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Britta Ehlert1, Mark Aurel Schöttler1, Gilbert Tischendorf2, Jutta Ludwig-Müller3 and Ralph Bock1,*

1 Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
2 Freie Universität Berlin, Institut für Biologie, Pflanzenphysiologie, D-14195 Berlin, Germany
3 Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, D-01062, Dresden, Germany

Received 12 June 2008; Revised 23 July 2008; Accepted 24 July 2008

Abstract

The tomato (Solanum lycopersicum) sulfurea mutation

displays trans-inactivation of wild-type alleles in hetero-

zygous plants, a phenomenon referred to as para-

mutation. Homozygous mutant plants and paramutated

leaf tissue of heterozygous plants show a pigment-

deficient phenotype. The molecular basis of this

phenotype and the function of the SULFUREA gene

(SULF) are unknown. Here, a comprehensive physio-

logical analysis of the sulfurea mutant is reported

which suggests a molecular function for the SUL-

FUREA locus. It is found that the sulf mutant is auxin-

deficient and that the pigment-deficient phenotype is

likely to represent only a secondary consequence of

the auxin deficiency. This is most strongly supported

by the isolation of a suppressor mutant which shows

an auxin overaccumulation phenotype and contains

elevated levels of indole-3-acetic acid (IAA). Several

lines of evidence point to a role of the SULF gene in

tryptophan-independent auxin biosynthesis, a pathway

whose biochemistry and enzymology is still com-

pletely unknown. Thus, the sulfurea mutant may pro-

vide a promising entry point into elucidating the

tryptophan-independent pathway of IAA synthesis.

Key words: Auxin, auxin biosynthesis, paramutation,

photosynthesis, Solanum lycopersicum, sulfurea.

Introduction

The tomato sulfurea mutant represents one of the first
discovered examples of paramutation in plants (Hagemann,
1958). The mutant was isolated by Rudolf Hagemann in

an X-ray mutagenesis experiment with tomato seeds
(Hagemann, 1958, 1993; Hagemann and Berg, 1977). An
additional independent allele was obtained by plant re-
generation in tissue culture, presumably through somaclo-
nal variation (Wisman et al., 1993). The sulfurea mutant
displays a striking chlorophyll-deficient phenotype which
gives the plants a nearly sulfurous colour and stimulated
the naming of the mutant (Hagemann, 1958; Fig. 1A–C).
Interestingly, although the sulfurea allele is recessive, the
pigment deficiency appeared spontaneously in somatic tis-
sues of heterozygous plants at high frequency (Fig. 1B, C).
This phenomenon was initially referred to as ‘somatic gene
conversion’ and later named paramutation (reviewed in
Chandler et al., 2000; Chandler and Stam, 2004; Stam and
Scheid, 2005; Bond and Finnegan, 2007; Chandler, 2007).
Paramutation is an epigenetic mechanism that results in
heritable changes in gene expression. It involves the trans-
inactivation between a pair of homologous alleles: a para-
mutable allele and a paramutagenic allele. The paramuta-
genic allele is inactive (silenced) and capable of imposing
its inactive expression state onto a susceptible (paramut-
able) allele. Remarkably, gene inactivation by paramutation
is heritable in that an inactivated paramutable allele
becomes itself paramutagenic and can infect new para-
mutable alleles brought in by crossing. The nature of this
epigenetic inactivation mechanism is unknown, and two
alternative models have been discussed (Chandler
and Stam, 2004; Stam and Scheid, 2005; Bond and
Finnegan, 2007; Chandler, 2007): a direct physical in-
teraction between the paramutable and the paramutagenic
alleles (pairing model) or an RNA-mediated gene inactiva-
tion mechanism (small RNA model). The recent successful
identification of a first set of genes involved in para-
mutation in maize (Alleman et al., 2006; Woodhouse
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et al., 2006; Hale et al., 2007) has begun to shed some
light on the molecular mechanisms of paramutation. The
involvement of an RNA-dependent RNA polymerase in
the establishment of the paramutated state (Alleman
et al., 2006) has provided circumstantial evidence in
favour of a small RNA model, but the molecular details
of the inactivation mechanism are still far from being
understood.
Paramutation at the tomato sulfurea locus occurs in

two different phenotypes: (i) homogeneously yellow leaf
sectors or branches, described as sulfpura allele, or (ii)
green-yellow variegated sectors or branches (sulfvag

allele). Both the sulfpura and the sulfvag alleles were
found to be paramutagenic in that they impose their
presumed inactive status onto the wild-type allele in
heterozygous plants (Hagemann and Berg, 1977;
Hagemann, 1993). The SULF gene maps to the centro-
meric heterochromatin of chromosome 2 (Hagemann,
1993). This and the lack of any other genetic marker in
close proximity (Tanksley et al., 1992) make the iso-
lation of the gene very difficult.
The molecular basis of the sulfurea phenotype and the

function of the SULFUREA gene (SULF) are still un-
known. The pigment deficiency could be most readily
explained by a primary defect in chlorophyll or carotenoid

biosynthesis or, alternatively, by a defective photosyn-
thetic apparatus. Here, evidence is provided that neither is
the case. Instead, it is shown that the sulfurea mutant is
deficient in auxin synthesis, most probably due to a block
in tryptophan-independent indole-3-acetic acid (IAA) bio-
synthesis. While IAA biosynthesis via tryptophan has
been studied for a long time and the gene products
involved in the different steps of the tryptophan-
dependent pathway have been mostly unravelled, the
enzymology of the tryptophan-independent auxin bio-
synthetic pathway is still enigmatic (Östin et al., 1999;
Cohen et al., 2003; Woodward and Bartel, 2005). Thus,
the sulfurea mutant provides a promising genetic tool
towards further elucidating the immense complexity of
auxin metabolism in plants.

Materials and methods

Plant material and growth conditions

Seeds obtained from heterozygous sulfurea plants and wild-type
seeds (Solanum lycopersicum cv. Lukullus) were germinated in soil.
Homozygous sulfurea plants did not survive beyond the seedling
stage. Heterozygous plants and wild-type control plants were grown
in a growth chamber at 100 lmol quanta m�2 s�1 for 3 weeks, then
transferred to the greenhouse and grown under standard conditions

Fig. 1. Phenotype of the tomato sulfurea mutant. (A) Mendelian segregation in the progeny from a (branch of a) heterozygous plant that was not
paramutated. Homozygous sulf seedlings are easily identifiable by their yellow cotyledons (red arrows). (B) Paramutation in primary leaves of
a heterozygous sulf seedling. (C) Paramutated branches in heterozygous plants. These branches are genetically homozygous for sulf. Consequently,
seeds obtained from fruits on these branches give rise to uniformly yellow seedlings.
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(250 lmol quanta m�2 s�1). To obtain material from paramutated
tissue which is not photo-oxidatively damaged, heterozygous plants
were grown under low light condition (50 lmol quanta m�2 s�1).
Completely paramutated leaf material was easily recognizable by its
homogeneous yellow phenotype.

Tissue culture, regeneration, and in vitro growth assays

Surface-sterilized seeds from heterozygous plants were germinated
on agar-solidified MS medium containing 20 g l�1 sucrose (23 MS;
Murashige and Skoog, 1962). Cotyledons from wild-type and
homozygous sulfpura seedlings were regenerated on 23 MS medium
containing 1 mg l�1 zeatin. To test for heterotrophic growth,
regenerated wild-type and homozygous sulfpura plantlets were
grown under sterile conditions on 23 MS medium and cultivated
under low light (15 lmol quanta m�2 s�1). Etiolated growth was
investigated by germinating surface-sterilized wild-type seeds and
seeds harvested from completely paramutated branches on 23 MS
medium followed by growth under sterile conditions in complete
darkness for up to 2 months. To assess growth stimulation by
auxins, regenerated wild-type and homozygous sulfpura plantlets
were grown on 23 MS medium containing 2.5 lM indole-3-acetic
acid (IAA; Sigma) and/or 2.5 lM indole-3-butyric acid (IBA;
Sigma) under sterile condition in low light (see above). Apical
stem-feeding experiments were performed using sterile blocks of
agar-solidified MS medium containing 2 mM IAA or 2 mM IBA.
The agar-solidified media were cut into small cubes of approxi-
mately 232 mm. These agar blocks were placed on top of
decapitated stems of sulfpura and wild-type plantlets (grown on 23
MS under sterile conditions and low light). The auxin-containing
agar blocks were exchanged every week.

Electron microscopy

Leaf samples were fixed for 2 h with glutaraldehyde (2.5%) in
sodium-potassium phosphate buffer (0.1 M, pH 7.0) including
paraformaldehyde (2%) and tannic acid (0.2%). After washing with
phosphate buffer, the samples were incubated for 12 h in osmium
tetroxide (1% in 50 mM sodium-potassium phosphate buffer, pH
7.0) and subsequently washed again with phosphate buffer. Samples
were dehydrated in a graded series of ethanol followed by
propylene oxide, then incubated in a 1:1 mixture (v/v) of propylene
oxide and epoxide resin (ERL-4206; vinylcyclohexene dioxide) and
finally transferred into pure ERL (Spurr, 1969) and polymerized
overnight at 60 �C. Ultra-thin sections were contrasted with uranyl
acetate and lead citrate. Electron micrographs were obtained with
a Siemens EM 10 microscope using Scientia negative films. The
negatives were scanned with an Epson 1680 Pro scanner at
a resolution of 1200 dpi.

Photosynthesis measurements

Chlorophyll fluorescence was recorded with a pulse-amplitude
modulated fluorimeter (Dual-PAM; Heinz Walz, Effeltrich, Germany).
Plants were dark adapted for 1 h prior to determination of PSII
quantum efficiency (Fv/Fm). The relative stoichiometries of plasto-
cyanin (PC) per P700 were determined using the plastocyanin
version of the Dual-PAM spectroscope (Dual-PAM-S; Heinz Walz
GmbH, Effeltrich, Germany; Schöttler et al., 2007). Measurements
were performed on intact leaves and transmission signals were
normalized to leaf chlorophyll contents.

HPLC analyses of pigments

Chlorophylls and carotenoids were isolated from dried leaf tissue by
extraction with 80% acetone followed by a second extraction with
100% acetone and combination of the two extracts (Wurbs et al.,

2007). Separation, identification, and quantitation of the pigments
were performed by HPLC using an Agilent 1100 Series HPLC
system with a diode array detection unit (Agilent). All pigments
were quantified by comparison to known amounts of standards. A
YMC ODS-A 25034.6 mm column+precolumn was used for
chromatographic separation. Separation was performed as described
by Thayer and Björkman (1990) with the following modifications:
solvent A contained acetonitrile, methanol, and 100 mM TRIS/HCl,
pH 8.0 (72:8:3 by vol.). Pigments were eluted with 100% solvent A
for 5 min, followed by 100% solvent B for 20 min. The column
was allowed to re-equilibrate in solvent A for 10 min prior to the
next run.

Measurement of auxin contents

For the determination of auxin contents, seedlings or leaves were
shock frozen in liquid nitrogen and homogenized. Aliquots of
100 mg fresh weight (FW) were lyophylized for each analysis. For
the determination of free auxins, the plant material was extracted
and purified on NH2 columns as described previously (Chen et al.,
1988; Ludwig-Müller and Cohen, 2002). To each sample, 100 ng
13C6-IAA (Cambridge Isotope Laboratories, Andover, MA) were
added as an internal standard. After elution from the column, the
samples were dried, directly methylated with diazomethane (Cohen,
1984), and resuspended in ethyl acetate for gas chromatography-
coupled mass spectrometry (GC-MS) analysis. Auxin conjugates
were determined following strong alkaline hydrolysis of an extract
obtained from 100 mg FW with 7 M NaOH for 3 h at 100 �C. After
subsequent cooling, the extract was brought to pH 3.5 and the
aqueous phase extracted twice with ethyl acetate. The organic
phases were combined and, after evaporation under a stream of
nitrogen, the sample was resuspended in 100 ll ethyl acetate for
methylation. The amount of free IAA was subtracted from the total
IAA amount after strong alkaline hydrolysis (total IAA) to obtain
the amount of conjugated IAA. GC-MS analysis was performed as
described previously (Jentschel et al., 2007) and values for IAA
contents were calculated according to the principles of isotope
dilution using the quinolinium ions of endogenous and 13C6-IAA,
respectively (Cohen et al., 1986).

Results

Photosynthetic electron transport and pigment
biosynthesis in the sulfurea mutant

The pale green to yellow phenotype of homozygous
sulfurea plants and paramutated tissues in heterozygous
plants suggested a deficiency in photosynthesis and/or
pigment biosynthesis (chlorophyll biosynthesis). To test
these possibilities, heterozygous plants were raised
under low-light conditions and chlorophyll contents
and photosynthetic electron transport parameters were
measured in fully paramutated sulfpura leaves (Table 1).
Surprisingly, although chlorophyll contents in the
mutant only reached approximately 25% of those in
wild-type plants and photosynthetic electron transport
rates were very low, the measurements revealed the
presence of a mainly functional photosynthetic electron
transport chain in the sulfurea mutant (Table 1).
The quantum yield of dark-adapted photosystem II
(Fv/Fm), a measure of photosystem II (PSII) integrity, was
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only moderately affected in the mutant and the contents
of the soluble luminal electron carrier plastocyanin
(PC) were almost unchanged. However, photosystem
I (PSI) amounts were found to be strongly reduced
in the sulf mutant (cf. values for P700 and PC/P700
in Table 1).
To test whether or not the sulf mutant carries a defect

in pigment biosynthesis, chlorophyll and carotenoid
accumulation were determined by HPLC analyses
(Fig. 2A). As expected from the pale phenotype, pigment
contents were significantly lower in the mutant than in
the wild type. However, all major chlorophyll and
carotenoid species were readily detectable in sulf leaf
tissue (Fig. 2A) indicating that neither chlorophyll nor
carotenoid biosyntheses are blocked in the mutant. In
accordance with the assembly of a functional electron
transport chain and intact pigment biosynthetic pathways
in sulfurea, chloroplasts in the mutant were capable of
forming thylakoid membranes and grana stacks
(Fig. 2B). However, sulf chloroplasts exhibited altered
thylakoid alignment, reduced formation of stromal
lamellae (stroma thylakoids), increased accumulation of
plastoglobules and lack of accumulation of starch
granules (Fig. 2B). All these ultrastructural abnormalities
are well in line with the severe pigment deficiency, the
very low PSI contents and the resulting strongly reduced
assimilation capacity (Table 1).
To explore the possibility that sulf functions outside of

photosynthesis and pigment biosynthesis, the mutant was
assayed for heterotrophic growth on tomato tissue culture
media. All photosynthesis mutants are viable when grown
on sucrose-containing media under low-light conditions,
even if electron transport or carbon fixation are com-
pletely abolished (Kanevski and Maliga, 1994; Ruf et al.,
1997; Hager et al., 1999). This is because provision of an
external sugar source can complement all defects in
photosynthetic carbon assimilation. By contrast, mutants

whose pigment-deficient phenotype is only a secondary
consequence of a mutation elsewhere, cannot necessarily
be rescued by provision of sucrose. Survival and growth
of seedlings or regenerated plantlets under heterotrophic
conditions, therefore, represents a suitable test for a possi-
ble primary defect in photosynthesis. Interestingly, homo-
zygous sulf seedlings were incapable of heterotrophic
growth and died rapidly after germination, typically
within 10–14 d (Fig. 3A, B). Similar observations were
made when homozygous tissue was regenerated on
sucrose and phytohormone-containing tissue culture me-
dium. While shoot regeneration was readily achieved, the

Table 1. Spectroscopic analysis of photosynthesis in leaves of
wild-type tomato plants and the sulfurea mutant, both grown
under low-light conditions

Fv, variable fluorescence; Fm, maximum fluorescence; PC, plastocya-
nin; P700, reaction centre chlorophyll of photosystem I. The low
chlorophyll a:b value in the wild type and the low PC:P700 ratio are
due to plant growth under low-light conditions, which results in an
adaptive increase in the antenna system (i.e. the light-harvesting
complexes).

Wild type sulfurea

Fv/Fm 0.7960.01 0.6960.04
PC (DI/I310�3 mg�1 Chl) 8.661.0 8.561.7
P700 (DI/I310�3 mg�1 Chl) 46.664.0 9.262.8
PC/P700 0.7460.05 3.8360.54
Chlorophyll (mg m�2) 518.1649.0 132.4617.1
Chlorophyll a/b 2.5860.1 3.2560.03

Fig. 2. Photosynthetic pigment contents and thylakoid formation in
leaves of the sulfurea mutant and the wild type. Fully paramutated
sulfpura leaves from heterozygous plants were analysed. (A) Quantita-
tion of chlorophyll and carotenoid accumulation by HPLC. Pigment
contents are given in lg mg�1 dry weight (DW). (B) Electron
micrograph showing formation of grana stacks in chloroplasts of the
sulfurea mutant. While wild-type chloroplasts accumulate large starch
granules (white body), mutant chloroplasts accumulate increased
amounts of plastoglobules (dark spherical bodies). Also, formation of
stroma thylakoids is strongly reduced in sulfurea chloroplasts.
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plantlets quickly ceased to grow and usually died after
having developed two to four leaves (not shown). Taken
together, the lack of heterotrophic growth as well as intact

pigment biosynthesis and thylakoid biogenesis provide
strong evidence against a primary defect in photosynthesis
in the sulfurea mutant.

Fig. 3. Promotion of growth and development in the sulfurea mutant by auxin. (A) Normal germination of homozygous sulfurea seedlings. The pale
green colour of cotyledons and initiating primary leaves is clearly visible. (B) Death of sulfurea seedlings after 10–14 d of growth on sucrose-
containing medium. (C, D) Decapitation promotes survival of the sulfurea mutant. Shown is a comparison of intact and decapitated seedlings
immediately after decapitation (C) and after 2 weeks (D). Growth and leaf development in the top half, as well as greening of the bottom part, are
clearly visible. (E, F) Growth promotion of sulfurea shoots by IAA added to the culture medium. While control shoots without IAA in the medium
rapidly die (E), the presence of 2.5 lM IAA induces normal shoot and leaf development (F). Pictures were taken after 4 weeks. (G, H) Induction of
shoot and leaf development in sulfurea by application of auxin-containing agar blocks to the top of decapitated stems. (G) Control without IAA in the
agar block. (H) Experiment with 2 mM IAA in the agar block. The arrows point to the agar blocks. Pictures were taken 4 weeks after decapitation
and agar block application.
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Wounding promotes survival of homozygous sulfurea
seedlings

Lack of plant development in the presence of sugar as an
externally supplied carbon source (Fig. 3A, B) suggested
a growth defect in sulfurea that is not directly related to
photosynthesis. To distinguish between a defective growth
from the shoot apical meristem (SAM) and a general
inability to grow and undergo cell division, etiolation
experiments were carried out. Etiolation of seedlings
strongly promotes hypocotyl growth (skotomorphogene-
sis) whereas growth from the SAM remains inhibited.
After 2 months of growth on sucrose-containing medium
in the dark, both wild-type seedlings and mutant seedlings
reached hypocotyl lengths of over 30 cm, indicating that
internodal growth and cell division are not generally
impaired in sulfurea and, instead, suggesting that the
growth defect may be limited to meristem outgrowth. This
is consistent with wild type-like shoot regeneration, but
lack of apical growth of the mutant in tissue culture (see
above). Analysis of root development revealed that neither
root growth nor gravitropism were significantly affected in
homozygous sulf seedlings (data not shown).
Interestingly, when young sulfurea seedlings were de-

capitated and the two halves of the seedling cultured
separately in synthetic medium (Fig. 3C), survival and
growth of the mutant was significantly enhanced (Fig. 3D).
While intact seedlings hardly developed primary leaves, the
upper part of cut seedlings showed substantial leaf de-
velopment (Fig. 3D). Moreover, the decapitated bottom
part displayed strong greening (Fig. 3D) and the survival of
both halves was extended for up to 4 weeks. A possible
explanation for this surprising observation is that wounding
induces a molecular response or a biochemical pathway
that partially overcomes the defect present in the sulfurea
mutant.

The sulfurea mutant is auxin deficient

Known wound-induced processes were considered next in
order to identify possible causes of the enhanced growth
and survival of sulfurea seedlings after decapitation. As
synthesis of the phytohormone auxin is not only induced
by wounding, but also involved in regulating apical
growth (reviewed in Woodward and Bartel, 2005; Leyser,
2006; Teale et al., 2006; De Smet and Jürgens, 2007;
Boutté et al., 2007), it was tested if the application of
exogenous auxin would promote the survival and growth
of sulfurea shoots. To this end, indole-3-acetic acid (IAA)
or indole-3-butyric acid (IBA) was added to the growth
medium (Fig. 3E, F). Alternatively, auxin-containing agar
blocks were applied on top of decapitated wild-type and
sulfurea stem sections (Fig. 3G, H). Interestingly, both
sets of experiments revealed a strong growth-promoting
effect of exogenously added auxins. While in the absence
of auxin in the medium, sulfurea shoots died rapidly

(Fig. 3E), the presence of either IAA or IBA (or
a combination of both) resulted in normal leaf develop-
ment and plant growth for up to 2 months (Fig. 3F).
Similarly, the application of exogenous auxin via agar
blocks placed on top of stem sections strongly promoted
plant growth and development (Fig. 3G,H). These agar
blocks mimic the presence of an auxin-producing shoot
apical meristem. Their application to the sulfurea stem
sections resulted in strong plant growth from axillary
meristems with the resulting shoots reaching up to more
than 10 cm height (Fig. 3H; data not shown). If auxin was
omitted from the agar block, no growth and leaf
development occurred beyond that induced by the wound-
ing as resulting from the cutting process (Fig. 3G).
These data suggest that homozygous sulfurea plants

suffer from auxin deficiency. Furthermore, the results
indicate that sulfurea may not be completely auxin
auxotrophic and that instead, the auxin deficiency is
largely confined to synthesis in the shoot meristems.
Induction of auxin synthesis by wounding or exogenous
auxin feeding can partially overcome this defect.

The sulfurea mutant may be defective in tryptophan-
independent auxin biosynthesis

In addition to shoot and leaf development, auxin is also
involved in regulating floral development (Bernier et al.,
1993; Christensen et al., 2000; Reinhardt et al., 2000;
Cheng et al., 2006; Kim et al., 2007; Zhao, 2008).
Therefore, flower development in heterozygous paramu-
tated sulfurea plants was analysed. While the number of
flowers developed per plant was comparable in the wild
type and the mutant, paramutated branches of sulfurea
plants displayed frequent abnormalities in floral morphol-
ogy (affecting, on average, 10–20% of the flowers;
Fig. 4A–F). These abnormalities were very diverse and
included missing floral organs, fused organs, homeotically
transformed organs or the presence of supernumerary
organs, such as multiple carpels that were often fused
(Fig. 4B–F). As similar phenotypes are common in auxin
mutants (reviewed in Cheng and Zhao, 2007), this
observation is consistent with a disturbed auxin homeo-
stasis in sulfurea and a possible involvement of the
SULFUREA locus in auxin metabolism.
Flowering plants, such as tomato, possess two distinct

pathways of auxin biosynthesis: a tryptophan-dependent
pathway (involving the intermediates tryptamine, indole-
3-pyruvic acid, and indole-3-acetaldehyde) and at least
one tryptophan-independent pathway (Östin et al., 1999),
the biochemistry of which is not yet understood (but
which is suspected to branch from either indole or indole-
3-glycerol phosphate; reviewed in Cohen et al., 2003;
Woodward and Bartel, 2005). The two pathways are non-
redundant in that they are highly regulated in a tissue-
specific and developmental stage-specific manner (Cohen
et al., 2003; Woodward and Bartel, 2005; Zhao, 2008).
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Consequently, auxin synthesis in a given tissue or
developmental condition is often largely dependent on
only one of the two pathways. For example, rapidly
growing tissues, like young seedlings and developing
fruits are thought to rely on tryptophan-dependent auxin
biosynthesis, whereas shoot meristems are believed to

synthesize their auxin mainly via the tryptophan-indepen-
dent pathway (Sitbon et al., 2000; Epstein et al., 2002).
The first evidence for the occurrence of tryptophan-
independent biosynthesis of IAA in tomato was provided
by Epstein et al. (2002), who showed that, during fruit
development, a switch between the two pathways occurs.

Fig. 4. Abnormal flower development, but normal fruit development in paramutated sulfurea plants. (A) Wild-type flower. (B) Flower of the sulfurea
mutant displaying misshapen petals that are partially homeotically transformed into sepal-like organs. (C) Carpel in a wild-type flower. (D)
Duplicated carpel in a flower of the sulfurea mutant. (E, F) Multiple fused carpels in flowers of the sulfurea mutant. (G, H) Normal fruit development
in the sulfurea mutant. Mutant fruits were harvested from fully paramutated branches. Note the increased chlorophyll accumulation in the green
sulfurea fruit.
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Several lines of evidence suggested tentatively that, in
sulfurea, the tryptophan-dependent pathway is intact, while
the tryptophan-independent pathway may be defective.
First, inducibility of growth and development by auxin-
containing agar blocks replacing the shoot apical meristem
(SAM) indicated that sulfurea SAMs do not produce auxin
(Fig. 3G, H). Second, wounding, which promoted growth
and development of homozygous sulfurea seedlings (Fig.
3C, D), is known to induce tryptophan-dependent auxin
biosynthesis (Sztein et al., 2002). Third, fruit development
in the sulfurea mutant was unaffected (Fig. 4G, H) and
strikingly, mutant fruits accumulated even more chlorophyll
than wild-type fruits (Fig. 4G). This is consistent with
auxin synthesis in developing fruits occurring via the
tryptophan-dependent pathway (Srivastava and Handa,
2005; Woodward and Bartel, 2005).
To confirm that sulfurea is not defective in tryptophan-

dependent auxin biosynthesis, intermediates of trypto-
phan-dependent IAA synthesis were applied in feeding
experiments. The following substances were tested:
tryptophan, tryptamine, indoleacetamide, and indole-3-
pyruvate. In addition, indole, assumed to be a precursor
in both pathways (Cohen et al., 2003) was tested. If the
Trp-dependent pathway is not activated, then precursors
of this pathway should not be able to restore the growth
defect of sulfurea, while indole, which is also a precursor
in the Trp-independent pathway cannot be converted to
IAA if this pathway is defective in the mutant. In line with
these considerations, none of these substances elicited
a similar growth-promoting effect as the application of
IAA or IBA (data not shown). However, some of the
substances seemed to have slight positive effects, which
were most pronounced for indole-3-pyruvate. This can
most likely be explained with spontaneous decarboxyl-
ation of indole-3-pyruvate yielding indole-3-acetaldehyde
which then can be oxidized to produce IAA.
Our feeding experiments with auxin-supplying agar

blocks had tentatively indicated that auxin biosynthesis in
the meristems rather than auxin transport is affected in the
sulfurea mutant. To confirm this conclusion, a series of
reciprocal grafting experiments was performed in which
(i) wild-type scions were grafted onto sulfurea rootstocks,
(ii) sulfurea scions were grafted onto wild-type rootstocks,
(iii) sulfurea stem sections were inserted in between wild-
type scions and rootstocks, and (iv) wild-type stem
sections were inserted in between sulfurea scions and
rootstocks. While wild-type scions grafted onto sulfurea
rootstocks developed normally, the reciprocal grafting did
not promote growth and development of sulfurea shoots,
indicating that a wild-type rootstock cannot complement
the suspected auxin deficiency in the sulfurea shoot
meristems. Importantly, mutant stem sections inserted into
wild-type plants survived, but did not affect plant growth
or development, demonstrating that sulfurea stems support
normal auxin transport. By contrast, wild-type stem

sections inserted into mutant plants did not promote
survival of the mutant, as expected.
To provide direct evidence for auxin deficiency in the

sulfurea mutant, auxins were measured using gas chroma-
tography-coupled mass spectrometry methods (GC-MS;
Ludwig-Müller and Cohen, 2002; Jentschel et al., 2007).
As a substantial fraction of auxin is present in conjugated
form with either amino acids (amide-linked conjugates) or
sugars (ester-linked conjugates; Woodward and Bartel,
2005; Seidel et al., 2006), the amounts of both free IAA
and conjugated IAA were determined. To test for the
suspected defect in tryptophan-independent auxin bio-
synthesis, both very young sulfurea seedlings (which
predominantly synthesize their auxin via the tryptophan-
dependent pathway) and older seedlings (in which a larger
proportion of auxin comes from the tryptophan-indepen-
dent pathway in the SAM) were included. While seedling
age had no influence on the accumulation levels of either
free or conjugated IAA in the wild type (data not shown),
a strong effect was observed in the mutant. Very young
seedlings (5–6 d after germination) showed a reduction in
conjugated IAA, but not in free IAA (Fig. 5), indicating
that they largely compensate the auxin deficiency by
reducing the pool of conjugated (i.e. inactive) IAA, which
may provide some buffer capacity. By contrast, older
seedlings (10–11 d after germination) displayed a strong
reduction in both free and conjugated IAA (Fig. 5),
consistent with a lack of IAA synthesis in the SAM.

Isolation and phenotypic characterization of
a suppressor mutant of sulfurea

Unlike most other epigenetic gene-silencing phenomena,
gene inactivation by paramutation is not only somatically

Fig. 5. Auxin deficiency in the sulfurea mutant. Accumulation of free
and conjugated IAA was quantitated in wild-type seedlings, young
mutant seedlings (5–6 d after germination) and older mutant seedlings
(10–11 d after germination). IAA contents are given in ng g�1 fresh
weight (FW). See text for details.
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stable, but also heritable (Chandler et al., 2000; Chandler
and Stam, 2004; Stam and Scheid, 2005; Bond and
Finnegan, 2007; Chandler, 2007). To gain more insights
into the mechanism of paramutation at the sulfurea locus
and the involvement of SULF in auxin metabolism,
a genetic screen for suppressors of the pale sulfurea
phenotype was initiated. The establishment of an efficient
shoot regeneration protocol for homozygous paramutated
tissue (see the Materials and methods) allowed us to
conduct such a suppressor screen by exposing sterile leaf
explants to regeneration medium on a large scale. As tissue
culture conditions themselves are mutagenic (a phenome-
non also referred to as somaclonal variation), no additional
mutagenesis treatment was done. In this screen, a mutant
cell line was isolated that appeared as a dark green sector on
a regenerating shoot (Fig. 6A). The sector was excised and
uniformly green plantlets could be recovered by regenera-
tion (Fig. 6B). Unlike the sulfurea mutant, these green
plantlets were capable of growing in the absence of
exogenously added auxin. However, they grew very slowly
on synthetic medium (Fig. 6C, D) and were stunted,
providing preliminary evidence for the mutant not being
a revertant, but rather a suppressor of sulf.
When the putative suppressor mutant was grown in soil,

the phenotype was even more striking. Mutant leaves
displayed strong epinastic growth (Fig. 6E–H), a pheno-
type demonstrated previously to be induced by the
presence of excess amounts of auxin (Kawano et al.,
2003; Zhao, 2008). This pronounced phenotype unequiv-
ocally established that the mutant does not represent
a revertant of sulfurea, but instead is a true suppressor
mutant. It was therefore named SOSU1 (SUPPRESSOR
OF SULFUREA 1).
Floral development in SOSU1 was strongly affected

with approximately 90% of the flowers showing severe
phenotypic aberrations, most of which represented home-
otic transformations of floral organs (Fig. 6I, J). SOSU1
flowers were male and female sterile making it necessary
to propagate the mutant vegetatively.

The SUPPRESSOR OF SULFUREA mutant
overaccumulates auxin

The SOSU1 mutation suppressed the two most striking
aspects of the sulfurea phenotype: the pigment deficiency
and the arrested growth and development. In order to
analyse the restoration of photoautotrophic growth in
greater detail, photosynthetic electron transport was
measured spectroscopically (Table 2). Although SOSU1
plants had slightly lower chlorophyll contents than the
wild type, the accumulation of the components of the
photosynthetic electron transport chain was nearly identi-
cal (if calculated on a chlorophyll basis; Table 2). Most
importantly, the severe photosystem I deficiency seen in
sulfurea (Table 1) was fully restored to wild-type levels
(Table 2).

The stunted growth of SOSU1 plants, the severely
disturbed floral development and the strongly epinastic
leaf growth are most readily interpretable as an auxin
overaccumulation phenotype. To test if the suppressor
mutant indeed synthesizes excess amounts of auxin, the
levels of free and conjugated IAA were measured by GC-
MS. These analyses revealed that SOSU1 plants accumu-
lated greatly elevated levels of free IAA, whereas the
amount of conjugated IAA was not significantly different
from that in the wild type (Fig. 7). This demonstrates that
the SOSU1 mutant harbours a suppressor mutation that
conditions enhanced accumulation of auxin.
Consistent with an auxin overproduction phenotype,

decapitation of SOSU1 plants did not result in the fast
outgrowth of lateral meristems, as it did in the wild type.
In addition to this substantial delay in lateral shoot
formation, the number of lateral shoots developing per
plant was strongly reduced (not shown).

Discussion

In this work, it is shown that the tomato sulfurea mutant,
one of the classical mutants that led to the discovery of
paramutation in plants, suffers from partial auxin auxotro-
phy. This auxotrophy seems to be restricted to a block in
the tryptophan-independent pathway of auxin biosynthe-
sis, while the tryptophan-dependent pathway is functional.
As the two pathways are highly regulated in a tissue-
specific and developmental stage-specific manner (Ljung
et al., 2005; Woodward and Bartel, 2005; Zhao, 2008), it
is unsurprising that the auxin auxotrophy in sulfurea is
restricted to those tissues and developmental processes
that are particularly dependent upon the tryptophan-
independent pathway, such as the shoot meristems.
Interestingly, induction of the tryptophan-dependent path-
way (e.g. by wounding; Sztein et al., 2002) or the external
application of IAA promoted the survival of sulfurea
seedlings, but was insufficient to overcome the mutant
phenotype entirely (Fig. 3). This is consistent with the
idea that, although wounding and auxin supplementation
help by providing additional auxin, these treatments
cannot restore the proper patterns of tissue-specific
synthesis and local distribution of auxin. Also, in line
with a defect in the tryptophan-independent pathway,
feeding of intermediates in the tryptophan-dependent
pathway did not significantly alleviate the growth pheno-
type. In addition, to confirm the faithful provision of
precursors to the tryptophan-dependent pathway, a set of
preliminary metabolite-profiling experiments was con-
ducted with wild-type and sulfurea seedlings. These
analyses revealed only moderate quantitative changes in
the levels of a few metabolites between the wild type and
the mutant (B Ehlert and R Bock, unpublished results).
Most importantly, all sugars and amino acids were readily
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Fig. 6. Phenotype of the isolated SUPPRESSOR OF SULFUREA 1 (SOSU1) mutant. (A) Isolation of SOSU1 from a suppressor screen in tissue
culture employing somaclonal variation. (B) Regeneration of SOSU1 plants from the green leaf sector. (C, D) Phenotypic comparison of a wild-type

3644 Ehlert et al.

 at M
PI M

olec Plant Physiology on M
arch 28, 2012

http://jxb.oxfordjournals.org/
D

ow
nloaded from

 

http://jxb.oxfordjournals.org/


detected in sulfurea seedlings, including the three aro-
matic amino acids (tryptophan, phenylalanine, and tyro-
sine) synthesized via the same biochemical pathway as
auxin, the Shikimate pathway (Woodward and Bartel,
2005).
Auxin-deficient phenotypes can be caused by a variety

of genetic disturbances, including mutations affecting
auxin transport (Bennett et al., 2006; Leyser, 2006;
Petrasek et al., 2006; Teale et al., 2006; Boutté et al.,
2007), signal transduction (Paciorek and Friml, 2006;
Szemenyei et al., 2008), biosynthesis (Cohen et al., 2003),
degradation (Woodward and Bartel, 2005; Zhao, 2008) or
the genetic regulation of any of these processes. Several
lines of evidence suggest that, in the sulfurea mutant,
auxin biosynthesis is affected. First, both our agar block
experiments and our grafting experiments with trans-
planted stem sections indicate that auxin transport and
signalling pathways are generally intact in sulfurea.
Second, as discussed above, several aspects of the
sulfurea phenotype suggest that the mutant suffers from
a specific defect in tryptophan-independent auxin bio-
synthesis, while the tryptophan-dependent pathway
appears to be intact. Third, IAA overproduction in the
isolated suppressor mutant SOSU1 and the typical symp-
toms of an auxin overaccumulation phenotype provide
strong evidence for biosynthesis being affected rather than
auxin transport or signalling.
An interesting and not yet fully resolved aspect of auxin

metabolism is its subcellular compartmentalization. While
tryptophan conversion to IAA via tryptamine and indole-
3-acetaldehyde takes place in the cytosol, the localization
of the tryptophan-independent pathway is still unknown.
Circumstantial evidence suggests that tryptophan-indepen-
dent IAA synthesis occurs in the plastid (Rapparini et al.,
1999, 2002). If this is indeed the case and if there is

a function of the plastid-produced IAA inside the
chloroplast, this could explain the pigment-deficient
phenotype of the sulfurea mutant. The pale-green pheno-
type is most probably a secondary consequence of the
auxin deficiency, which is also supported by our finding
that restoration of auxin synthesis in the SOSU1 suppres-
sor mutant also restored pigmentation to nearly wild-type
levels. The photosystem I deficiency in the sulfurea
mutant was investigated in greater detail by conducting
transcript profiling analyses using the commercially avail-
able potato microarrays. Although these analyses did not
provide a strong candidate gene for SULF, they revealed
a set of genes that were strongly down-regulated in the
sulfurea mutant. Interestingly, the most strongly down-
regulated gene was ATAB2 (B Ehlert and R Bock,
unpublished results). ATAB2 is a conserved nuclear-
encoded protein that is required for translation of the psaB
mRNA (Dauvillée et al., 2003; Barneche et al., 2006). As
psaB encodes a reaction centre protein of photosystem I, it
seems conceivable that the drastic down-regulation of
ATAB2 conditions the PSI deficiency in sulfurea. It is
therefore speculated that ATAB2 is a target of SULF in
that its expression may be under the control of one of the
signal transduction pathways regulated by tryptophan-
independent auxin biosynthesis. ATAB2 cannot be identi-
cal with SULF, because (i) T-DNA knockout mutants of
ATAB2 grow normally under heterotrophic conditions
(Barneche et al., 2006; B Ehlert and R Bock, unpublished
results) and (ii) low-level ATAB2 expression is still readily

Table 2. Spectroscopic analysis of photosynthesis in leaves of
wild-type tomato plants and the isolated SUPPRESSOR OF
SULF mutant (SOSU1)

Plants were grown under standard greenhouse conditions. For abbrevia-
tions, see Table 1. Higher growth light intensities explain the elevated
plastocyanin content and chlorophyll a:b ratio compared to the wild
type in Table 1.

Wild type SOSU1

Fv/Fm 0.7760.00 0.7760.01
PC (DI/I310�3 mg�1 Chl) 15.161.3 16.464.9
P700 (DI/I310�3 mg�1 Chl) 47.166.3 46.464.0
PC/P700 1.3060.09 1.4160.37
Chlorophyll (mg m�2) 800.96167.9 561.26102.9
Chlorophyll a/b 3.5260.08 3.5160.03

Fig. 7. Auxin overaccumulation in the SOSU1 suppressor mutant.
Accumulation of free and conjugated IAA was quantitated in wild-type
plants, paramutated sulfurea plants, and SOSU1 plants. IAA contents
are given in ng g�1 fresh weight (FW). Since the SOSU1 plants did not
produce seeds, auxins could not be extracted from seedlings (as in Fig.
5), but were extracted from leaves of greenhouse-grown plants in this
experiment.

plant and a SOSU1 plant in sterile culture on sucrose-containing medium. Note that the suppressor mutant in (D) is approximately three times older
than the wild-type plant in (C). (E, F) Phenotypic comparison of soil-grown wild-type (E) and SOSU1 (F) plants. (G, H) Close-up of leaves of the
plants shown in (E) and (F). (I, J) Examples of mutant phenotypes of SOSU1 flowers showing multiple homeotic transformations of floral organs.
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detectable in the sulfurea mutant both by microarray
hybridization and RT-PCR (B Ehlert and R Bock,
unpublished results).
At present, it is not yet possible to distinguish between

the SULF gene encoding an enzyme directly involved in
IAA synthesis or SULF encoding a regulator of the
tryptophan-independent pathway (e.g. a specific transcrip-
tion factor). The SULF gene was mapped to the
centromeric heterochromatin of tomato chromosome 2
(Hagemann, 1993), a region that lacks any other genetic
marker in close proximity (Tanksley et al., 1992).
Although this makes the isolation of the SULF gene very
difficult, the rapidly progressing tomato genome sequenc-
ing project (http://www.sgn.cornell.edu/) is expected to
reveal candidate genes in the foreseeable future. This will
hopefully help in solving some of the enigmas surround-
ing tryptophan-independent auxin biosynthesis and its
physiological functions. Identification of the SULF gene
will also allow the molecular mechanism of paramutation
in tomato to be studied, for example, by searching for
small RNAs derived from the locus and testing for
changes in chromatin structure and/or DNA methylation
patterns (Alleman et al., 2006; Hale et al., 2007;
Henderson and Jacobsen, 2007).
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