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ABSTRACT

Summary: pcaMethods is a Bioconductor compliant library for

computing principal component analysis (PCA) on incomplete

data sets. The results can be analyzed directly or used to estimate

missing values to enable the use of missing value sensitive

statistical methods. The package was mainly developed with

microarray and metabolite data sets in mind, but can be applied

to any other incomplete data set as well.

Availability: http://www.bioconductor.org

Contact: selbig@mpimp-golm.mpg.de

Supplementary information: Please visit our webpage at http://

bioinformatics.mpimp-golm.mpg.de/

1 INTRODUCTION

1.1 Motivation

Microarray data are used in a range of biological research areas

although they frequently contain considerable numbers of

missing values. Principal component analysis (PCA) is often a

first step in the analysis process, however, the standard

approach is not tolerant to missing data, because it is

based on eigenvalue decomposition of the covariance matrix.

Missing value estimation becomes important when subsequent

statistical analyses depend on complete data sets, e.g. indepen-

dent component analysis or various clustering algorithms, such

as correlation-based hierarchical clustering. The pcaMethods

package provides PCA methods that are robust against missing

data and that allow for missing value estimation.

2 ALGORITHMS

2.1 Probabilistic PCA (PPCA)

PPCA combines an expectation maximization (EM) approach

with a probabilistic model. The EM approach is based on the

assumption that the latent variables (scores) as well as the noise

come from normal distributions. In standard PCA, data

points far from the training set but close to the subspace

defined by the principal components fit the model equally well.

PPCA, on the other hand, defines a density model such that

the likelihood for data points far from the training set is

much lower, even if they are close to the principal subspace.
Our implementation of PPCA is based on the MatlabTMppca

script written by Jakob Verbeek.1

2.2 Bayesian PCA (BPCA)

Similar to PPCA, BPCA uses an EM approach combined

with a Bayesian estimation method to calculate the likelihood

of an estimated value. BPCA was developed especially for

missing value estimation and is based on a variational

Bayesian framework (VBF), Bishop (1999), with automatic

relevance determination (ARD). In BPCA, ARD leads to a

different scaling of the principal components, scores and

eigenvalues when compared to standard PCA or PPCA.

When the Euclidean norm of a component is small relative

to the variance of the noise observed for this component,

it will shrink to near zero. This suppresses redundant

components, but for medium-sized eigenvalues, the norm of

the principal components will be smaller than in PCA.

In case of small numbers of observations, the difference

between ‘real’ and predicted eigenvalues may become larger

reflecting the lack of information to accurately determine

true components from incomplete and noisy data.
Another slight difference from PCA results may arise

from the fact that the VBF algorithm does not force

orthogonality between principal components. See Oba et al.

(2003) for a detailed discussion of the BPCA algorithm.
The method provided by the pcaMethods package is a port

of the bpca MatlabTM script also provided by Oba et al.2
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2.3 Inverse non-linear PCA

Non-linear PCA (NLPCA) (Scholz et al., 2005) is especially

suitable for data from experiments where the studied

response is non-linear. Examples of such experiments are
ubiquitous in biology-enzyme kinetics are inherently non-linear

as are gene expression responses influenced by the cell cycle or

diurnal oscillations. The inverse version of the NLPCA
algorithm works by training an auto-associative neural network

composed of a component layer which serves as the ‘bottle-

neck’, a hidden non-linear layer, and an output layer
corresponding to the reconstructed data. Missing values in

the training data are simply ignored when calculating the error

during backpropagation. The input to this network can
intuitively be seen as the scores of the resulting principal

components which have their corresponding loadings hidden in

the neural network.

2.4 Nipals PCA

Nipals (Non-linear estimation by iterative partial least squares),

Wold et al. (1966) is an algorithm at the root of PLS regression
which can execute PCA with missing values by simply leaving

them out from the appropriate inner products. It is tolerant to

small amounts (generally not more than 5%) of missing data.

2.5 SVDimpute

An implementation of the SVDimpute algorithm as proposed

by Troyanskaya et al. (2001). The idea behind the algorithm

is to estimate the missing values as a linear combination of the
k most significant eigengenes, Alter et al. (2000), where the

most significant eigengene is the one with the greatest

eigenvalue.

2.6 LLSimpute

Although the scope of the package is to provide a collection of

PCA-based methods, a non-PCA missing value estimation
method was included to allow users to better rate and compare

the results.
The LLSimpute algorithm for missing value estimation as

proposed in Kim et al. (2005) works similar to KNNimpute,

Troyanskaya et al. (2001). For each incomplete variable
(gene) G, k similar variables are selected by the Pearson

correlation coefficient. Then missing values are imputed by a

linear combination of the k selected variables.
Let be Gcomp the set and g the number of complete

observations in G. Then the linear combination is determined
as the solution of the least squares problem formulated as

min
z

ATz� Gcomp

�� ��
Pearson:

ð1Þ

Where, A is a k� g matrix formed by the corresponding
g observations of the k neighbors. On the data used for testing

in the original publication, LLSimpute could outperform

KNNimpute and compared favorably well with BPCA.

2.7 Performance

BPCA, SVDimpute, NLPCA and Nipals all contain iterative

steps which make them less time efficient. During each

iteration, BPCA and SVDimpute make use of singular value

decomposition (SVD) whose complexity grows cubically with

the number of dimensions. This may lead to performance

problems when data sets are of high dimensionality.

PPCA is the fastest method and is thus recommended for

large data sets. The runtime is linear in the number of data

points, data dimensions and components to estimate, thus

providing satisfactory performance even on large data sets.

3 PREPROCESSING

Normalization is a critical step for making measurements from

different variables or experiments comparable. Generally, there

is no straightforward approach, because adequate normal-

ization largely depends on the data of interest, see Huber et al.

(2005) for a detailed discussion. Here, we will only consider the

two standard procedures mean centring and variance scaling.
PCA requires mean centring, because it is based on the

calculation of the covariance matrix. Thus, the mean must be

subtracted before estimating missing values and added again

afterwards. This is done automatically by the methods

presented here.

Variance normalization will strongly affect PCA results.

Scaling to unit variance may be useful when variables of

different units or intensity ranges are compared. For example, if

one is interested in the correlation structure between transcripts

and metabolites simultaneously. For microarray data, however,

one often has expression estimates for genes that are not

expressed at all and these must be removed before any scaling is

done or they will add unnecessary noise to the PCA model.

4 MISSING VALUE ESTIMATION

If not all principal components are used for projection, which is

usually the case, PCA can be seen as a data reduction process.

When only the first k components are used for data reduction,

the projection can be written as

X ¼ 1� �xT þ TPT þ V, ð2Þ

where, the term 1� �xT represents the original variable

averages, X denotes the observations, T ¼ t1, t2, . . . , tk the

scores, P ¼ p1, p2, . . . , pk the components and V the residual

matrix. An estimate of the complete data set ðX̂Þ is obtained by

projecting the scores back into the original data space;

X̂ ¼ 1� �xT þ TPT. This will only produce reasonable results

if the residuals V are sufficiently small, implying that most of

the important information is captured by the first k compo-

nents. This is generally the case if the data show only few large

eigenvalues. Figure 1A shows the error of prediction for two

gene expression data sets with different eigenvalue structure,

5% of the data were removed for testing. The first data are

marker genes of the human cell cycle, the second a complete

subset of breast cancer related genes; both published in

Whitfield et al. (2002).
Different approaches for missing value estimation have been

proposed, e.g. Kim et al. (2005) Sehgal et al. (2005) and others.

The cited papers also contain comparisons between several

methods. From the literature, we conclude that among the
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algorithms provided in pcaMethods, BPCA has, on average, the

best missing value estimation accuracy. When the data contain

strong non-linear dependencies, NLPCA may be superior.

Figure 1B shows a comparison of NLPCA and BPCA applied

to an artificial 3D helix data set. In contrast to BPCA, NLPCA

is able to exactly capture the non-linear structure.
When, on the other hand, an exact PCA solution is needed,

both methods are less adequate. Here, PPCA provides good

results, also overcoming the performance problems of the other

methods. SVDimpute and Nipals both are widely used standard

approaches and were included for comparison.
The reader should keep in mind that the estimation accuracy

of a certain method depends on the structure of the data it is

used on. A detailed comparison on different data sets is beyond

the scope of this article.

4.1 Parameter estimation

A common problem is the choice of the optimal number of

principal components (or neighbors for LLSimpute). One

wants to include the relevant information, but choosing too

many components will also include artifacts or noise. Cross

validation can be used to determine this parameter.

The package provides two such methods.

The first is for internal cross validation that allows to

estimate the level of structure in the data and to optimize

the choice of the number of components. The level of structure,

Q2 is defined as:

Q2 ¼ 1�

P
ðxij � x̂ijÞ

2

P
ðxijÞ

2
ð3Þ

The maximum value for Q2 is 1 which means that all variance is

represented in the predictions; X ¼ X̂.
The second method estimates the optimal number of

components in terms of the error of prediction. Q2 or the

normalized root mean square error (NRMSEP) proposed by

Feten et al. (2005) is used as an error measure:

NRMSEPk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

X
j2G

P
i2Oj

ðxij � x̂ijÞ
2

ojs2xj

vuut ð4Þ

where G is the set and g the number of incomplete variables,

Oj is the set and oj the number of missing observations in

variable j and s2xj ¼
Pn

i¼1ðxij � xjÞ
2=ðn� 1Þ is the variance

associated with a given variable.
This error function normalizes the error of prediction by

the variance observed for the predicted variable. Hence, the

NRMSEP will be lower if the internal variance is larger.

This assumption is rational for noisy data. However, if the

number of samples is small, the variance may be an unstable

criterion and Q2 should be used instead, also if variance

normalization was applied. An advantage of the NRMSEP

when used together with cross validation is, that for imputation

by averages, it roughly equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nObs=ðnObs� 1Þ

p
, where nObs

is the number of observations. Thus, if the NRMSEP exceeds 1,

then missing value imputation by mean substitution is

preferable.

5 IMPLEMENTATION

5.1 Availability

The pcaMethods package is written in the R language

developed within the R Project for Statistical Computing,

R Development Core Team (2004). It is part of the

Bioconductor suite of packages related to life science applica-

tions, Gentleman et al. (2004). The version presented here is

part of the 2.0 (development) release.

5.2 Data formats

Input data must be provided as an exprSet object or as a

numerical matrix or data frame already read into R. All

methods return a common object called pcaRes providing

maximum interoperability.

5.3 Visualization

The package also offers methods for visualization of the

results, e.g. for plotting an arbitrary number of scores/loadings

side by side.

Fig. 1. (A) Eigenvalues and the NRMSEP obtained with different

numbers of principal components. The lowest NRMSEP as obtained

with LLSimpute is plotted in as a dashed line. The first data set

shows only one dominant eigenvalue and thus the lower error of

prediction. Here, BPCA performs best whereas in the second

example with no dominant eigenvalue LLSimpute produces better

results. (B) A comparison of NLPCA and BPCA applied to artificial 3D

helix data from which 30% of all data points have been removed.

In contrast to BPCA, NLPCA is able to capture the non-linear

structure of the data and thus to produce an accurate estimate.
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6 WEB INTERFACE

The Bioinformatics group at the Max Planck Institute for
Molecular Plant Physiology provides MetaGeneAlyse (MGA),

Daub et al. (2003). MGA is a web-based tool for the
visualization and analysis of large-scale transcript and meta-
bolite profile data sets, available under http://metagenealy-

se.mpimp-golm.mpg.de/. We included pcaMethods in MGA,
the user may now perform PCA on incomplete data and
estimate missing values via an easy-to-use web interface.
Hereby, the user can choose between PPCA, BPCA,

NipalsPCA and SVDimpute.
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