the specificity of E. coli’s response by the PPVof
the 24 pairwise condition comparisons either on the metabolite or
transcript level. Let TP denote the number of comparisons, where both
conditions show an independent response and FP denote the number
of dependent pairs of responses. We then define the PPVas PPVl¼TPl/
(TPlþFPl), where l denotes either the metabolite or transcript level.
Note that our definition of the specificity differs from the classical
statistical measure of the performance of a binary classification. This is
attributed to the fact that there is no equivalent to negative realizations
in this experimental setup: among all conditions, the number of
changing genes or metabolites is always 40.

Co-clustering and pathway enrichment analysis
of genes and metabolites

Here, we use a co-clustering approach to determine the extent to which
genes and metabolites, showing differential expression under the
investigated conditions, are involved in the same biochemical path-
way. We simultaneously apply a k-means clustering algorithm to the
combined metabolite and transcript level data for a specific condition,
given in a form of an m�n matrix J (m is the total number of genes and
metabolites and n is the number of time points).

To limit the effect of the absolute magnitude of concentration or
expression levels on a used similarity measure, we normalized every
row in J to have zero mean and unit variance (i.e. we perform a z-score
transformation).

To supply a suitable estimate for the initial number of clusters (i.e.
parameter k) for the k-means algorithm for every experimental
condition, we used a graph-based approach to estimate a probabilistic
data-dependent range for k (Klie et al, 2010). Briefly, this approach uses
the topology of a graph-based representation of J to identify dense
regions (i.e. clusters) of the data by means of a random walk. These
dense regions are then enumerated by construction of a minimum
spanning tree. Note that this range is dependent on the used similarity
measure and was computed for Euclidean distance and Pearson’s
correlation coefficient, each resulting in an independent clustering of
J. To further increase the robustness of the presented findings in

Condition b

Condition a |A-B| j �A \ Bj

jA \ �Bj j �A \ �Bj
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section ‘The level of coordination between transcript and metabolite
data is strongly influenced by the environmental conditions,’ we
repeated the clustering procedure 100 times with randomized initial
cluster centers for each k in the previously determined interval, for
both similarity measures. Out of those 100 clustering runs, we selected
the clustering that minimizes the root mean square error for a given k.
This approach aims at compensating for the non-deterministic nature
of the k-means algorithm.

Finally, over-representation of certain pathways on each cluster was
determined analogous to finding enriched GO terms, using the hyper-
geometric distribution as a null distribution (Rivals et al, 2007). The
significance level was, again, set to 0.05 and the P-values are
Benjamini–Hochberg corrected. We focus only on pathways that are
enriched for both metabolites and genes, although the pathways
enriched only for metabolites and only for genes can also be readily
determined. To validate the significance of the observed co-clustering
events of genes and metabolites resulting in an enrichment of a certain
pathway, we applied a non-parametric bootstrap sampling procedure.
Briefly, we sampled m genes and metabolites with replacement and
uniform probability from the original condition-specific joint metabo-
lite–transcript data set. The obtained bootstrap sample is then again
subjected to k-means clustering to determine whether the previously
observed co-clustering is significant or a random observation. A more
detailed treatment of this analysis step can be found in the
Supplementary information; the derived P-values and probabilities
for co-clustering events can be found in Supplementary Table 3
together with the pathway enrichment results. We point out that all co-
clustering events presented here are significant at the 1% level (after
correcting for multiple testing).

In summary, we searched for pathway-over-enrichment in each
combination of experimental condition, choice of k, and similarity
measure.

CCA of genes and metabolites involved in primary
metabolism

CCA is a statistical technique for studying associations between two
sets of variables (Hotelling, 1936) measured under the same
experimental units. CCA and its variants were previously applied to
either compare data of the same source (e.g. microarray data)
originating from different species (van den Berg et al, 2009) or to
integrate different sources of data from the same system (e.g.
complementing gene expression data with phenotypic data (Gonzlez
et al, 2008) or integration of data originating from different ‘omics’
technologies (Le Cao et al, 2009)).

Given a set of genes and a set of metabolites, the principle idea of
CCA is to find two linear combinations, one for the set of genes and one
for the set of metabolites, which are maximally correlated. Here, the set
of genes is described by the matrix X of dimension n� p, where rows
correspond to the expression levels measured at n time points of p
genes (columns) under one specific condition. Correspondingly, Y of
dimension n� q represents the n measured concentrations of q
metabolites under the same experimental condition. Furthermore, we
denote the ith column of matrix X by Xi and correspondingly denote by
Yj the jth column vector of Y. To avoid having many more variables
than observations, we used the data from all three independent
biological replicates individually, instead of taking the mean or median
for the replicates. Moreover, it will be assumed that the columns of X
and Y are standardized (i.e. a mean of 0 and a variance of 1), that
pXq and X as well as Y are of full column rank p and q. Let
a1¼(a1

1;y;ap
1)Tand b1¼(b1

1;y;bq
1)T denote the two basis vectors (both

of var (U1)¼var (V1)¼1), such that the correlation between the
projections of the variables onto these basis vectors given by

U1 ¼ Xa1 ¼ a1
1X1 þ a1

2X2 þ . . .þ a1
pXp

and

V1 ¼ Yb1 ¼ b1
1Y1 þ b1

2Y2 þ . . .þ b1
qYq;

are mutually maximized:

r1 ¼ corðU1; V1Þ ¼ max
a;b

corðXa; YbÞ:

The derived linear projections U1 and V1 will be called the first
canonical variates and r1 is referred to as the first canonical
correlation. Higher order canonical variates can be found as a stepwise
problem with the restriction to be orthogonal to the already
determined set of linear combinations. Note that the successively
computed canonical correlations satisfy r1Xr2XyXrq.

In this work, we use the results of the CCA on a subset of genes and
metabolites involved in the primary metabolism (see section ‘The level
of coordination between transcript and metabolite data is strongly
influenced by the environmental conditions’ and Supplementary Table
4) as an explanatory tool to display associations between genes and
metabolites that are less prominent by means of direct linear
relationships (e.g. Pearson correlation) in the initial data.

Specifically, for the purpose of visualization, we use two-dimen-
sional scatter plots for the genes and metabolites, which are also
known as canonical loadings plots. Here, the axes define the canonical
variates Uj and Uk with jak and both from the integer interval [1, q],
for the gene set X. Coordinates of genes in X and metabolites in Y on
each axis correspond to Pearson correlations of their initial representa-
tion (e.g. for gene i the corresponding column vector Xi) and the
respective canonical variate Us, sAj, k. This form of correlation is
known as canonical structure correlations. An example of a canonical
structure correlation vectors can be found in the Supplementary
information (Supplementary Table 5).

As both genes and metabolites are assumed to be of unit variance,
their projections on the plane (Uj; Uk) reside within a circle of radius 1
centered at the origin. Variables with a strong relation are projected in
the same direction from the origin. Clearly, the greater the distance
from the origin, the stronger is the relation. For clarity, a second circle
with radius of 0.5 is shown to indicate associations of genes and
metabolites, which are less strong and of limited importance for the
conducted analysis. The CCA results presented in the paper rely on a
regularized version of CCA, which is available in the CCA package
(Gonzlez et al, 2008), which is available for the statistical software R.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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