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Transcriptome and metabolite profiling of rice (Oryza sativa) embryo tissue during a detailed time course formed a foundation
for examining transcriptional and posttranscriptional processes during germination. One hour after imbibition (HAI),
independent of changes in transcript levels, rapid changes in metabolism occurred, including increases in hexose phosphates,
tricarboxylic acid cycle intermediates, and g-aminobutyric acid. Later changes in the metabolome, including those involved in
carbohydrate, amino acid, and cell wall metabolism, appeared to be driven by increases in transcript levels, given that the large
group (over 6,000 transcripts) observed to increase from 12 HAI were enriched in metabolic functional categories. Analysis of
transcripts encoding proteins located in the organelles of primary metabolism revealed that for the mitochondrial gene set, a
greater proportion of transcripts peaked early, at 1 or 3 HAI, compared with the plastid set, and notably, many of these
transcripts encoded proteins involved in transport functions. One group of over 2,000 transcripts displayed a unique
expression pattern beginning with low levels in dry seeds, followed by a peak in expression levels at 1 or 3 HAI, before
markedly declining at later time points. This group was enriched in transcription factors and signal transduction components.
A subset of these transiently expressed transcription factors were further interrogated across publicly available rice array data,
indicating that some were only expressed during the germination process. Analysis of the 1-kb upstream regions of transcripts
displaying similar changes in abundance identified a variety of common sequence motifs, potential binding sites for
transcription factors. Additionally, newly synthesized transcripts peaking at 3 HAI displayed a significant enrichment of
sequence elements in the 3# untranslated region that have been previously associated with RNA instability. Overall, these
analyses reveal that during rice germination, an immediate change in some metabolite levels is followed by a two-step, large-
scale rearrangement of the transcriptome that is mediated by RNA synthesis and degradation and is accompanied by later
changes in metabolite levels.

Germination is a series of events that begins with
imbibition, the uptake of water by the dry seed,
followed by reinitiation of metabolic processes, elon-
gation of the embryonic axis, and, by strict definition,
terminates when part of the embryo emerges from the
structures that surround it (Bewley, 1997). Germina-
tion can be divided into three phases; phases I and II

are characterized by the rapid uptake of water and a
plateau phase of water uptake, respectively. These
phases represent a period of large metabolic change
that primes the embryo to commence growth during
phase III, when further uptake of water occurs (Bewley,
1997). Once the process of germination has commenced,
utilization of stored reserves for energy production is
necessary before the plant becomes autotrophic by
establishing photosynthesis. The importance of energy
metabolism in the early stages of seed germination can
be seen in studies that inhibit germination, in phase II,
by the use of various bioactive compounds or mutants.
The alterations of transcript signatures or profiles in
these studies reveal that many are associated with
energy production and associated biosynthetic path-
ways (Carrera et al., 2007; Bassel et al., 2008).

Historically, regulation of germination has been
described by the antagonistic interaction of the phy-
tohormones abscisic acid (ABA) and GA, whereby
ABA represses germination and GA promotes germi-
nation (Bewley, 1997; Holdsworth et al., 2008a). How-
ever, evidence is growing for a role of auxin during
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this process as well as the interaction of other phyto-
hormones such as ethylene and brassinosteroids
(Holdsworth et al., 2008a). Inhibition of transcription
and translation has differential effects on germina-
tion potential. It was shown over 40 years ago that
transcription was not required for de novo protein
synthesis in imbibed seeds, which suggested that
endogenous mRNA was utilized in early stages of
the germination process (Dure and Waters, 1965).
Recent studies on seed germination have shown that
as many as 12,000 mRNA molecules are present in
mature seeds in Arabidopsis (Arabidopsis thaliana) and
barley (Hordeum vulgare; Nakabayashi et al., 2005;
Sreenivasulu et al., 2008), consistent with the role of
preexisting mRNA molecules playing a central role in
germination. While transcriptional inhibition slows
the progression of germination, radicle protrusion still
occurs, although subsequent seedling growth is pre-
vented. In contrast, inhibition of translation com-
pletely inhibits germination (Rajjou et al., 2004).

Although seed development and germination have
been studied for several decades, recent advances in
our understanding of these complex processes have
largely resulted from the expansion of available se-
quence data and the establishment of large-scale
-omics technologies. In particular, for the dicot model,
Arabidopsis, a number of studies utilizing transcrip-
tomic, proteomic, and metabolomic methods to inves-
tigate seed maturation, dormancy, and maturation have
been published (Nakabayashi et al., 2005; Holdsworth
et al., 2008a, 2008b), including one study that reports a
correlation between transcript and metabolite data
during the germination process (Fait et al., 2006).

In comparison, there is a relative paucity of similar
studies in monocots, particularly at the whole ge-
nome level, with respect to transcriptomic and me-
tabolomic studies. While some transcriptome studies
in wheat (Triticum aestivum) and barley have been
performed (Watson and Henry, 2005; Wilson et al.,
2005; Sreenivasulu et al., 2008), the lack of complete
genome sequence data prevents comprehensive whole
transcriptome analysis, including promoter analysis
once coexpressed gene sets have been identified. For
example, the most comprehensive transcriptome study
in monocots to date, using barley (Sreenivasulu et al.,
2008), reported that cis element searches were per-
formed in homologous rice (Oryza sativa) promoters,
as this sequence information is not yet available for
barley. Also, time points sampled were 24 h after im-
bibition (HAI) or more apart (Sreenivasulu et al., 2008),
meaning that early and potentially regulatory changes
in the transcriptome have not yet been thoroughly
investigated in monocots.

Rice is an important food crop and is the first crop to
have its genome sequenced, making it the model of
choice for grass species. Several conditions established
rice as the optimal choice for global germination anal-
ysis in monocots: (1) the availability of whole genome
sequence information; (2) an established growth sys-
tem for studying germination (Howell et al., 2006,

2007); (3) widespread functional annotation informa-
tion; and (4) the availability of Affymetrix whole ge-
nome rice microarrays representing 51,279 transcripts.
All of these factors together enabled comprehensive
transcriptome analysis in rice over a germination time
course and the direct link of coexpressed genes with
upstream sequence information for identification of
potential regulatory sequence elements. Sampling tran-
scripts in dry seeds (0) and 1, 3, 12, and 24 HAI and of
metabolites at 0, 1, 3, 6, 12, 24, and 48 HAI has allowed
a detailed examination of germination in rice. Further-
more, this study enables the investigation of the roles
of transcriptional and posttranscriptional processes
and whether changes in transcript levels drive changes
in metabolites during this essential phase of plant
growth and establishment.

RESULTS

Transcriptome and Metabolite Profiling of Early Stages
of Rice Germination

We have previously characterized changes in water
content and metabolic activity in rice embryos during
germination up to 48 HAI and have observed the
expected triphasic mode of water uptake with concom-
itant increases in oxygen uptake (Howell et al., 2006).
Using this same experimental system, global changes
in transcript levels were determined 0, 1, 3, 12, and
24 HAI using the Affymetrix Rice GeneChip, consisting
of 57,381 probe sets representing 51,279 transcripts.
Microarrays were performed in triplicate for each time
point, and after normalization, analysis of the data
revealed that the correlation between the replicates for
each time point was greater than 0.98. The total number
of probe sets for analysis was reduced by removing
ambiguous probe sets and those that were not called
‘‘present’’ in at least two replicates at one time point,
resulting in a final present set of 24,150 transcripts
(Supplemental Table S1). Of these, over 17,000 tran-
scripts were present prior to imbibition (i.e. represent-
ing the mRNA stored in the dry seed). Differential
expression analysis (with false discovery rate correc-
tion and a stringent cutoff of P , 0.01) revealed that 76%
(18,372) of these transcripts changed in abundance over
the time course and 67% (16,487) changed relative to
0 HAI. (Supplemental Fig. S1; Supplemental Table S1).
When successive time points are compared, there were
relatively few changes in the first hour (59 up, four
down), with most changes observed between 3 and
12 HAI (5,396 up, 4,935 down) and between 1 and 3 HAI
(1,469 up, 1,276 down), while the number of changes
between 12 and 24 HAI was considerably lower (420
up, 424 down; Fig. 1). It was apparent that almost as
many transcripts decreased in abundance as increased
at almost all time point comparisons.

Metabolite analysis was performed on the same sam-
ples used for microarray analysis and additional samples
collected 6 and 48 HAI. A total of 126 unique metabolites
were detected in the rice embryo samples, and of these,

Howell et al.

962 Plant Physiol. Vol. 149, 2009



66 could be identified based on matching to previously
run standards (Supplemental Table S2A). Statistical anal-
ysis of metabolite abundance revealed that most (93%) of
the 126 metabolites detected showed significant (P ,
0.05) changes in abundance between at least two time
points sampled during the time course, and of the 66
metabolites identified, all were found to show significant
changes in abundance (Fig. 1; Supplemental Table S2B).
Although a number of significant changes in metabolite
abundance were observed just 1 HAI (25 of the 126
metabolites displayed significant changes between 0 and
1 HAI), the differences between 1, 3, and 6 HAI were
more subtle compared with the large changes in the
transcriptome observed from 1 to 3 HAI (Fig. 1; Supple-
mental Table S2B). In contrast, large overall changes in
metabolite profiles were observed from 12 HAI onward
(Fig. 1), with more than 50 of the metabolites displaying
a significant change in abundance at 12 HAI or later (Fig.
1; Supplemental Table S2A). Overall, examination of the
changes in metabolites and transcripts revealed a rapid
change in metabolite levels within 1 HAI, which pre-
ceded the large changes in transcript abundance at 3 and
12 HAI and was followed by further changes in metab-
olites at 12 HAI or later.

Comparing Patterns of Specific Metabolites and
Transcripts during Germination

The striking changes in metabolite levels that oc-
curred just 1 HAI were predominantly associated with

major carbohydrate metabolism (Fig. 2A; Supplemental
Table S2B). Fru-6-P, Glc-6-P, and glycerate-3-phosphate
increased 7- to 42-fold between 0 and 1 HAI and were
also observed to increase at all time points thereafter.
Other metabolites found to rapidly increase included
the tricarboxylic acid (TCA) cycle intermediates
2-oxoglutarate, aconitate, fumarate, malate, and succi-
nate, with increases ranging from 2.7- to over 16-fold.
This suggests that there is an immediate increase in the
activity of glycolysis and the TCA cycle that facilitates
early, energy-demanding processes. While most of the
changes in amino acids were seen to occur later in the
time course, g-aminobutyric acid (GABA) and Gln
were notable exceptions, displaying 4.2- and 3.5-fold
increases at 1 HAI (Fig. 2A; Supplemental Table S2B).
In addition to increases in several amino acids (Ile,
Leu, Lys, Met, Phe, Ser, Tyr, and Val), changes in the
metabolite profiles at later stages of germination also
included increases in sugars (Fru, Glc, and maltose),
compounds associated with cell wall metabolism (Ara,
Gal, Hyp, and Rib), and minor carbohydrate metabo-
lism (galactitol, sorbitol, trehalose, and Xyl).

To compare these metabolite patterns with profiles
observed for the 24,150 transcripts detected during
rice germination, transcript abundance data were nor-
malized to the highest value for each transcript and
then hierarchically clustered, resulting in four main
types of transcript profile patterns (Fig. 2B). Cluster
1 represents just under one-third of all expressed genes

Figure 1. Summary of the number of significant changes in transcripts and metabolites between successive time points during
rice germination. Transcript and metabolite profiling were performed on rice embryo tissue samples collected at various time
points during germination (0, 1, 3, 12, 24, and 48 HAI). Changes in the abundance of 24,150 transcripts and 126 metabolites
were determined, and statistical analysis was performed to evaluate significant differences between all possible combinations of
time points (Supplemental Fig. S1). Comparison of successive time points for significantly up-regulated (red) and down-regulated
(blue) transcripts (dark red and blue; left axis) and metabolites (light red and blue; right axis) revealed differences in the timing of
significant alterations in the transcriptome and metabolome. The numbers of significantly changing transcripts and metabolites
for each comparison are given above and within the columns, respectively. nd, Not determined.
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Figure 2. (Legend appears on following page.)
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and is characterized by transcripts that have relatively
low and stable levels at early stages of germination
and then increase over the time course examined.
Cluster 1 was subdivided into four subgroups (A–D)
based on when the increase in transcript abundance
was observed: cluster 1A increases from 12 to 24 HAI;
cluster 1B increases from 3 to 12 HAI, followed by
decreases from 12 to 24 HAI; cluster 1C increases
between 3 and 12 HAI and remains high at 24 HAI;
and cluster 1D increases after 1 or 3 HAI (Fig. 2B).
Cluster 2 (black) was unique in that the transcript
abundance profiles peaked in abundance after 1 or 3
HAI and then decreased to low levels again from 12
HAI (Fig. 2B), suggesting that a distinct regulatory
process has occurred that transiently affects the tran-
script abundance of over 2,000 genes. Furthermore, the
transient but dramatic increases in the transcripts that
constitute cluster 2 precede the majority of the in-
creases in transcripts observed for cluster 1, which
occur at 12 HAI or later (Fig. 2B). Cluster 3 (pink) is
defined by transcripts that decrease throughout the
time course of the study, representing almost one-third
of all expressed genes, and can be divided into two
subgroups: 3A, in which the profiles showed a general
decrease in transcript abundance, starting after 1 HAI
and continuing to 12 HAI; and 3B, in which the
decrease was not as dramatic as that observed for
cluster 3A. Cluster 4 (blue) comprises just over one-
quarter of all expressed genes and showed relatively
constant transcript levels across the time course (Fig.
2B). Interestingly, cluster 1C and cluster 3A are prac-
tically mirror images, in that they both include around
3,500 genes, and while cluster 1C shows an increase at
3 HAI, cluster 3A displays a corresponding decrease.

To understand the significance of these distinct
patterns of transcript abundance and their relationship
to the metabolome changes, three types of analysis
were conducted that each provided a different insight
into a molecular understanding of the germination
process in rice. The first analysis was performed using
the PageMan (Usadel et al., 2006) and MapMan
(Thimm et al., 2004; Usadel et al., 2005) tools adapted
for use with rice microarray data (see ‘‘Materials and

Methods’’). This type of analysis was performed by
comparing only significant changes between suc-
cessive time points and reveals which functional
categories are significantly up- or down-regulated.
PageMan analysis revealed that a variety of cellular
processes were affected over the germination process
and confirmed that the greatest number of significant
changes were observed between 3 and 12 HAI (Fig. 3).
Early changes (0 versus 1 HAI) included signaling
processes involving transcription regulation, mitogen-
activated protein kinases, and calcium. Further anal-
ysis using MapMan and selected time points (0 versus
3 HAI and 3 versus 12 HAI; Supplemental Fig. S2) also
provided further insight into the signal transduction
pathways that where utilized. For example, it showed
that transcripts of receptor kinases were up-regulated
at early stages of germination (0–3 HAI), while later
changes (3–12 HAI) involved an up-regulation of
transcripts associated with the brassinosteroid and
jasmonate pathways. Auxin-responsive transcription
factors were also up-regulated at these later time
points, while, in general, components involved in
protein degradation and modification were repressed
(Supplemental Fig. S2). However, early changes in
transcript levels were not restricted to regulatory
processes, as transcripts encoding proteins involved
in cellulose and phospholipid synthesis, as well as one
isoform of the alternative oxidase (AOX1a), were
found to be up-regulated, while transcripts associated
with abscisic acid signal transduction were down-
regulated (Fig. 3). Large changes in the transcriptome
from 3 to 12 HAI were associated with a general up-
regulation of transcripts encoding components in-
volved in the following cellular processes: cell wall
metabolism, lipid metabolism, nucleotide degrada-
tion, amino acid synthesis, carbohydrate metabolism
(TCA cycle), jasmonate synthesis, cellular transport,
organellar protein synthesis, and aspects of secondary
metabolism such as isoprenoid and phenylpropanoid
biosynthesis (Fig. 3). These observations are further
supported by a more specific comparison of metab-
olism using MapMan. This analysis showed up-
regulation of several biosynthetic pathways, such as

Figure 2. Profiles of known metabolites and hierarchical clustering of differentially expressed genes during rice germination. A,
Changes in the levels of all identified metabolites were calculated as fold changes relative to the 0-HAI time point and log
transformed. Changes are represented as a false color heat map where the color saturates at a log2 false color (FC) value of 5 (i.e. a
32-fold change). Data from a study performed using whole Arabidopsis seeds (Fait et al., 2006) are included for comparison,
where I represents seeds imbibed for 72 h at 4�C in the dark relative to dry seeds and G indicates a comparison of seeds imbibed
for 72 h at 4�C in the dark followed by 24 h of growth under germinative conditions (21�C in the light) relative to dry seeds. White
coloring indicates no significant change, and gray coloring indicates that a metabolite was not measured. The fold changes for all
metabolites detected and associated P values are shown in Supplemental Table S2B. B, From microarray analysis, all probe sets
that were called present at a minimum of one time point were normalized to the highest level of expression over the time course
of the study and hierarchically clustered using average linkage based on Euclidian distance. Four primary clusters were defined:
cluster 1 (green), transcripts that increased in abundance over the time period examined; cluster 2 (black), transcripts that were
low or absent at 0 HAI, peaked at 1 or 3 HAI, and then declined in abundance; cluster 3 (pink), transcripts that declined in
abundance over the time period examined; cluster 4 (blue), transcripts that displayed relatively stable levels of abundance
throughout the time course. Subclusters of clusters 1 and 3 are defined by differences in the time points at which changes in
transcript levels occurred. For all clusters, a graph showing the average expression level is presented. Fold changes and their
associated P values for all probe sets can be found in Supplemental Table S1.
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cellulose synthesis, cell wall synthesis, cell wall mod-
ification, tetrapyrrole synthesis, fatty acid synthesis,
and b-oxidation (Supplemental Fig. S3). Although
there were fewer changes associated with later time
points (12 versus 24 HAI), these were associated with
central processes such as photosynthesis, Suc degra-
dation, mitochondrial electron transport, tetrapyrrole
synthesis, brassinosteroid metabolism, and amino acid
synthesis (Fig. 3), indicating that central metabolic
processes are being maintained and/or induced in
preparation for seedling establishment during late
stages of germination. Furthermore, for some of these
pathways, metabolite components were also identi-
fied, and increases in these components, such as those
involved in amino acid and cell wall metabolism (Fig.
2A), correlate with general changes in transcript levels
(Fig. 3). To further investigate major carbon and amino
acid metabolism, a custom MapMan pathway image
was generated. Fold changes in transcript (3 versus 12
HAI) and, where possible, metabolite levels (6 versus
24 HAI) were plotted simultaneously (Fig. 4). It was
found that by displaying the data in this manner and
introducing a time lag between the transcript and
metabolite changes, there was a better correlation
between changes, particularly with regard to the in-
duction of transcripts involved in amino acid synthesis
and the levels of the amino acids themselves (Phe, Tyr,
Ala, Leu, Val, Lys, Met, Ile, and Arg). Thus, although
metabolomic analysis is not yet as comprehensive as
transcriptomic analysis, it suggests that the extensive
changes in the transcriptome between 3 and 12 HAI
drive the later changes observed in metabolite profiles.

The above analyses reveal the characteristics of
statistically significant changes between successive
time points. Thus, it primarily gives insights into the
changes that are occurring in clusters 1 and 3, where
large fold changes of many transcripts are occurring. It
is not informative for sets of genes that do not change
(i.e. cluster 4) and also may miss some changes that
occur in clusters with smaller numbers of genes (i.e.
cluster 2). Thus, a second analysis approach was
carried out on changes in transcripts based on all
transcript profiles (i.e. the 24,150-gene set; Fig. 2B) and
the functional categories of the encoded proteins.
Differences were determined by calculating z-scores
to test if the percentage of a particular category was
significantly higher or lower (P , 0.01) than in the
whole genome (Fig. 5; Supplemental Fig. S4; Supple-

Figure 3. PageMan analysis of the microarray data over the rice
germination time course. Significant fold changes in transcript levels
between adjacent time points were log transformed and analyzed us-
ing the PageMan tool. Wilcoxon statistical analysis with Benjamini-
Hochberg false discovery rate control was performed to determine
significantly different gene categories. Nonsignificant categories were
collapsed for display. Statistical differences are represented by a false
color heat map (red 5 up-regulated; blue 5 down-regulated) where a
z-score of 1.96 represents a false discovery rate-corrected P value of
0.05.
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mental Table S3). Cluster 2, characterized by transient
increases in abundance at early stages of germination
(1 and 3 HAI), was found to contain a significantly

higher proportion of transcripts encoding transcrip-
tion factors and proteins involved in signal transduc-
tion and was underrepresented in several categories of

Figure 4. Parallel display of transcripts and metabolites for starch-Suc metabolism, glycolysis, the TCA cycle, GABA shunt,
mitochondrial respiratory chain, and amino acid metabolism. Significant fold changes in transcripts and metabolites were log
transformed and displayed on a custom pathway picture using the MapMan tool. Where possible, metabolite changes are
indicated in the circles next to the corresponding metabolite name (gray boxes) and correspond to a comparison of 6 and 24 HAI.
Enzymatic conversions between metabolites are indicated by arrows and enzyme names. Changes in transcripts encoding these
enzymes are indicated in the boxes next to the enzyme names and correspond to the 3- versus 12-HAI comparison. In most
cases, the enzymes involved are encoded by a small gene family. However, in some cases, individual enzymes are not
distinguished and a more general classification of the contributing transcripts is indicated in italics (e.g. starch degradation). This
is also the case for components of the mitochondrial electron transport chain (CI–CV), where transcript levels for different
nucleus-encoded subunits are presented. For both metabolites and transcripts, changes are represented by shading, where the
color saturates at a log2 false color (FC) value of 4 (i.e. a 16-fold change).
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metabolism (Fig. 5). Cluster 4, which displayed rela-
tively constant profiles over the 24-h time period, was
found to have a higher proportion of transcripts asso-
ciated with translation as well as protein folding,
sorting, and degradation, which suggests a consistent
requirement of the proteins involved in these func-
tions (Fig. 5; Supplemental Fig. S4; Supplemental Table
S3). Furthermore, for transcripts comprising clusters
1 and 3, the findings of the PageMan/MapMan anal-
ysis were supported by this type of approach.

Third, sequential changes in metabolic organelle
function (plastids, mitochondria, and peroxisomes)
were investigated during germination. In order to
determine if transcripts that encode organelle proteins
changed in a coordinated manner compared with that
observed for all transcripts (Fig. 2B), subsets of tran-
scripts for genes encoding organelle proteins were
reanalyzed by clustering analysis. Four clusters could
be clearly defined for transcripts that encoded proteins
located in mitochondria, plastids, and peroxisomes
based on similar temporal changes in transcript abun-
dances (Fig. 6A; Supplemental Fig. 5) compared with
what was observed when the abundances of all tran-
scripts of the array defined as present were clustered
using identical parameters. Functional categorization
analysis of the organelle cluster sets was used to
determine which categories were overrepresented or
underrepresented in each cluster (Fig. 6B). For both
mitochondrial and plastid sets, transcripts encoding
proteins involved in energy were found to be over-
represented in cluster 1 and underrepresented in clus-
ter 3 (mitochondrial) and cluster 4 (plastid). This
enrichment of energy functions in cluster 1 correlates
with the requirement for large amounts of energy in
the early stages of germination. For the plastid set,
transcripts associated with protein synthesis were also
overrepresented in cluster 1, while transcripts associ-
ated with protein fate were underrepresented (Fig.
6B). This may correspond with the order of processes
that occur in organelles that have their own genome.
Previous studies investigating mitochondrial biogen-
esis during rice germination revealed that the tran-
scripts encoding for import components (protein fate)
appear first, followed by the other organelle-localized
proteins, which can only enter the organelle via these
import components (Howell et al., 2006). Therefore,

Figure 5. Functional categorization of the transcripts grouped into
each cluster. Of the 24,150 transcripts that were present at any one time
point, a functional classification could be ascribed to over 10,000, as
outlined in ‘‘Materials and Methods.’’ The breakdown of the genome as
well as the four clusters defined in Figure 2B are shown. The frequency
of transcripts in each FUNCAT was calculated as a percentage of the
cluster and compared with the percentage of the genome in that
FUNCAT. Functional groups that were found to be overrepresented (red
asterisks) or underrepresented (blue asterisks) are listed for each cluster,
as determined by the z-score test with a confidence of P , 0.01. Only
the FUNCATs that changed significantly are shown (for a complete list
of all FUNCATs in all clusters, see Supplemental Fig. S4).
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transcripts encoding protein fate components are re-
quired early and hence would not steadily increase, as
in cluster 1, whereas the transcripts encoding protein
synthesis components increase over time, facilitating
specific protein production within the plastid. With
regard to cluster 2, transcripts involved in transcrip-
tion and RNA processing were overrepresented in the
chloroplast set, consistent with the whole genome
analysis (Fig. 2B). The essential role of mitochondria
and plastids during seed development, early germi-
nation, and seedling growth is reflected in the obser-
vation that a large proportion of the transcripts are not
significantly changing in abundance over the first 24
HAI (cluster 4). These observations are consistent with
the fact that upon imbibition, immediate changes in

metabolites occur, due to the presence of significant
metabolic capacity of both organelles encoded by
transcripts in cluster 4. Later changes in metabolites
only occur 12 HAI or later, parallel to cluster 1,
enriched in genes encoding energy functions in both
mitochondria and plastids.

We have previously suggested a sequential assem-
bly of mitochondria during germination based on the
examination of a limited number of genes (Howell
et al., 2006), and that sequential pattern is supported
by the analysis of the larger set of genes in this study
(Supplemental Table S5B). For example, transcript
abundance of genes involved in protein import and
organelle gene transcription (e.g. the mitochondrial
RNA polymerase) is relatively high in dry seeds and

Figure 6. Analysis of the transcript abundance of genes encoding proteins located in mitochondria and chloroplasts. A,
Hierarchical clustering of 845 genes defined to encode mitochondrial proteins and 1,472 genes defined to encode plastid
proteins, divided into four clusters as outlined in Figure 2. B, Functional categorization of the proteins encoded by the genes in
each cluster. The breakdown of the functional categorization in each cluster (C1–C4) and the percentage of genes are shown.
Asterisks indicate significant differences (based on z-scores with P , 0.01) compared with the total organelle sets. The number of
genes, percentage breakdown, and significance scores in each cluster are shown in Supplemental Table S5.
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at early germination stages and either remains high
or declines (i.e. cluster 3 or 4). In contrast, many of the
transcripts encoding components associated with
organellar protein synthesis increase at 3 HAI, while
transcripts encoding components of the TCA cycle
and the respiratory chain increase at 12 HAI (i.e.
clusters 1B and 1A, respectively). Notably, cluster 2 of
the mitochondrial set includes transcripts encoding
membrane transport proteins, including phosphate
and oxoglutarate/malate carriers, Graves disease
protein, a transporter necessary for the accumulation
of mitochondrial coenzyme A (Prohl et al., 2001), and
proteins annotated as uncoupling proteins. In Arabi-
dopsis, these proteins have been functionally shown
to transport a variety of metabolites, including the
components of the malate/oxalocetate shuttle, which
is an important link between mitochondrial and
cytosolic metabolism (Palmieri et al., 2008). Finally,
it was also seen that for some proteins that are
encoded by small gene families and are involved in
mitochondrial metabolism (e.g. the E1a subunit of the
pyruvate dehydrogenase complex and cytochrome c),
one isoform increased over the time period examined
while another decreased (Supplemental Table S5B),
suggesting that there may be a switch in the isoform
utilized during seed maturation versus germination
processes.

In combination, these three analysis approaches
revealed an almost immediate change in the metab-
olome, followed by a two-step large-scale rearrange-
ment of the transcriptome featuring metabolic
organelle biogenesis and followed by increases in
amino acids and components involved in cell wall
and carbohydrate metabolism. However, this analysis
does not explain what the switch or driver was for
these phases in the germination process.

Transient Changes in the Transcriptome Indicate That
3 h May Represent a Specific Switch Point in the
Germination Process

The above analysis of overrepresented and under-
represented functional categories revealed that tran-
scription factors are underrepresented in clusters
1 and 4 (i.e. transcript levels that increase or remain
stable) but are overrepresented in clusters 2 and 3 (i.e.
transcript levels that increase only transiently or de-
crease; Fig. 5; Supplemental Table S3). Given that the
transcription factors in cluster 3 are characterized as
having their highest levels in the dry seeds before
decreasing over the germination period, these puta-
tively represent regulators involved in processes asso-
ciated with seed maturation and desiccation. These
transcripts appear to be stored in the dry seeds and
then decay as the germination process proceeds. How-
ever, the transcription factors contained in cluster 2 are
at low levels in the dry seeds and are only transiently
expressed at 1 or 3 HAI and, thus, may represent an
important regulatory switch that may then drive the
changes in transcript abundance that occur later, par-

ticularly with respect to increases in transcript abun-
dance represented in cluster 1.

Given these interesting observations, we performed
further analysis on the rice transcription factor set. A
comprehensive list of rice transcription factors was
collated from various databases and studies (as de-
scribed in ‘‘Materials and Methods’’), and it was found
that transcripts for 1,786 of these were detected in at
least one time point of this study. Their transcript
profiles were analyzed by hierarchical clustering (Fig.
7A), and for each cluster type, the proportions of the
different transcription factor families were analyzed
(Fig. 7B; Supplemental Table S4B). Interestingly, it was
found that there was a bias in the types of transcription
factors occurring in each cluster. Cluster 1 had a higher
proportion of AUX/IAA and basic helix-loop-helix
families, while cluster 4 was enriched in the SET family
transcription factors (Fig. 7B). These findings are con-
sistent with the observation that members of the AUX/
IAA family have previously been associated with GA
and auxin signaling pathways during germination in
barley (Sreenivasulu et al., 2008). Previous studies have
revealed a role for SET family transcription factors in
histone methylation (Malagnac et al., 2002; Xiao et al.,
2003); thus, consistent expression of these family mem-
bers suggests a constitutive epigenetic role of the SET
family members in plant development.

In contrast, cluster 2, characterized by a transient
peak in expression at 3 HAI before decreasing, was
found to be enriched in AP2-EREBP and WRKY family
members (Fig. 7B). AP2 family members are known to
play an important role in ABA signaling and in water
uptake/drought response, with mutants of an AP2-
EREBP family member in Arabidopsis showing in-
creased water loss (Song et al., 2005). This transient
expression may highlight an important role of AP2
transcription factors in water uptake and ABA signal-
ing during the phases of germination. A role for WRKY
family members in GA signaling has also been pro-
posed following the expression patterns observed for
WRKY family members in barley (Sreenivasulu et al.,
2008), and an overrepresentation of WRKY transcrip-
tion factors in cluster 2 relative to other transcription
factors suggests that they may also play a role in germi-
nation processes in rice. Lastly, HSF and PHD family
members were overrepresented in cluster 3, which
showed high expression in dry seeds and decreasing
expression over time (Fig. 7B). HSF family members
have long been associated with protein folding and
stress response; thus, their role in early germination
appears critical, as large numbers of proteins begin
production over the germination time course (Guo
et al., 2008). The identification of specific genes encod-
ing transcription factors displaying distinct temporal
expression patterns provides a way to identify puta-
tive regulators that meditate the transition from dor-
mancy to early seedling growth after imbibition.

Transcription factors identified as belonging to clus-
ter 2 (Fig. 7A) may mediate changes in transcript levels
observed later in the time course (i.e. increases in the
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transcript abundance observed for over 6,000 genes in
cluster 1). To determine if these were specific to the
process of germination, we analyzed the expression of
transcription factors across publicly available rice
Affymetrix microarray data. These included analyses
of over 30 microarrays from different tissues and stress
treatments, and following normalization, all data were
made relative to maximum expression across all arrays
(detailed in ‘‘Materials and Methods’’). The 117 tran-
scription factors comprising cluster 2A were then
examined closely across the compiled normalized
data from this study and the public data, and 34
transcription factors were identified that reached at
least 70% of maximum expression levels at 1 or 3 HAI
when all available rice array data were analyzed (Fig.
8). Interestingly, nine of these were found to be exclu-
sively expressed at these early time points during
germination and were absent or at very low levels

across all the other arrays analyzed (Fig. 8A, yellow
boxes). It is important to point out that three of these
belonged to the AP2-EREBP family, which further
supports our conclusion on the importance of this family
in regulating water uptake and ABA signaling specifi-
cally during germination. Furthermore, it was interest-
ing that of the 1,786 transcription factors, only two
belonged to the AB13/VP1-2 family, and both of these
fell into the group of nine genes expressed, almost
uniquely, during germination. ABI3/VP1 family mem-
bers are known to play a role as intermediaries in
regulating ABA-responsive genes (Lazarova et al., 2002);
therefore, this distinct expression pattern suggests that
these two transcription factors are likely to play a criti-
cal role during early germination in rice. Other puta-
tive ‘‘germination-specific’’ transcription factors showed
some limited expression across other tissues/treatments,
with three, including one AP2-EREBP family member,

Figure 7. Analysis of changes in transcript
abundance for genes encoding transcription
factors. A, Hierarchical clustering of 1,786
transcription factors that were present at a
minimum of one time point, divided into four
clusters as in Figure 3. B, Analysis of the
transcription factors by family present in each
cluster. Overrepresentation is indicated by red
asterisks. The frequency of transcripts, per-
centage breakdown in each cluster, and the
significance score are shown in Supplemental
Table S4B.
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Figure 8. Analysis of genes encoding transcription factors that displayed germination-specific expression. A, Analysis of the
expression profiles of 34 transcription factors that displayed between 70% and 100% of their maximum expression at 1 and 3
HAI in the germination time course, compared with publicly available array data for a variety of rice tissues and treatments.
Boxed in yellow are transcription factors that appeared only to be induced during germination (i.e. in this study). Boxed in blue
are transcription factors only expressed during germination, coleoptiles, or suspension cells, and boxed in green are transcription
factors only expressed in suspension cells and in this study. Asterisks indicate genes for which the Arabidopsis homologs have
germination-specific expression (see B). B, inParanoid (Remm et al., 2001) and GreenPhylDB (Conte et al., 2008) were used to
identify Arabidopsis homologs for the rice transcription factors defined as germination specific (see A). Their expression profiles
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only expressed in coleoptiles, particularly under anoxic
conditions (Fig. 8A, blue boxes), and four only expressed
in suspension cells (Fig. 8A, green boxes).

By searching for Arabidopsis homologs of the
‘‘germination-specific’’ transcription factors identified
in this study and verifying their expression profiles
using the eFP browser (Winter et al., 2007), we suc-
cessfully identified two putative germination-specific
transcription factors in Arabidopsis (Fig. 8B). The
WUSCHEL-related homeobox 11 (At3g03660) transcrip-
tion factor displays a transient increase in expression at
3 and 6 HAI in Arabidopsis seeds and is homologous to
three of the transiently expressed rice homeobox tran-
scription factors (Os08g14400.1, Os03g20910.2, and
Os07g48560.1; Fig. 8B; Supplemental Fig. S6). ZPHD3/
ATHB30, a zinc finger homeodomain transcription
factor (At5g15210), also displays a transient increase
at 3 HAI in Arabidopsis seeds and is homologous to the
transiently expressed rice zinc finger homeodomain
transcription factor (Os09g29130.1; Fig. 8B; Supplemen-
tal Fig. S6). This suggests the presence of common
regulators of germination processes in both dicots and
monocots. However, as members of the same family of
transcription factors can have diverse roles, it cannot
yet be concluded that these homologous transcription
factors play identical roles in germination in rice and
Arabidopsis. The similar temporal expression profiles
as well as sequence similarity at the whole protein se-
quence level (Supplemental Fig. S6) suggest some com-
mon roles and clear targets for future investigations.

Transcripts Displaying Similar Profiles during

Germination Share Common Sequence Motifs

Over 17,000 transcripts were observed in dry seeds,
and over the germination time course, more than
18,000 of the 24,150 transcripts present in total were
found to significantly change in abundance. A number
of peaks in transcript abundance were observed, at
1 and 3 HAI (cluster 2) and 12 HAI (cluster 1B), while
some transcripts present in dry seeds were observed to
decrease (cluster 3; Fig. 2B). These changes occurred
within a 24-h period, suggesting several regulatory
steps. In order to uncover the regulatory processes that
caused these changes, searches for the presence of
common sequence elements in the promoter regions or
3# untranslated regions (UTRs) were carried out. As
outlined in ‘‘Materials and Methods,’’ 10 sets of genes
varying in number from five to 90 were examined for
sequence elements (Supplemental Table S6A). Ten sets
of these genes peaked at one time point, where a peak
was defined as having a transcript abundance of 1.0

(100%) at the peak time point (0, 1, 3 12, or 24 HAI)
with less than 50% transcript abundance at all other
times examined. Groups examined included the mito-
chondrial (3 and 24 HAI), plastid (3, 12, and 24 HAI),
and transcription factors (0, 1, 3 12, and 24 HAI) sets
(Supplemental Table S6, B and C). The mitochondrial
and plastid sets did not have any transcripts that
‘‘peaked’’ at 0 and 1 HAI (and 12 HAI for the mito-
chondrial set). Searches identified a number of con-
served elements in each group (Supplemental Table
S6B). The transcription factor set that peaked in ex-
pression at 3 HAI contained two elements that oc-
curred in all 51 genes. As might be expected, there was
also some overlap between the elements that occurred
in the different groups that peaked at the same time,
and these are reflected in the color of the elements that
contain a common core sequence (Supplemental Table
S6C). For example, for the transcripts peaking at 3 HAI
(in the plastid and transcription factors sets), the cor-
responding genes were found to contain the helix-turn-
helix and BBr/BPC/ARF elements.

Five distinct core sequence elements were found to
occur within the different groups (above), indicated by
color (two related elements in purple), with variations
or reverse complements shown (Supplemental Table
S6C). Elements that occurred in 70% or more of the
sequences from the sets above (Supplemental Table S6,
B and C) were taken and searched in the larger
genome sets according to expression criteria (i.e.
peak expression at one time point and less than 50%
at all other time points; Table I). Sequence elements in
the 1-kb promoter region were found to be signifi-
cantly enriched at all time points except 0 HAI (Table
I). Transcripts that peaked at 24 HAI contained six
elements that were significantly underrepresented and
six that were overrepresented, and of these, three were
unique to this time point (Table I; Supplemental Table
S6D). Transcripts that peaked at 3 HAI had seven
elements overrepresented, the greatest number of el-
ements overrepresented in any group, and one ele-
ment underrepresented (Supplemental Table S6D).
Interestingly, two of the elements overrepresented at
3 HAI were underrepresented at 24 HAI.

When analyzing changes in transcript abundance, it
is important to consider the role of mRNA degrada-
tion, particularly when it is evident that dramatic
decreases in transcript abundance are occurring for
large groups of transcripts after they peak in expres-
sion. In order to systematically investigate the role of
mRNA decay during germination, 3# UTRs were ex-
amined for enrichment of motifs in transcript subsets
that showed peak expression at 3, 12, and 24 HAI. The

Figure 8. (Continued.)
in seed germination were investigated using the Arabidopsis eFP browser (Winter et al., 2007). Two Arabidopsis transcription
factors that showed transient and germination-specific expression were identified, including a WUSCHEL-related homeobox
transcription factor (At3g03660) homologous to rice homeobox transcription factors encoded at the loci Os08g14400,
Os03g20910, and Os07g48560 and a zinc finger homeodomain transcription factor (At5g15120) homologous to the rice zinc
finger homeodomain transcription factor Os09g29130.
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presence of these predicted motifs (Supplemental Ta-
ble S6C) and of 12 known RNA stability/instability-
associated motifs was compared between the subsets
and the ‘‘whole genome’’ set; however, this was some-
what restricted due to the fact that only 3,027 genes
have an annotated 3# UTR in rice (Supplemental Table
S6D). Nevertheless, a clear picture emerged, in that
four elements were only significantly enriched in 3
HAI, two of which have been associated previously
with RNA instability in Arabidopsis (Narsai et al.,
2007) and tobacco (Ohme-Takagi et al., 1993; Table I).
Interestingly, one sequence element (GAATAA) was
associated with stable RNA transcripts (Narsai et al.,
2007) and was enriched in transcripts peaking at 12
HAI (Table I). The presence of these putative motifs in
the 3# UTR together with 1-kb upstream motifs sug-
gests that the complex regulation of transcript abun-
dance occurs at the levels of both transcription and
degradation during the course of germination.

DISCUSSION

This study provides a comprehensive profile of the
transcriptome and metabolites during germination in
the monocot model rice. A series of temporal switches

in metabolites and transcripts is suggested that results
in a reactivation of cellular metabolism to support
growth. At the earliest time point analyzed in this
study, 1 HAI, there was a greater proportion of the
detected metabolites than the detected transcripts
changing in abundance relative to the total number
of changes observed throughout the time course of this
study. These early responses were then followed by
the largest change in transcript abundances between 3
and 12 HAI, followed by relatively small changes in
transcripts at subsequent time points. In contrast,
changes in a large number of metabolites continued
up to 48 HAI. This suggests that the early changes in
metabolites arise from the activity of preexisting en-
zymes, as this occurs rapidly, possibly even before the
energy-demanding process of translation has been
fully activated to synthesize new proteins. However,
the later changes in metabolites are more likely driven
by transcription and translation, as they occur subse-
quent to changes in transcript abundance. Further-
more, the changes in transcript abundance that appear
transitory in nature, defined in cluster 2, which are
enriched in transcription factors but underrepresented
in transcripts that encode proteins involved in metab-
olism, may represent a transition from the dormant
state to an active growth state. The peak in transcripts

Table I. Comparison of the presence of the putative motifs within the genome and the subsets that showed maximum expression at a given
time point

The sequences analyzed were all 1-kb upstream regions (66,710) and all 3# UTR sequences (3,027) obtained from the full genome sequence
information files from TIGR. For the 1-kb upstream and 3# UTR genome sets, the number of sequences in which the motif occurred (Freq.) and the
corresponding percentage (%) of all sequences that this represents are shown. A z-score analysis was carried out (Supplemental Table S6C), and the
putative motifs found to be significantly overrepresented and underrepresented (1 and 2 at P , 0.01) are shown next to the percentage of sequences
in which the motif occurred. For the putative 1-kb upstream motifs, asterisks indicate that these motifs partially/fully match known rice elements found
in the Rice Cis-Element Search and/or PlantCare databases. Previous analysis of 3# UTR sequences (Ohme-Takagi et al., 19932; Narsai et al., 20071)
have suggested the involvement of these motifs in mRNA stability. Elements that contain some overlapping bases are indicated by the same superscript
letter.

Sequences Analyzed Putative Motif
Genome

0-h Peaking 1-h Peaking 3-h Peaking 12-h Peaking 24-h Peaking
Freq. %

1-kb upstream regions aAAAAAAAA* 20,377 30.50 144.90% 140.80%
bTTTTTTTT* 20,369 30.50 137.50%
cCACCAC* 20,002 30.00 153.30% 138.80% 139.80% 135.10%
cACCACC 18,762 28.10 156.70% 138.00% 132.90%
dGGTGGT 15,786 23.70 220.80%
eGCCGCC* 23,601 35.40 143.80% 228.00% 226.30%
eCGCCGC 24,318 36.50 146.10% 228.00% 228.50%
fGCGGCG* 21,936 32.90 222.30%
fGGCGGC 21,742 32.60 225.20% 221.20%
gGGAGGG* 20,008 30.00 223.40% 224.40%
gGAGAGA 23,541 35.30
hTCTCTC* 26,217 39.30 147.70% 147.20% 145.70%
hCCCTCC 23,461 35.20 144.00% 143.70%
hTCCTCT 25,331 38.00 146.60% 146.50% 143.30%
No. of sequences analyzed 66,710 27 30 384 254 1,231

3# UTRs bTTTTTT1 1,058 35.00 169.20%
TTATTG 435 14.40 142.30%
dGCTGGT 257 8.50 130.80%
ATTTAT2 597 19.70 138.50%
GAATAA1 373 12.30 131.60%
No. of sequences analyzed 3,027 2 3 26 19 79
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in cluster 2 precedes the increase in abundance of
approximately 8,000 transcripts (Fig. 2, cluster 1) but
occurs after the decrease in abundance for approxi-
mately 8,000 transcripts (Fig. 2, cluster 3). Similar
transient peaks in transcript profiles were also ob-
served in a study of germination in Arabidopsis
(Nakabayashi et al., 2005), indicating that a multistep
transcriptional program appears to be a common
theme in seed germination.

A comparison of our rice data with barley seed
germination also reveals similarities, with transcripts
encoding components involved in sugar, starch, and
lipid metabolism being up-regulated, followed by
those involved in photorespiration and photosynthe-
sis (Sreenivasulu et al., 2008). Increases in cell wall
modification, b-oxidation, tetrapyrrole biosynthesis,
amino acid synthesis, energy metabolism genes, and
also fermentative components such as ADH were also
seen during barley germination (Sreenivasulu et al.,
2008).

Upon imbibition, there is an immediate increase in
hexose sugars and organic acids that is already statis-
tically significant at 1 HAI (Fig. 2A). It has been
previously shown that upon imbibition of rice seeds,
there is an immediate increase in water uptake and
oxygen consumption in the 1st h, and protein uptake
into isolated mitochondria can occur within 30 min of
imbibition (Howell et al., 2006, 2007). Thus, this initial
stage of metabolic activity likely drives the biogenesis
of organelles to produce energy and biosynthetic
compounds for subsequent growth. The second burst
of changes in metabolites occurs 6 to 12 HAI and
involves an increase in many amino acids in addition
to maintaining the relatively high levels of many
sugars. This increase corresponds to the second phase
of increases in oxygen uptake that occurs between 4
and 48 HAI (Howell et al., 2006). These changes in
metabolites likely reflect an increase in biosynthetic
capacity as well as energy production. At 12 HAI,
mitochondria have changed from promitochondrial
structures to electron-dense cristae-containing struc-
tures, reflecting the increase in various metabolic
activities evidenced by the increase in metabolites
observed in this study. Thus, the first burst of meta-
bolic activity is likely used to produce energy to build
subcellular structures, while the second phase of met-
abolic activity supports growth. These changes in
metabolite and transcript pool sizes are reflected in
changes observed in protein abundance. Mitochondria
in dry seeds contain large amounts of proteins re-
quired to make mitochondria, such as components of
the protein import apparatus. However, by 24 HAI,
components of the import apparatus have decreased
10-fold or greater in abundance, and components
involved in metabolism have increased by at least
10-fold in abundance (Howell et al., 2006).

A number of analyses of transcription factors re-
vealed similarities with previous studies and give
insights into the regulatory processes that occur dur-
ing germination. Transcription factors preferentially

expressed in the germinating embryo of barley, such as
ARF, AUX/IAA, C2C2-GATA, and C3H-ARFs, were
also observed here in rice. This study reveals a greater
resolution of these events. Thus, for cluster 3, enriched
in the PHD and HSF transcription factor families, and
cluster 4, enriched in SET, it can be seen that these
transcription factors are present in dry seeds and
decrease or remain largely unchanged, respectively
(Fig. 7, A and B). In contrast, the transient cluster 2 is
enriched in AP2-EREBP and WRKY, while cluster 1 is
enriched in the AUX/IAA family and basic helix-loop-
helix. Therefore, despite all clusters containing mem-
bers from several transcription factor families, there is
a clear and significant difference in the proportion of
families in each cluster, implying an important time-
specific regulatory requirement for the expression of
these transcription factors. Examination of the tran-
scription factors that peak in expression at 3 HAI
(Supplemental Table S4A) reveals that seven of these
are AP2-EREBP transcription factors and two are
C2H2 zinc finger transcription factors. Previous stud-
ies in Arabidopsis have characterized a role for mem-
bers of the AP2-EREBP family in the regulation of
water uptake (Song et al., 2005). Thus, the highly
regulated, specific expression pattern of these tran-
scription factors during germination might be related
to an important regulatory role of these transcription
factors during the water-uptake phases of germina-
tion. The enrichment of sequence elements in distinct
groups of genes from each cluster (Table I) combined
with the transcript abundance data provide a reason-
able set of transcription factors that may bind these
elements that can be investigated in future studies.

The transcription factors in common with germina-
tion and anoxia profiles may also be significant, given
that germinating seeds are thought to suffer from
oxygen deficit (Bewley, 1997; Borisjuk et al., 2007).
These peaked early (3 HAI) during germination (Fig.
8A), at a time when metabolic activity has resumed,
energy-demanding processes such as protein synthesis
and transcription are active, and yet oxygen diffusion
may be limited into the embryo by the endosperm. The
expression of transcription factors linked with anoxia is
also consistent with an increase in the amount of GABA
as early as 1 HAI, which has been proposed to play a
role in anoxia tolerance in plants (Fait et al., 2008).
Analysis of metabolite changes in Arabidopsis during
mild decreases in oxygen concentration revealed that
although GABA initially decreased at 0.5 and 2 h, it did
increase later at 48 h. However, taking caution in com-
paring such different systems as rice and Arabidopsis,
this may reveal that embryos from seeds with larger
endosperms such as rice may be more prone to anoxia
and, thus, display alterations in transcriptome and meta-
bolome during germination to avoid detrimental affects.

Approximately 17,000 transcripts are stored in the
dry rice embryo during seed development and matu-
ration, compared with approximately 12,000 stored in
both barley and Arabidopsis seeds (Nakabayashi et al.,
2005; Sreenivasulu et al., 2008). This difference may
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simply be due to the number of probes represented on
each array and the relative sizes of the genomes for
each species. In an attempt to uncover insights into the
regulatory mechanisms that cause changes in tran-
script abundance, the enrichment or depletion of se-
quence elements in the promoters or 3# UTR was
examined. Given that there may be over 2,000 tran-
scription factors and hundreds of stability/instability
elements, the prediction of such elements can be hard
to interpret. Thus, our analysis was carried out in an
attempt to determine if distinct regulatory steps were
occurring during germination. Hence, we used strin-
gent criteria with respect to sets of genes used to
search for common sequence elements to reveal in-
sights into the regulatory steps that may be occurring
during germination. Even with this strict criteria at
each time point, with the exception of 1 HAI, a unique
enrichment or depletion of groups of elements was
displayed, consistent with the combinatorial model of
gene regulation and also the fact that a number of
transcriptional steps or switches occur during germi-
nation. Additionally, the large enrichment of elements
associated with RNA instability in the 3# UTR of
transcripts that peaked at 3 HAI indicates that RNA
degradation also plays a central role in defining
changes in transcript abundance during germination.
Although RNA degradation has previously been pro-
posed to ‘‘clean out’’ transcripts that are present in the
mature seeds (Rajjou et al., 2004; Nakabayashi et al.,
2005), it can be seen in this study that several groups of
transcripts decrease in abundance during early ger-
mination, as shown in cluster 3 (transcripts that de-
creased at 0–3 HAI; Fig. 2). However, this study
suggests that RNA degradation also plays an impor-
tant role for specific transcripts that are synthesized
after imbibition.

The combination of a specifically timed up-regulation
of a suite of specific transcription factors and the deg-
radation of both stored and early-induced mRNAs
based on 3# UTR sequences appear to be key elements
in the coordination of at least some groups of transcripts
during the early events in rice germination. These events
appear to operate in a coordinated fashion with the
induction of primary metabolic pathways, the biogenesis
of organelles, and the establishment of the full metabolic
profile in the germinating rice embryo.

MATERIALS AND METHODS

Rice Growth

Dehulled, sterilized rice seeds (Oryza sativa ‘Amaroo’) were grown under

aerobic conditions in the dark at 30�C as described previously (Howell et al.,

2006). Embryos were rapidly dissected from the endosperm and snap frozen

in liquid nitrogen.

RNA Isolation, cDNA Synthesis, and Quantitative

Reverse Transcription-PCR

Total RNA was isolated from rice embryos as described previously (Howell

et al., 2006). Three independent RNA preparations were used for each

developmental stage/growth condition, and the concentration of RNA was

determined spectrophotometrically.

Microarray Analyses

Transcriptomic analysis was performed using Affymetrix GeneChip Rice

Genome Arrays (Affymetrix), and three biological replicates were analyzed

for each time point. RNA quality was verified using an Agilent Bioanalyzer

(Agilent Technologies) and spectrophotometric analysis (NanoDrop ND-1000;

NanoDrop Technologies) to determine concentration and the A260-A280 and

A260-A230 ratios. Preparation of labeled copy RNA from 2 to 3 mg of total RNA,

target hybridization, as well as washing, staining, and scanning of the arrays

were carried out exactly as described in the Affymetrix GeneChip Expression

Analysis Technical Manual, using the Affymetrix One-Cycle Target Labeling

and Control Reagents, an Affymetrix GeneChip Hybridization Oven 640, an

Affymetrix Fluidics Station 450, and an Affymetrix GeneChip Scanner 3000 7G

at the appropriate steps. Data quality was assessed using GCOS 1.4 (Affyme-

trix) before CEL files were imported into Avadis 4.3 (Strand Genomics) for

further analysis. Raw intensity data were initially normalized using the MAS5

algorithm allowing probe identifications called present to be determined.

Only those probe sets that were called present in at least two out of three

replicates in at least one time point were included for further analysis.

Ambiguous probe sets and bacterial controls were also removed, resulting in a

final data set of 24,150-gene set. All microarray data have been deposited in

the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) under the

accession code E-MEXP-1766.

Using the 24,150-gene set, probe intensities were analyzed using the GC-

RMA algorithm and log transformed, and differential expression analysis was

performed with P value correction (Benjamini and Hochberg, 1995) at the 0.01

level. This allowed the number of transcripts significantly changing to be

calculated, which were then visualized on a heat map. For each of the 24,150

transcripts, the maximum expression was assigned a value of 1 and all other

expression values were made relative to this, in order to carry out hierarchical

clustering. Average linkage hierarchical clustering was carried out, and

distinct clusters were uniquely colored for the genome (24,150), mitochon-

drial, chloroplast, peroxisome, and transcription factor sets. The differential

expression analysis was carried out using Avadis 4.3 (Strand Genomics), while

the heat maps and hierarchical clustering were all carried out using Partek

Genomics suite software, version 6.3 (Partek).

PageMan (Usadel et al., 2006) and MapMan (Thimm et al., 2004; Usadel

et al., 2005) analyses were performed using a reduced set of unique probe sets

(15,351). Of these, 9,098 were classified into nontrivial MapMan BINS based on

the newly available rice mapping file, which was generated by a combination

of automated searches in conjunction with minimal curation. In brief, rice

protein sequences corresponding to the 15,351 probe sets were obtained from

The Institute for Genomic Research (TIGR; version 5.0) and used for searches

against five different databases: The Arabidopsis Information Resource

(TAIR7) proteins (Swarbreck et al., 2008), SwissProt/Uniprot plant proteins

(PPAP; Schneider et al., 2005), Conserved Domain Database (CDD; Marchler-

Bauer et al., 2007), Clusters of Orthologous Groups (KOG; Tatusov et al., 2003),

and InterProScan (Zdobnov and Apweiler, 2001). The programs used to

perform the searches were BLASTP (Altschul et al., 1990) for TAIR7 and PPAP

and RPSBLAST (Schaffer et al., 2001) for CDD and KOG. Database hits with bit

scores lower than 50 were ignored as not significantly similar. The results of all

searches were compiled into one table, and reference mappings of the above-

listed databases were then used to assign preliminary MapMan BINcodes to

each of the rice proteins. In the next step, the bit scores (in the case of TAIR7,

PPAP, CDD, and KOG) for each database hit were recorded and evaluated for

each rice protein as a measure of the reliability for the assignment of the

protein into certain BINs To finally assign the protein to BINS, the bit scores of

all database hits belonging to the same BIN were combined, allowing for

multiple assigned BINcodes. In a subsequent step, the resulting BIN assign-

ments were manually compared with the TIGR-based annotation and, in cases

of ambiguity, checked against independent information available from

gramene.org and the transcription factor database, resulting in more than

300 changes in assignments. Using this file, for both PageMan and MapMan,

Wilcoxon rank sum tests with Benjamini-Hochberg false discovery rate control

were used to determine statistically significant changes in specific BINS.

Generation of Transcription Factor and Organelle Lists

The transcription factor list was generated using three main sources: DRTF

(Gao et al., 2006), RiceTFDB (Riano-Pachon et al., 2007), and Caldana et al.
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(2007). These lists were compiled, and all unique transcription factors were

matched to the 24,150-gene set to generate a list of 1,786 transcription factors.

To examine the transcripts encoding mitochondrial, chloroplast, and perox-

isomal proteins, it was necessary to generate lists of transcripts known to

encode proteins localized to these organelles. First, all large-scale experimen-

tal information to date on rice localization was gathered and the transcripts

encoding these proteins were automatically assigned to that localization. To

date, only a few large-scale localization studies have been carried out, so less

than 300 could be assigned in this way. In order to overcome this, all protein

sequence information was downloaded for the 24,150 genes, and four primary

sources were employed: (1) experimentally shown localization based on

protein work (Heazlewood et al., 2003; Howell et al., 2006, 2007; Kleffmann

et al., 2007; Schwacke et al., 2007); (2) seven predictor programs: Predotar

(Small et al., 2004), Subloc (Chen et al., 2006), TargetP (Emanuelsson et al.,

2007), WoLF PSORT (Horton et al., 2007), PTS1 Predictor (Neuberger et al.,

2003), PProwler (Boden and Hawkins, 2005; Hawkins and Boden, 2006), and

ChloroP (Emanuelsson et al., 1999); (3) Gene Ontology (GO)/keyword infor-

mation from four databases: Gramene GO cell comp, Affymetrix GO cell

comp, TIGR GO cell comp, and TIGR keyword (Yuan et al., 2005); and (4)

localization information from orthologous genes in Arabidopsis (Arabidopsis

thaliana). When several sources were used in combination, in order for a

protein to be assigned to a localization, the cutoffs for these sources were set as

follows: (1) for experimentally shown localization, no cutoff was required; (2)

at least four out of the seven predictors had to show the same localization; (3)

at least two of the four GOs had to be annotated to the same localization; and

(4) the transcript had to have at least 50% orthology to the Arabidopsis gene

with known localization. Orthology information and GO cellular component

information was retrieved from the Gramene database (Jaiswal et al., 2006).

When a transcript was annotated to a particular localization, a ‘‘source

number’’ was assigned to represent the source used to determine this

localization. The source numbers were representative as follows: 1, localiza-

tion based on experimental evidence; 2, two of the four primary sources

agreed on localization (i.e. cutoffs were met in at least two primary sources); 3,

three out of four primary sources agreed on localization; and 4, all four of the

primary sources agreed on localization. For some transcripts, there was only

information from one primary source; therefore, the cutoffs for some sources

were raised to maintain stringency. Thus, transcripts with a source number

between 7 and 9 represent transcripts for which there was only information

from one of the four primary sources with numbers assigned as follows: 7,

these transcripts had .70% identity with the orthologous gene in Arabidopsis

with known localization (for peroxisomes, this cutoff was allowed to be

lowered to .50%, as the prediction programs and other sources did not

provide equivalent coverage for detecting peroxisomal genes); 8, for these

transcripts, three of the four GO-related localization sources were annotated to

be in the same localization (for peroxisomes, two out of four was sufficient); 9,

at least four of the seven predictors agreed on localization. For peroxisomes,

only one predictor was sufficient, as most of the prediction programs did not

even have peroxisome as a choice of localization; therefore, the PTS1 Predictor

default cutoff was deemed to be a sufficiently stringent. The source number 10

shows that none of the sources produced any conclusive organelle localization

information, even at the lowered standards, while a source number of 11

indicates that one or more of the cutoff criteria were met but the localization

based on these methods was conflicting between sources.

Functional Annotation and Statistical Analysis

For each probe set, the GO annotations and transcript assignment were as

retrieved from Affymetrix. The National Science Foundation rice microarray

database was used to match each Affymetrix probe identifier to a National

Science Foundation accession identifier and to a TIGR locus identifier. These

TIGR locus identifiers were then entered into the TIGR rice database, and the

putative function of the encoded proteins was derived (Yuan et al., 2005). The

Rice Annotation Project (RAP) database was also used to gather information

about function, including the RAP description and RAP GO description. In

order to gather this information, the files available from the RAP database

were first used to convert each TIGR locus identifier to a RAP Os identifier.

Lastly, in order to categorize the transcripts based on the FUNctional CAT-

alogue (FUNCAT) of the encoded protein, the Australian National University

genebins database was used for the whole genome set. Two FUNCATs were

independently added: transcription factors, which was formed as a separate

category based on DRTF (Gao et al., 2006), RiceTFDB (Riano-Pachon et al.,

2007), and Caldana et al. (2007); and kinases, which was based on the rice

kinase database (Dardick et al., 2007). For the organelle lists, the broad

FUNCATs (Australian National University), the FUNCATs based on previ-

ously published data (Heazlewood et al., 2003), the FUNCAT of the orthol-

ogous gene in Arabidopsis, and manual annotation were used so that as many

of the organelle genes as possible could be assigned a function. In order to

compare the difference between the percentage of genes in a given FUNCAT

within the genome set with the percentage of genes in that FUNCAT in a given

cluster, z-score analysis was carried out to determine the significance of the

difference between the two proportions, given that we know the sample sizes,

frequency, and percentages for each set:

z 5
p̂12 p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð1 2 p̂Þ 1
n1

1 1
n2

� �r

The z-scores were then matched to the cumulative standard normal table,

and the P values were determined.

Public Rice Microarray Data Analysis and Comparison

In order to examine transcript abundance changes across different tissues

under different conditions and compare these with the germination transcript

abundance profiles generated from this study, rice array data were retrieved

from the Gene Expression Omnibus within the National Center for Biotech-

nology Information database. All data were MAS5.0 normalized and normal-

ized against average ubiquitin expression for that array. These normalized

array data were then compiled together, and for each probe set, the maximum

expression was set to 1.0 with all other data relative to this. This normalization

allowed cross-comparison of arrays from all of the different studies at once.

The arrays analyzed included all of the arrays from this study, together with

publicly available rice genome arrays carried out from different tissues/

conditions, including 7-d-old seedlings that were untreated, drought stressed,

salt stressed, or cold stressed (GSE6901; Jain et al., 2007); seeds collected at 5 d

following pollination, 10-d-old embryos, 10-d-old endosperms, seedling roots,

seedling shoots, unpollinated stigmas (at antithesis), ovaries (at antithesis),

mature anthers, and suspension cells (GSE7951; Li et al., 2007); aerobically

grown coleoptiles (4 d) and anoxically grown coleoptiles (4 d; GSE6908;

Lasanthi-Kudahettige et al., 2007); crowns and growing points under salt

stress and control conditions in sensitive and tolerant mutants in subspecies

indica and japonica (GSE4438; Walia et al., 2007); crowns and growing points

under control and salt stress conditions in subspecies indica and japonica

(GDS1383; Walia et al., 2005); and leaves following biotic stress and control

treatments (GSE7256; Ribot et al., 2008).

Promoter Motif Analysis

Following expression analysis, distinct groups of transcripts appeared that

showed peak expression at single specific time points within the time course.

In order to study these coexpressed transcripts more closely, all 1-kb upstream

regions of the 24,150 transcripts were retrieved, and these upstream regions

were examined for putative cis-acting elements. Programs designed to detect

sequence elements generally have limits of less than 80 input sequences; thus,

the list was distilled to uncover sequence elements that may be central to the

regulatory processes that cause the changes in transcriptome observed. A

‘‘peak’’ was defined as a probe set having an expression value of 1.0 at that

specific time point with expression levels of less than 0.5 at all other time

points. Three main cis-element databases were used for this analysis. The first

was the Rice Cis-Element Search database (Doi et al., 2008), which was used

under default settings and searched for enrichment of known plant cis

elements in the 1-kb upstream region. The second database used was the

MEME Web server (Bailey et al., 2006), which was used under default settings

with the length of the motif set to 6 to 8 bp and the number of motifs to find set

to five (instead of the default of three). The MEME database could not process

the large data sets, including the plastid and transcription factor 24-h peak

subsets, so no output was generated for these. The third database used was the

Regulatory Sequence Alignment Tool (Thomas-Chollier et al., 2008), which

was used under default settings, with the only exception being that Markov

modeling was selected for background calculation, as Oryza sativa was not

available as a choice for the background model. The outputs from all of these

databases are shown in Supplemental Table S6B. The lists of motifs from

Supplemental Table S6B were then filtered only to include motifs present in

more than 70% of all input sequences (Supplemental Table S6C), and the

presence of these motifs was then examined in the whole genome and the

genome ‘‘peaking’’ subsets, where a peak is as defined above.
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3’ UTR Sequence Analysis

The full genome 3# UTR and 5# UTR sequences are available from TIGR.

This was downloaded and filtered to retain only the 3# UTRs. However, this

only added up to 3,027 UTRs available for the ‘‘whole genome.’’ Taking this

small number into consideration, it was not feasible to look at the organelle-

specific and transcription factor peaking subsets analyzed for the promoter

regions, as these lists were too small. Thus, for the 3# UTR, the genes peaking

in expression at 0, 1, 3, 12, and 24 HAI in the entire genome set were analyzed;

however, there were still too few in the 0- and 1-HAI peaking subsets, so these

could not be analyzed (Table I). In order to look at the enrichment of motifs in

an objective manner, only the MEME Web server was used, as we were not

searching for known regulatory elements. The settings were set to search for

five motifs that are 6 to 8 bp (default) in each of the subsets, and the outputs

are shown at the bottom of Supplemental Table S6D. It is important to note

that setting the output to be five motifs can result in false present calls for

motifs that are not significant when the input list is small; therefore, only the

significantly enriched motifs (present in 60%270% of all input sequences)

were included for further analysis (Supplemental Table S6, C and D). In

addition to these putative predicted motifs, 12 motifs known to be associated

with RNA stability/instability were examined for their presence in the

genome (Table I; Supplemental Table S6D). Ten of these were motifs predicted

to be associated with stability/instability of mRNA (Narsai et al. 2007), and

two elements had previously been shown to be associated with RNA stabil-

ity/instability (Newman et al., 1993; Ohme-Takagi et al., 1993).

Metabolomic Analysis

Data for the 126 nonredundant metabolites were analyzed by two-way

differential comparisons to determine fold changes and associated P values,

and the number of metabolites significantly changing were also visualized by

heat map. The heat map showing the number of significantly changing

metabolites was generated using Partek Genomics suite software, version 6.3.

Extraction and Derivatization of Metabolites for Gas
Chromatography-Mass Spectrometry Analysis

Metabolites were extracted and derivatized using a method modified from

that of Roessner-Tunali et al. (2003). To each tube containing 20 to 40 mg of

frozen tissue powder was added 300 mL of cold (220�C) Metabolite Extraction

Medium (85% [v/v] HPLC-grade methanol [Sigma], 15% [v/v] untreated

MilliQ water, and 100 ng mL21 ribitol), and tubes were vortexed briefly and

shaken at 1,400 rpm for 15 min at 70�C. Tubes were then centrifuged at 13,000g

for 3 min to pellet insoluble material, and supernatant was reextracted with

chloroform. Aliquots (100 mL) of the methanol fraction were dried under

vacuum in 1.5-mL microfuge tubes. Dried extracts were methoximated by

adding 20 mL of a 20 mg mL21 solution of methoxyamine hydrochloride in

anhydrous pyridine (Sigma) and incubating at 30�C for 90 min with shaking at

1,400 rpm. For trimethylsilylation, 30 mL of N-methyl-N-(trimethylsilyl)tri-

fluoroacetamide (Sigma) was transferred to each tube, and tubes were

incubated at 37�C for 30 min with 1,400 rpm shaking. Ten microliters of an

n-alkane retention index calibration mixture (0.29% [v/v] n-dodecane, 0.29%

[v/v] n-pentadecane, 0.29% [w/v] n-nonadecane, 0.29% [w/v] n-docosane,

0.29% [w/v] n-octacosane, 0.29% [w/v] n-dotracontane, and 0.29% [w/v]

n-hexatriacontane dissolved in anhydrous pyridine) was then added to each

tube, and reaction mixtures were vortexed and transferred to amber gas

chromatography-mass spectrometry (GC-MS) vials with low-volume inserts

and screw-top seals (Agilent Technologies) and allowed to rest for 4 h prior to

beginning GC-MS analysis.

GC-MS Instrumental Analysis

Derivatized metabolite samples were analyzed on an Agilent GC/MSD

system composed of an Agilent GC 6890N gas chromatograph (Agilent

Technologies) fitted with a 7683B Automatic Liquid Sampler (Agilent Tech-

nologies) and 5975B Inert MSD quadrupole MS detector (Agilent Technolo-

gies). The gas chromatograph was fitted with a 0.25-mm (i.d.), 0.25-mm film

thickness, 30-m Varian FactorFour VF-5ms capillary column with 10 m

integrated guard column (Varian; product no. CP9013). GC-MS run conditions

were essentially as described for GC-quadrupole-MS metabolite profiling on

the Golm Metabolome Database Web site (http://csbdb.mpimp-golm.mpg.

de/csbdb/gmd/analytic/gmd_meth.html; Kopka et al., 2005). Samples were

injected into the split/splitless injector operating in splitless mode with an

injection volume of 1 mL, purge flow of 50 mL min21, purge time of 1 min, and

a constant inlet temperature of 300�C. Helium carrier gas flow rate was held

constant at 1 mL min21. The GC column oven was held at the initial

temperature of 70�C for 1 min before being increased to 76�C at 1�C min21

and then to 325�C at 6�C min21 before being held at 325�C for 10 min. Total run

time was 58.5 min. Transfer line temperature was 300�C. MS source temper-

ature was 230�C. Quadrupole temperature was 150�C. Electron-impact ion-

ization energy was 70 eV, and the MS detector was operated in full scan mode

in the mass-to-charge ratio range 40 to 600 with a scan rate of 2.6 Hz. The MSD

was pretuned against perfluorotributylamine mass calibrant using the

‘‘atune.u’’ autotune method provided with the Agilent GC/MSD Pro-

ductivity ChemStation software (version D.02.00 SP1; Agilent Technologies;

product no. G1701DA).

GC-MS Data Analysis

Raw GC-MS data files in the proprietary ChemStation (.D) format were

exported to generic NetCDF/AIA (.CDF) format with ChemStation GC/MSD

Data Analysis software (Agilent Technologies). The NetCDF files produced

were then processed using in-house MetaMiner software (A. Carroll and A.H.

Millar, unpublished data) to carry out all peak detection, quantification,

library matching, normalization, statistical analysis, and data visualization.

Raw data processing in MetaMiner consisted of the following steps: retrieval

of all extracted ion chromatograms (EICs), detection and integration of peaks

in EICs, calculation of internally calibrated retention indices for all extracted

peaks, matching of carefully selected analyte-specific EIC peaks to analytes in

a custom mass spectral-retention index (MSRI) library of known and un-

known metabolite derivatives (retention index error , 3 retention index units;

Wagner et al., 2003; Schauer et al., 2005), and normalization of matched peak

areas to the peak area of the internal standard, ribitol, and to fresh tissue

weight of extracted samples. The MSRI library was constructed using publicly

available AMDIS software (version 2.65) to extract MSRI information for

authentic standard derivatives from standard runs and MSRI information for

unknown analytes from representative analyses of complex biological ex-

tracts. In a few cases, certain analyte peaks were assigned a putatively known

annotation based on matching to the Q_MSRI_ID MSRI library (version 2004-

03-01) available from the Golm Metabolome Database (Kopka et al., 2005). In

these cases, positive identification required a ‘‘weighted’’ mass spectral match

score of greater than 90 and a retention index discrepancy of less than 2%.

Unknown metabolite derivative peaks that could not be putatively identified

by comparison with authentic standards or by matching against the

Q_MSRI_ID library were annotated with a simple generic identifier with the

syntax USH: name, match_score, where USH stands for ‘‘unknown spectral

homolog,’’ name is the abbreviated name of top NIST02 mass spectral library

match, and match_score is the ‘‘simple’’ match score reported by AMDIS.

Artifact peaks and common contaminants were identified by analysis of

negative control samples prepared in the same manner as biological samples

but without the inclusion of tissue. Signals corresponding to these artifacts

were not used in biological interpretation. Automatic statistical analysis of

processed data was carried out by calculating, for each set of biological

replicates, the mean signal intensity for each metabolite, and then, for each

metabolite, dividing the mean signal in treated sample sets by the mean signal

in control sample sets to calculate fold difference and testing the statistical

significance (P , 0.05) of this difference by Student’s t test.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Overview of the changes in transcripts and

metabolites during germination in rice.

Supplemental Figure S2. Two-way comparison of 0 versus 3 HAI and 3

versus 12 HAI using MapMan to visualize an overview of regulation.

Supplemental Figure S3. Two-way comparison of 0 versus 3 HAI and 3

versus 12 HAI using MapMan to visualize an overview of metabolism.

Supplemental Figure S4. Functional categorization of the transcripts

grouped into each cluster.
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Supplemental Figure S5. All 74 transcripts encoding proteins predicted to

be peroxisomal were hierarchically clustered.

Supplemental Figure S6. Phylogenetic analysis of the homeobox (HB)

transcription factor family (A) and the zinc finger homeodomain (zf-

HD) transcription factor family (B) in rice and Arabidopsis.

Supplemental Table S1. All 24,150 expressed genes and the calculated

fold changes between combinations of time points.

Supplemental Table S2. Averaged raw metabolite abundance data with

standard errors for the 256 detected metabolites.

Supplemental Table S3. FUNCAT information from Figure 3.

Supplemental Table S4. The transcript abundance profiles of all 1,786

transcription factors were hierarchically clustered and the order of the

transcripts following clustering is shown with functional information.

Supplemental Table S5. Transcripts encoding proteins predicted/exper-

imentally shown to be located in plastids, mitochondria, or peroxi-

somes.

Supplemental Table S6. Sequence analysis of all rice 1-kb upstream

sequences and known 3# UTR sequences.
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