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e Background and Aims Oxygen can fall to low concentrations within plant tissues, either because of environ-
mental factors that decrease the external oxygen concentration or because the movement of oxygen through
the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants
can decrease their oxygen consumption in response to relatively small changes in oxygen concentrations to
avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The
aim of this study was to use transcript and metabolite profiling to investigate the genomic response of arabidopsis

roots to a mild decrease in oxygen concentrations.

e Methods Arabidopsis seedlings were grown on vertical agar plates at 21, 8, 4 and 1 % (v/v) external oxygen for
0-5, 2 and 48 h. Roots were analysed for changes in transcript levels using Affymetrix whole genome DNA
microarrays, and for changes in metabolite levels using routine GC-MS based metabolite profiling. Root exten-
sion rates were monitored in parallel to investigate adaptive changes in growth.

e Key Results The results show that root growth was inhibited and transcript and metabolite profiles were signifi-
cantly altered in response to a moderate decrease in oxygen concentrations. Low oxygen leads to a preferential
up-regulation of genes that might be important to trigger adaptive responses in the plant. A small but highly
specific set of genes is induced very early in response to a moderate decrease in oxygen concentrations.
Genes that were down-regulated mainly encoded proteins involved in energy-consuming processes. In line
with this, root extension growth was significantly decreased which will ultimately save ATP and decrease
oxygen consumption. This was accompanied by a differential regulation of metabolite levels at short- and

long-term incubation at low oxygen.

e Conclusions The results show that there are adaptive changes in root extension involving large-scale reprogram-
ming of gene expression and metabolism when oxygen concentration is decreased in a very narrow range.
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INTRODUCTION

Unlike animals, plants never evolved active distribution
systems to deliver oxygen to their internal tissues. As a conse-
quence, oxygen can fall to relatively low concentrations in
many plant tissues — especially those which either exhibit
high metabolic activity or tissues that lack large intercellular
air spaces (aerenchyma) to improve oxygen transport driven
by diffusion gradients (Colmer, 2003; Armstrong and
Armstrong, 2005). These problems are evident even within
well-oxygenated surroundings (21 % v/v external oxygen),
however, problems are exacerbated when external oxygen is
reduced due to flooding or water-logging of the rhizosphere
(Jackson, 2002; Dat et al., 2004; Pederson et al., 2006;
Voesenek et al., 2006). Under anoxic conditions, cytochrome
oxidase activity becomes oxygen limited and consequently
ATP has to be produced by fermentation. This represents a
severe stress, since the efficiency of ATP formation is
sharply reduced in combination with a falling cytosolic pH
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and an accumulation of the toxic products of fermentation
(Drew, 1997; Geigenberger, 2003; Bailey-Serres and Chang,
2005). Moreover, re-entry of oxygen into highly reduced
anoxic tissue leads to harmful oxygen radicals and toxic oxi-
dation products (Crawford and Braendle, 1996; Biemelt et al.,
1998). Within short-time frames, these deleterious effects lead
to strongly negative growth responses and ultimately to the
death of many plants.

Much research attention in the past has focused on the
molecular response of plants to such severe stress conditions.
Proteomic analyses in many plant species revealed the induction
of a specific set of anaerobic proteins involved in carbohydrate
utilization, glycolysis and fermentation (Sachs et al., 1980;
Chang et al., 2000). With recent progress in genome sequencing
and the subsequent availability of microarrays for many species,
transcript profiles of the hypoxic response were analysed across a
broad range of species including arabidopsis (Klok et al., 2002;
Paul et al., 2004; Branco-Price et al., 2005; Gonzali et al.,
2005; Liu et al, 2005, Loreti et al, 2005), rice
(Lasanthi-Kudahettige et al., 2007) and citrus (Pasentsis et al.,
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2007) and many diverse tissues including roots (Klok et al.,
2002), fruits (Pasentsis et al., 2007) and germinating seeds
(Lasanthi-Kudahettige et al., 2007). Transcripts that were
found to be differentially expressed upon oxygen deprivation
stress encoded not only the known anaerobic proteins, but
also proteins involved in other processes including amino
acid metabolism, oxidative stress responses, detoxification pro-
grammes and the regulation of gene expression and signalling.
In addition to transcriptional regulation (Walker et al., 1987;
Dolferus et al., 1994), translational mechanisms were recently
found to contribute to the control of expression of these genes
(Branco-Price et al., 2005). However, comprehensive analysis
of metabolite-mediated post-translational control mechanisms
which could play a role in this process have, as yet, not been
attempted.

In the majority of the studies mentioned above, plants were
subjected to very low external oxygen concentrations leading
to (near) anoxic conditions within the tissues. A drawback of
that approach is that it is hard to attribute changes in gene
expression to the change of the oxygen concentration itself,
or that the changes in gene expression are induced by the
various severe side-effects as induced by the anoxic treatment,
like the acidification of the cytosol or a change in the cellular
energy status. Less attention has been paid to analyse the
response of plants to relatively small changes in oxygen concen-
trations, such as those occurring under physiological conditions
within many plant tissues such as seeds, tubers, fruits and
roots. Under physiological conditions the prevailing environment
generally affords conditions ranging between 1 % and 21 % (v/v)
oxygen. To date, studies were mainly performed in potato tubers
(Geigenberger et al., 2000; Bologa et al., 2003), developing
seeds (Gibon et al., 2002; Rolletscheck et al., 2002, 2003;
Vigeolas et al., 2003; van Dongen et al., 2004) and phloem
tissue (van Dongen et al., 2003), wherein metabolic fluxes and
selected metabolites were analysed in response to small
changes in the prevailing levels of internal oxygen concen-
trations. The consensus of the results from these studies revealed
that a decrease in oxygen concentration leads to adaptive changes
in metabolism in order to decrease oxygen consumption, invol-
ving a rapid inhibition in respiration, a fall in the energy charge
and an overall depression of many ATP-consuming biosynthetic
activities (Geigenberger, 2003). However, the molecular mech-
anisms underlying this response remain unknown — most likely
due to a lack of molecular studies aimed at analysing the response
of plants to changes in oxygen concentration within a narrow
range.

In order to gain a comprehensive insight into the genomic
response of plants to mild decreases in oxygen concentration,
expression profiling was carried out in roots of arabidopsis
seedlings grown on vertical agar plates at 21, 8, 4 and 1 %
(v/v) external oxygen for 0-5, 2 and 48 h, using Affymetrix
whole genome DNA microarrays. In addition, the sampled
material was also used for GC-MS-based metabolite
profiling. In parallel to these analyses, root extension was
monitored to investigate adaptive changes in growth under
these conditions. Results from these studies revealed that
relatively small changes in the oxygen concentration lead to
adaptive changes in root extension rates, which are correlated
with the induction of a small set of low-oxygen-specific
genes. The entire dataset resulting from this study is

discussed in the context of current models for oxygen signal-
ling in plants.

MATERIALS AND METHODS
Plant material and growth conditions

Arabidopsis thaliana ecotype col2 seedlings were grown in a
12 h light (intensity 160 wE)/12 h dark cycle (day and night
temperature was 22 °C) on vertical plates with 15 % agar dis-
solved in half-strength Murashige and Skoog (MS) medium
(Duchefa Biochemie B.V., Haarlem, The Netherlands) sup-
plemented with 1% sucrose. The roots of the plants were
growing on top of the agar, thus avoiding restricted oxygen
diffusion towards the roots by the agar medium. Ten days
after germination, seedlings were transferred to continuous
darkness and a stream of premixed air containing different
oxygen concentrations (as indicated in the text), 350 ppm
CO,, and N, (Air Liquide, Berlin, Germany) was blown over
the plates. Oxygen concentrations within the plates were regu-
larly controlled to ensure precise regulation of the actual
oxygen concentration around the roots. Roots were harvested
in liquid nitrogen after 0-5, 2 or 48 h of each oxygen treatment.

Analysis of root extension rates

Root extension rates were determined on seedlings growing
on vertical agar plates as described above. After the plates with
seedlings were transferred to the dark, the actual root length
was marked on the plate with a marker pencil. After 2 d of
incubation at the various oxygen concentrations as indicated
in the text, the root extension was measured.

Transcript profiling

RNA was isolated using Trizol (Invitrogen) and further pro-
cessed according to Kolbe et al. (2006). Chip hybridizations of
at least two independent biological replicates for each treat-
ment were performed at the Deutsches Ressourcenzentrum
fir Genomforschung (Berlin) using protocols recommended
by Affymetrix. Probe signal intensities were processed with
the Affymetrix MicroArray Suite software package (MAS
5-0) and the resulting CEL files were imported for data
quality control in the Bioconductor software package in R
(Gentleman er al., 2004). Normalization of the raw data and
estimation of signal intensities was done using the Robust
Multichip Average (RMA) methodology (Bolstad et al.,
2003). Average expression values and their P-values were cal-
culated using the affylmGUI package in R (Smyth, 2004,
2005) using the Benjamini & Hochberg adjustment method.
The MapMan visualization tool (Thimm et al., 2004; Usadel
et al., 2005) was used for functional categorization of the
expressed genes. The Wilcoxon Rank Sum test with
Benjamini—Hochberg P-value correction was used to test
whether the observed combined expression values of a func-
tional bin differ from the expression changes as observed for
the collection of genes from all other bins.

Raw data of the transcript profiles can be found in the Gene
Expression Omnibus (http:/www.ncbi.nlm.nih.gov/projects/
geo/) with the Series record number GSE11558.
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Metabolite profiling

Soluble metabolites were extracted and analysed as
described in detail by Erban er al. (2007) and Lisec et al.
(2006). In short, homogenization of the tissue was performed
in liquid nitrogen. Metabolites were extracted from the tissue
with methanol and water. Polar metabolites were separated
using chloroform purification. The polar phase was dried by
vacuum centrifugation (Concentrator 5301, Eppendorf,
Hamburg, Germany) and chemically derivatized using a meth-
oxyamination and silylation reagent. Subsequently, the
samples were analysed by GC-TOF-MS. Metabolite finger-
printing was performed after baseline correction
(ChromaTOF software version 1-00, Pegasus driver 1-61,
LECO, St Joseph, MI, USA). Peak heights of the mass (m/z)
fragments were normalized using the amount of the sample
fresh weight and an internal standard (ribitol). Anotation was
manually supervised using the TagFinder visualizations of
TimeGroups (Anotation) and Clusters (minimum three corre-
lating fragments as unique masses for quantitication) with
maximum of 5% of time deviation between expected RI
from library and measurement (Luedemann et al., 2008).
Statistical analysis (two-way ANOVA) of the data was done
using the MeV (Multi Experiment Viewer) software (Saeed
et al., 2003). Independent component analysis (ICA) was per-
formed according to Scholz et al. (2004).

RESULTS

Effect of a stepwise decrease in oxygen concentrations
on root extension rates

In order to investigate the effect of low oxygen on root growth,
arabidopsis seedlings were grown on vertical agar plates for 1
week at 20 °C, before they were transferred to 0, 1, 4, 8, 12 and
21 % (v/v) oxygen in the dark. After 48 h, root extension
growth was measured. The data in Fig. 1 show that deceasing
oxygen from 21 % to 8 % (v/v) already leads to a significant
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Fic. 1. Effect of a stepwise decrease in oxygen concentrations on extension

growth of arabidopsis roots. Arabidopsis seedlings were grown for 10 d on ver-

tical sterile plates. Root growth was measured during a 2-d period of incu-

bation at different oxygen concentrations. Values are expressed as a

percentage of growth in normal air [21 % (v/v) oxygen] and are the mean
(+ s.e.) of at least 30 seedlings.

reduction in root extension growth by 25 %. Root extension
rates decreased progressively by 45, 70 and 100 % when
oxygen is further decreased to 4, 1 and 0 % (v/v), respectively.
These results show that root extension growth decreases as the
result of a progressive reduction in the oxygen concentration.
This growth reduction is seen as part of the energy-saving adap-
tive response of plants to hypoxia.

Effect of a stepwise decrease in oxygen concentrations
on whole-genome transcript profiles

In order to investigate the effect of low oxygen on whole-
genome transcript profiles, samples were taken from roots of
seedlings subjected to 1, 4, 8 and 21 % (v/v) oxygen for 0-5,
2 and 48 h within a parallel experiment. Figure 2 shows the
number of differentially expressed genes, when referred to
21 % (v/v) oxygen as respective control. Only those genes
were considered of which the mean expression level of the bio-
logical replicates changed at least two times. This analysis
indicates a global tendency of more genes being up-regulated
than down-regulated in response to low oxygen, indicating
reprogramming of gene expression to induce genes that are
important for adaptation rather than an inhibition of gene
expression upon hypoxia. The number of up-regulated genes
increased with time and with the extent of the decrease in
oxygen concentration, reaching a maximum of approx. 300
genes at 1% oxygen (v/v) after 48 h. Inspection of the
number of down-regulated genes showed a similar tendency,
but at a lower level, reaching a maximum of approx. 180
genes.

Changes in gene expression were categorized on the basis of
the functions of the protein which they encode using the
MapMan software. Table 1 shows a selection of functional
bins in which the genes are significantly different expressed
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Fi1G. 2. Effect of a stepwise decrease in oxygen concentrations on the number

of differentially expressed genes. Arabidopsis seedlings were grown on vertical

sterile plates and incubated at different oxygen concentrations for various time

periods. Plotted are the number of genes that were at least two-times

up-regulated (open symbols) or down-regulated (shaded symbols) by either 8

%, 4 %, or 1% (v/v) oxygen at the three different time intervals as indicated
on the horizontal axis (P < 0-05).
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TaBLE 1. Transcript profiling in roots of arabidopsis seedlings subjected to 1, 4 or 8 % (v/v) oxygen for 0-5, 2 and 48 h: statistical
evaluation of the behaviour of transcript levels of genes within a functional category (bin) as compared with all the other remaining

bins
48 h 2h 0-5h

Bin Name Elements 1% 4 % 8 % 1 % 4% 8 % 1% 4% 8 %

34 Transport 570 0-000 0-000 0-249 0-000 0-766 0-000 0-000 0-000 0-328
30 Signalling 700 0-099 0-000 0-571 0-000 0-001 0-000 0-001 0-000 0-081
9 Oxidative phosphorylation 85 0-013 0-002 0-493 0-048 0-077 0-088 0-021 0-312 0-000
10 Cell wall 268 0-589 0-000 0-000 0-013 0-691 0-000 0-025 0-749 0-685
27 RNA 1528 0-939 0-000 0-008 0976 0-000 0-960 0-770 0-039 0-000
11 Lipid metabolism 269 0-001 0-075 0-239 0-014 0-000 0-148 0-131 0-013 0-587
16 Secondary metabolism 230 0-048 0-064 0933 0-002 0-000 0-676 0-003 0-444 0-479
21 Redox regulation 137 0-899 0-027 0-994 0-301 0-002 0-033 0-394 0-166 0-006
29 Protein 2086 0-000 0-002 0-474 0-571 0-443 0-002 0-553 0-954 0-401
31 Cell 421 0-096 0-386 0-676 0-022 0-124 0-109 0-101 0-005 0-015
28 DNA 317 0-308 0-219 0-246 0-013 0-068 0-329 0-001 0-249 0-002
23 Nucleotide metabolism 123 0-154 0-005 0-031 0-634 0-161 0931 0-526 0-969 0-829
33 Development 303 0-242 0-000 0-106 0-134 0-934 0-123 0-209 0-175 0-037
17 Hormone metabolism 303 0-065 0-118 0772 0-113 0911 0-002 0-588 0-831 0-477
4 Glycolysis 54 0-340 0-105 0-151 0-980 0-849 0-173 0-996 0-811 0-008
13 Amino acid metabolism 233 0-362 0-237 0-479 0-439 0-026 0-665 0-269 0-234 0-809
2 Major CHO metabolism 69 0-384 0-361 0-630 0-155 0-934 0-926 0-226 0-181 0-000
14 S-assimilation 12 0-872 0-689 0922 0411 0-081 0-682 0-457 0-731 0-029

Genes that belong to a bin that has a P-value below 0-05 (in bold) are likely to be co-regulated. Categorization of genes and subsequent statistic analyses
were performed with the MapMan software, using the Wilcoxon Rank Sum test with Benjamini—Hochberg correction. See also Fig. 4 for a visualization of

some selected functional bins.

as compared with all other remaining genes on the microarray,
independent of whether the change is an increase or a
decrease. Overall, the most significantly differentially
expressed category contains genes encoding transport proteins,
revealing that the combined response of transcripts from genes
assigned to this functional category is highly significantly
different compared with the response of all other expressed
genes on the array. As the responses of transcripts for genes
assigned to the bins, signalling, respiration, cell walls, RNA
metabolism, lipid metabolism, secondary metabolism and
redox-regulation also had P-values <0-05 in at least one of
the oxygen concentrations in each time interval, it can be
assumed that the expression of genes assigned to these bins
is co-ordinately regulated by low oxygen. Figure 3 provides
an overview of the direction of changes in transcript levels
in selected bins. These data reveal that low oxygen leads to
a preferential decrease in transcripts for genes encoding
proteins associated with ATP-consuming processes such as
transport, signalling, lipid-metabolism, secondary metabolism
and redox-regulation, but a preferential increase in transcripts
for genes encoding proteins associated with ATP-generating
processes such as respiration.

In a more stringent selection procedure to find genes that are
specifically induced by oxygen, only significant 2-fold changes
(P < 0-05) were considered. The mean expression values of all
these genes are given in Files 1-4 in Supplementary
Information. Figure 4 shows a Venn diagram of the selected
genes that were up-regulated at 1, 4 and 8 % (v/v) oxygen
during the three respective time intervals. After 0-5h, seven
genes were commonly induced at all three oxygen concen-
trations, encoding a wound-response family protein, an LOB
domain protein 41, a kelch repeat-containing protein and

alcohol dehydrogenase, as well as three proteins of unknown
function. The same seven genes were also induced at all
three oxygen concentrations after 2 h, together with five
additional genes, encoding sucrose synthase, pyruvate decar-
boxylase, non-symbiotic haemoglobin 1 and two proteins of
unknown function. After 48 h, only one of these genes
remained up-regulated at all three oxygen concentrations, the
gene encoding non-symbiotic haemoglobin-1. The expression
levels of the core set of genes that are expressed at all
oxygen concentration are shown in Table 2. The extent of
up-regulation of these genes at 8 % oxygen varies between
the different time intervals, being high at 0-5h and 2 h, and
decreasing at 48 h, indicating short- and long-term responses
to low oxygen.

These data reveal that a small but highly specific set of
genes is up-regulated very early in response to a moderate
decrease in oxygen concentrations from 21 % to 8 % (v/v)
oxygen. At all different time intervals, those genes that were
induced at 8 % (v/v) oxygen were also induced when the
oxygen concentration decreased further to 4 % and 1 % (v/v)
oxygen, respectively. This indicates that the induction is
likely to be a specific result of the change in oxygen rather
than being induced by any of the anoxia-induced side-effects.

Effect of a stepwise decrease in oxygen concentrations
on metabolite profiles

As indicated above, decreased oxygen concentrations led to
specific alterations in transcript profiles which showed differ-
ent responses at different time intervals. To investigate
whether this is paralleled by global changes in metabolite
levels, metabolite profiles were analysed using GC-MS.
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48h 2h 0-5h
1% 4% 8% 4% 8% 1 4%
Transport
P-value 0-000 0-000 0-766 0-000
P-value 0.099 0.000 0571 0-001 0-001 0-000 0-081
Respiration “ . “
P-value 0.013  0.002 0-493 0-048 0-088 0-021 0-321 0-000
metabolism
P-value 0-001 0-075 0-000 0-013
Secondary
metabolism
P-value  0.-048 0-064 0-000 0-444
Redox
regulation
P-value 0-899 0-027 0-994 0-301  0-002 0-033 0394  0-166 0-006

Fi1G. 3. Frequency distribution of low-oxygen induced changes in transcript levels of genes categorized in functional bins that divert significantly from the mean
change in expression of the genes from all other bins. Functional categories are selected that show differential expression of genes in at least one of the oxygen
treatments per time period. A significant change in expression is characterized here by a P-value below 0-05. These P-values are depicted below each panel;
P-values <0-05 are in bold, P-values >0-05 are in italics. Statistical analysis is as described in Table 1. Red colours indicate down-regulated genes, and
blue colours indicate up-regulated genes. The white bar in the middle represents the relative number of genes that are not changed by the oxygen treatment
that is indicated. The black bar indicates the relative number of genes within the category that were not expressed. The arrow at the right side indicates a pre-
dominant up- (blue arrow) or down-regulation (red arrow) of the genes that belong to the respective bin. Incubation of arabidopsis roots with different oxygen
concentrations was performed exactly as described in Fig. 2.

Independent component analysis of the metabolome data (for
a review on this method and its interpretation, see Steinfath
et al., 2008) grouped the various oxygen treatments within
each time point together (Fig. 5). Apparently, the variance
between the samples taken at different time points is larger
than the effect of the oxygen treatment. However, within
each time-group, a slight separation of the various oxygen con-
centrations can be observed. Tag-intensities (defined as the
intensities of mass (m/z) fragments within a specified time-
window; for a detailed definition see Luedemann et al.,
2008) from the various experimental conditions (different
oxygen concentrations and time) were examined by a
two-way ANOVA to select metabolite fragments that showed
a significant change in at least one of the experimental con-
ditions. Hierarchical clustering analysis based on Eucledian
distance of the metabolite fragment tag intensities revealed
differential regulation of metabolite levels at short- and long-
term incubation at low oxygen concentrations. The relative
tag intensities that were grouped within a same cluster are
visualized in a heat map (Fig. 6). It must be noted that the
size of each group is not indicative for the total number of
metabolites with similar changes. Because the selection of
metabolite fragments was done from all available
tag-intensities in a sample without any attempt to annotate
the fragments to a known metabolite, it is to be expected

that some co-regulated fragments are derived from the same
metabolite. Therefore, the groups that are selected by the hier-
archical clustering analysis just indicate different tendencies of
metabolite changes as induced by the various low-oxygen
treatments. Group A (Fig. 6A) shows an increase in
tag-intensities only after long-term incubation (48 h), while
group C (Fig. 6C) shows an increase only at short-term incu-
bation (0-5h and 2 h), but not at long-term (48 h). In group
B (Fig. 6B), tag-intensity values showed an initial increase
very early after exposure to low oxygen concentrations
(0-5 h), which was not present at the subsequent time intervals
(2 h and 48 h).

From the approx. 40 metabolites that were routinely ident-
ified in the chromatograms, 15 metabolites were selected that
were significantly changed in response to at least one of the
low oxygen concentrations (Fig. 7). These metabolites
included minor sugars such as galactinol, myo-inositol and tre-
halose, amino acids such as alanine, proline, glutamate,
v-amino butyrate (GABA) and cycloserine, phosphorylated
intermediates such as glucose-6-P and glycerol-3-P and
organic acids such as galactonic acid, glutarate, threonic acid
and nicotinic acid. Most of these metabolites showed different
responses to low oxygen after different time intervals. The
minor sugars galactinol and myo-inositol increased in response
to 4 % and 1 % oxygen incubation after 48 h (Fig. 7A and B),
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0-5h 2h 48h

oY &

8% 0, 8% 0O, 8% 0O,
AGl code | Gene annotation AGl code | Gene annotation AGI code | Gene annotation
At4g10270 | wound-responsive family protein  At1g77120 | alcohol dehydrogenase A12916060| non-symbiotic hemoglobin 1
At3g10040 | expressed protein At3927220 | kelch repeat-containing protein
At4g33560 | expressed protein At4g33560 | expressed protein
At3g02550 | LOB domain protein 41 At5962520 [ ADP-ribosyltransferase
At3927220 | kelch repeat-containing protein At5g15120 | expressed protein
At5g15120 | expressed protein At4924110 | expressed protein
At1g77120 | alcohol dehydrogenase At3g43190 [ sucrose synthase, putative
At4g10270 [ wound-responsive family protein
At3g02550 | LOB domain protein 41
At3g10040 | expressed protein
At2g16060 [ non-symbiotic hemoglobin 1
At4g33070 | pyruvate decarboxylase, putative

Fic. 4. Identification of a specific set of genes that is up-regulated in response to low oxygen. Genes were selected that were significantly (P < 0-05) and at least

two times up-regulated at 1, 4 and 8 % (v/v) oxygen during the three time intervals. (A) For each time point, a Venn diagram shows the co-ordinate expression of

genes at the various oxygen concentrations tested. In the table (B), the genes that are induced at all three oxygen concentrations are listed. An overview of the
expression values of these genes can be found in Table 2. The expression values of all other genes are listed in File la—c in Supplementary Information.

whereas trehalose increased in response to 1 % oxygen after Conversely, the organic acids, galactonic acid (Fig. 7K), gluta-
0-5h (Fig. 7C). In response to low oxygen incubation, the rate (Fig. 7L), threonic acid (Fig. 7M) and nicotinic acid
amino acids alanine (Fig. 7D), proline (Fig. 7E), glutamate (Fig. 7 N) showed an increase at 4 % oxygen after 48 h but a
(Fig. 7H) and GABA (Fig. 7F) decreased at 0-5h and 2h, tendency to decrease at low oxygen concentrations after 2 h
while they increased at 48 h. By contrast, the phosphorylated and 0-5 h.

intermediates glucose-6-P (Fig. 7I) and glycerol-3-P (Fig. 7)) Visualization of changes in the levels of metabolites within
increased in response to low oxygen at 48 h but showed a ten- the context of primary metabolic pathways (glycolysis,
dency to decrease upon low oxygen treatment at 0-5h. TCA-cycle and amino acid metabolism) as induced by the

TaBLE 2. Transcript profiling in roots of arabidopsis seedlings subjected to 1, 4 or 8 % (v/v) oxygen for 0-5, 2 and 48 h: selection of
genes that are already up-regulated at 8 % oxygen for the three different time periods

0-5h 2h 48 h
AGI (Tigr5) 8 % 4 % 1% 8 % 4 % 1% 8 % 4 % 1% Gene annotation
Atdg10270 4-090 5933 6-053 4704 6-210 6-553 2-905 6-063 5-218 Wound-responsive family protein
At3g27220 3073 3-558 3-612 2730 4-078 5123 1-101 2617 2-141 Kelch repeat-containing protein
At4g33560 2:928 4-331 4093 3-554 5-372 6-238 1-141 4.753 4-086 Expressed protein
At5g15120 2613 3-021 2-696 2-800 3756 4-559 1.739 3129 2-787 Expressed protein
Atlg77120 2-283 2:664 2:323 3-836 5-312 5-561 1.746 3-652 4-192 Alcohol dehydrogenase
At3g02550 2-988 3-658 3977 2945 4-010 4-682 0-830 2-386 1.545 LOB domain protein 41
At3g10040 3961 5015 5-159 3-370 5211 5-855 1-270 2-839 1949 Expressed protein
At4g24110 2-069 3-823 3-922 2-557 4420 5-637 0976 3275 2-806 Expressed protein
At5g62520 1-541 3-167 3-823 1-876 3-417 5075 —0-021 1752 1-677 ADP-ribosyltransferase
At4g33070 2-640 2-886 2-765 2-851 4076 4-359 1.016 3273 3-550 Pyruvate decarboxylase, putative
At3g43190 2-144 2-672 2:062 3-666 5-162 5-605 2-171 4.223 4-613 Sucrose synthase, putative
At2g16060 1.783 2-537 2-288 2-652 3-890 4-156 2-603 4-261 3918 Non-symbiotic haemoglobin 1

Expression levels (log, values) that are significantly different from the 21 % control (P < 0-05) are indicated in bold.
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Fi1G. 5. Independent component analysis of GC-MS profiles from arabidopsis roots treated with different oxygen concentrations and time periods as indicated in

the key. Plotting of the second and fifth component of ICA against each other shows grouping of samples taken at the same time interval (marked by the circles).

Also within each group, a slight separation of the various oxygen concentrations can be discerned. Incubation of arabidopsis roots with different oxygen con-
centrations was performed exactly as described in Fig. 2.

low-oxygen treatments clearly reveals general trends in metab-
olite levels within the pathway (as an example, the 48-h time
point is shown in Figure 8; the other pathways are given in
File 5 in Supplementary Information). When oxygen is
decreased to 4 %, there is a general tendency for an increase
in the levels of the intermediates both of sucrose degradation
and the TCA cycle and in the levels of most amino acids.
Metabolic flux analysis (Geigenberger et al., 2000) revealed
an inhibition of carbon metabolism when oxygen is decreased

1% oxygen
48h 2h 0-5h

4% oxygen
2h 0-5h

8% oxygen
2h 0-5h

48h 48

(A)

35

Fi1G. 6. Visualization of tag-intensities by a heat map shows differential regu-
lation of metabolite levels at short- and long-term incubation at low oxygen
concentrations. Shown are those mass fragments that were significantly
changed in at least one of the treatments, independent of whether they could
be assigned to a known metabolite or not. (A) Cluster A showing increase
of metabolites after 48 h; (B) cluster B showing increase of metabolites after
0-5h; (C) cluster C showing increase of metabolites after 0-5h and 2 h at
low oxygen. The intensity of the colour represents the relative intensity of
the respective m/z value after normalization of the data from the various
experiments.

to 12—4 % as compared with normoxia (21 %). The general
increase in primary metabolite levels could therefore result
from a depression in metabolic activity. When the oxygen
further decreased to 1 %, the levels of most of the metabolites
decreased again, indicating that the inhibition of metabolism
has been partly released. This change correlates with the
strong increase in glycolytic carbon flux under anoxic con-
ditions due to induction of fermentative metabolism
(Geigenberger et al., 2000).

DISCUSSION

Microarrays have been used as a powerful tool to explore
responses of the plant transcriptome to anaerobic conditions
(Gonzali et al., 2005; Lasanthi-Kudahettige er al., 2007).
Studies performed so far focused mainly on plants, or
excised plant tissues, incubated under strict anoxic conditions
(see Loreti et al., 2005; Lasanthi-Kudahettige ef al., 2007) or
under very low concentrations of external oxygen in liquid
media which will inevitably lead to (near-)anoxic conditions
inside the tissues under investigation (see Klok et al., 2002;
Liu et al., 2005). Anoxia has many deleterious effects and rep-
resents an extreme stress situation for the plant (see
Introduction). It is therefore difficult to dissect specific
responses to low oxygen from general stress responses from
the data obtained in earlier experiments. In the present study,
the response of arabidopsis roots to a stepwise decrease in
external oxygen concentrations from 21 to 8, 4 and 1 % was
investigated. This represents a moderate decrease in oxygen
reaching values that are comparable to the oxygen concen-
trations measured in a variety of plant tissues under physio-
logical conditions (see Porterfield et al., 1999; Geigenberger
et al., 2000; Rolletschek et al., 2002, 2003; van Dongen
et al., 2003, 2004; Geigenberger, 2003; Vigeolas et al.,
2003). Moreover, arabidopsis seedlings were grown on vertical
plates with the roots growing on the surface of the agar and
being therefore directly exposed to the external gas-phase of
which the oxygen concentration could be precisely
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Fic. 7. Changes in the levels of selected annotated metabolites that changed significantly in response to low oxygen in at least one of the treatments. Data are the
mean + s.e. from three to six biological replicates. A significance test was performed using a two-way ANOVA (P < 0-01).

determined. The present results show that transcript and
metabolite profiles were significantly altered already in
response to a moderate decrease in oxygen concentration, indi-
cating large-scale reprogramming of gene expression and
metabolism under these conditions. These changes were
accompanied by an adaptive inhibition of root extension.
Figure 2 shows that a moderate decrease in oxygen leads to
a preferential up-regulation of genes. At 8% oxygen
an approx. 5-fold greater proportion of genes were

up-regulated (40—120 genes) than down-regulated (2—15
genes). With decreasing oxygen, the ratio of up-regulated to
down-regulated genes decreased to 1-6 at 1% (v/v) of
oxygen. Results from previous studies revealed that under
anoxic conditions, more genes were down-regulated than
up-regulated. In the study by Loreti er al. (2005), the
number of genes induced by anoxia was 629, whilst 1063
genes were down-regulated. It seems likely that genes which
are induced under low oxygen conditions (as in the present
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Fi1G. 8. Low-oxygen-induced changes in the levels of metabolites within metabolic pathways. Metabolite levels in roots after 48-h treatment at low oxygen were

analysed using GC-MS and visualized in their adequate pathways using the VANTED software (Junker et al., 2006). The bars represent the following conditions:

21 % oxygen = yellow; 8 % oxygen = green; 4 % oxygen = blue; 1 % oxygen = red. DHAP, dihydroxyacetone phosphate; 3-PGA, 3-phosphoglycerate; PEP,
phosphoenolpyruvate. Amino acids are abbreviated with their common three-letter code. Data are the mean + s.e. (n = 3-6).

study) will be important to trigger adaptive responses in the As mentioned above, reprogramming of gene expression is
plant, those that are repressed are most probably indicative already evident at 8 % (v/v) oxygen. Figure 4 shows a selec-
of strategies to conserve ATP such as the down-regulation of tion of genes that are already induced in response to a moder-
metabolic processes (Fig. 3). ate decrease in oxygen concentration to 8 %. The same genes
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are also induced when external oxygen is decreasing more
strongly to 4 % and 1 %. Many of the genes described here
have been previously documented to be also induced by
anoxia, including the genes coding known anaerobic proteins
such as alcohol dehydrogenase, pyruvate decarboxylase and
sucrose synthase, or other proteins such as a kelch-repeat con-
taining protein, a LOB domain 41 protein, a non-symbiotic
haemoglobin class 1 protein and four proteins with unknown
function (see Gonzali et al., 2005; Liu et al., 2005; Loretti
et al., 2005). This selection of genes can therefore be regarded
as oxygen responsive. Some of them are very likely to be
involved in adaptive responses to decreases in oxygen concen-
trations (like alcohol dehydrogenase, pyruvate decarboxylase
and sucrose synthase) and others might probably be involved
in oxygen signalling. Reverse genetic approaches and mutant
studies are underway to probe the exact functionality of
these genes and to test their candidacy for the improvement
of low oxygen tolerance.

In parallel to the changes described above, statistical analy-
sis of the data also reveals that low oxygen leads to a preferen-
tial decrease in transcripts for genes encoding for proteins
involved in transport, signalling, lipid metabolism, secondary
metabolism and redox-regulation (Fig. 3). Especially, trans-
port, lipid metabolism and secondary metabolism represent
processes with a relatively high energy demand (Riewe
et al.,2008). A global depression of ATP-consuming processes
represents a powerful strategy to save oxygen since it allows
oxygen consumption to be decreased (Geigenberger et al.,
2000; Bologa et al., 2003; Geigenberger, 2003). A reduction
in oxygen from 21 % to 8 % (v/v) has been reported to lead
to an adaptive depression in metabolism in various tissues
such as stems, seeds, tubers, roots and fruits (see Solomos,
1982; Geigenberger, 2003) This involves a global decrease
in many ATP-dependent biosynthetic processes, such as lipid
synthesis, protein synthesis and phenylpropanoid synthesis
(Geigenberger, 2003).

The inhibition of root growth also provides additional evi-
dence that biosynthetic processes have been inhibited. The
present data show that already a decrease from 21 % to 8 %
oxygen leads to a significant reduction in root extension
growth (Fig. 1). Root extension growth decreased progress-
ively with decreasing oxygen, providing evidence that it is
linked to the availability of oxygen. This represents an adap-
tive response, since a decrease in growth will ultimately save
ATP and decrease oxygen consumption. In agreement with
this postulate are recent observations that tomato plants
deficient in the expression of the genes encoding aconitase,
succinyl CoA ligase, fumarase or malate dehydrogenase (see
Sweetlove et al., 2007), exhibited both altered energy metab-
olism and root growth.

In addition to changes in gene expression, there is also a
large-scale reprogramming of metabolism under the low
oxygen conditions. Evaluation of significant changes in metab-
olite levels, independently of the identification of these com-
pounds shows differential regulation of metabolite levels at
short- and long-term incubation at low oxygen (Fig. 6).
Analysis of changes in metabolites that could be identified
revealed an increase of the level of many metabolites that
were already been found to be induced at low oxygen in
earlier studies, such as the amino acids alanine, proline and

GABA and the phosphorylated esters glucose-6-P and
glycerol-3-P (see Geigenberger et al., 2000; Gibon et al.,
2002, van Dongen et al., 2003; Vigeolas er al, 2003).
However, there were also changes in the levels of minor
sugars and various organic acids that have not previously
been reported to be oxygen responsive. Figure 8 reveals that
there is a tendency of metabolite levels to be increased when
oxygen is reduced from 21 % to 4 %, while metabolites
dropped again when oxygen is further reduced to 1 % (v/v).
A similar increase in metabolite levels upon a moderate
decrease in oxygen concentration has been reported in pre-
vious studies to be accompanied by the general depression of
biosynthetic activities and growth (for a review, see
Geigenberger, 2003). The drop in metabolite levels when
oxygen is further decreased is most likely attributable to
increased fluxes of sucrose degradation and glycolysis when
fermentative processes are induced.

In conclusion, the results of this study show that there is an
adaptive decrease in root extension involving large-scale
reprogramming of gene expression and metabolism in response
to a mild decrease in oxygen concentration. A small but highly
specific set of oxygen-responsive genes is induced very early in
response to a moderate decrease in oxygen concentrations.
Some of these genes are very likely to be involved in
oxygen signalling and adaptation. Reverse genetics studies
are in progress to test the functionality of these genes to
mediate low oxygen responses. More studies will be needed
to dissect the underlying oxygen-sensing systems and regulat-
ory components.

SUPPLEMENTARY INFORMATION

Supplementary information is available online at www.aob.
oxfordjournals.org/ and consists of the following files.

File 1: list of genes that are significantly up-regulated within
0-5h under 1, 4 or 8 % oxygen, respectively (P < 0-05). In
addition, the expression levels (as signal-log ratio) of the
selected genes as measured for the other treatments are
given. Expression values with a P-value >0-05 are written
in italics.

File 2: list of genes that are significantly up-regulated within
2 h under 1, 4 or 8 % oxygen, respectively (P < 0-05). Also,
the expression levels (signal-log ratios) of the selected genes
as measured for the other treatments are given. Expression
values with a P-value >0-05 are written in italics.

File 3: list of genes that are significantly up-regulated within
48 h under 1, 4 or 8 % oxygen, respectively (P < 0-05). Also,
the expression levels (signal log ratios) of the selected genes as
measured for the other treatments are given. Expression values
with a P-value >0-05 are written in italics.

File 4: list of all genes on the micro-array with their signal-
log ratios and corresponding P-values as determined after
0-5h (a), 2h (b) and 48 h (c) under 1, 4 or 8 % oxygen,
respectively. The raw data are available from the GEO data-
base (http:/www.ncbi.nlm.nih.gov/projects/geo/) with the
Series record number GSE11558.

File 5: low-oxygen induced changes in the levels of metab-
olites within metabolic pathways. Metabolite levels in roots
after 0-5 and 2 h treatment at low oxygen were analysed
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using GC-MS and visualized in their adequate pathways using
the VANTED software (Junker et al., 2006).
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