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Abstract

The aim of this work was to investigate the importance
of cytosolic phosphorylating glyceraldehyde 3-phosphate
dehydrogenase (GAPC) in potato carbohydrate metab-
olism. For this purpose, the cytosolic isoform of phos-
phorylating GAPC was cloned and used for an antisense
approach to generate transgenic potato plants that
exhibited constitutively decreased GAPDH activity.
Potato lines with decreased activities of phosphory-
lating GAPC exhibited no major changes in either
whole-plant or tuber morphology. However, the levels of
3-phosphoglycerate were decreased in leaves of the
transformants. A broad metabolic phenotyping of tu-
bers from the transformants revealed an increase in
sucrose and UDPglucose content, a decrease in the
glycolytic intermediates 3-phosphoglycerate and phos-
phoenolpyruvate but little change in the levels of
other metabolites. Moreover, the transformants dis-
played no differences in cold sweetening with respect
to the wild type. Taken together these data suggest
that phosphorylating GAPC plays only a minor role
in the regulation of potato metabolism. The results
presented here are discussed in relation to current
models regarding primary metabolism in the potato
tuber parenchyma.

Key words: Antisense, carbohydrate metabolism, GAPDH,
potato tuber.

Introduction

Higher plants possess three distinct isoforms of glycer-
aldehyde 3-phosphate dehydrogenases (GAPDH); (i)
a phosphorylating NADP-specific GAPDH involved in
photosynthetic CO, fixation, (ii) a phosphorylating NAD-
specific GAPDH catalysing the conversion of glyceral-
dehyde 3-phosphate to 1,3-bisphosphoglycerate in the
cytosol, and (iii) a cytosolic NADP-dependent non-
phosphorylating GAPDH which catalyses the oxidation
of glyceraldehyde 3-phosphate to 3-phosphoglycerate in
the cytosol (Cerff and Chambers, 1979). Much is known
concerning the gene structure, evolution, and enzymic
properties of GAPDHs in algal systems (Koksharova
et al., 1998; Perusse and Schoen, 2004; Valverde et al.,
2005) which have also been subjected to extensive func-
tional studies via the use of reverse genetics (Koksharova
et al., 1998; Fillinger et al., 2000). However, although
the structural and biochemical properties of all GAPDH
isoforms have been extensively studied in higher plants
(Cerff and Chambers, 1979; Iglesias and Losada, 1988;
Mateos and Serrano, 1992) less research effort has focused
on their in vivo function.

Historically, the majority of work in higher plants has
concentrated on evaluation of the photosynthetically im-
portant chloroplast isoforms (Melandri et al., 1970; Cerff,
1979; Petersen et al., 2003; Sparla et al., 2005). However,
in recent years detailed studies have been carried out on
structure—function relationships (Habenicht er al., 1994;
Michels et al., 1994) and kinetic properties (Bustos and
Iglesias, 2002; Iglesias et al., 2002) of the cytosolic
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isoforms. Although the physicochemical and kinetic prop-
erties of the two cytosolic GAPDH enzymes have been
investigated in detail in photosynthetic organs, little atten-
tion has been devoted to their function within glycolysis in
plant heterotrophic tissues (Givan, 1999; Fernie et al.,
2004). Moreover, cytosolic GAPDH has been demon-
strated to be cytoskeletally associated in a wide variety of
species including plants (Chuong et al., 2004). It has
additionally been demonstrated to be a constituent enzyme
of the functional association of glycolysis, both to the
cytoskeleton and to the Arabidopsis mitochondria (Giege
et al., 2003; Holtgrawe et al., 2005), and to be subjected
to translational control and multiple post-translational
modifications when subjected to stress (Chang et al.,
2000; Laukens et al., 2001; Bustos and Iglesias, 2003).
These observations, when taken together suggest that cyto-
solic GAPDH could well be a key regulator of glycolysis.

The generation of transgenic plants exhibiting a strong
reduction in phosphorylating GAPC activity is described
here. These plants were subjected to detailed biochemical
analysis under normal growth conditions. Furthermore, cold
sweetening was investigated in transgenic tubers to evaluate
whether a decrease in glycolysis results in enhanced
accumulation of soluble sugars. The results are discussed
in the context of current understanding of heterotrophic
metabolism and the cold sweetening process.

Materials and methods

Plants, bacterial strains and media

Potato plants (Solanum tuberosum cv. Solara) were obtained from
Bioplant, Ebstorf, Germany. Plants in tissue culture were grown
under a 16/8 h light/dark period on MS medium (Murashige and
Skoog, 1962) containing 2% sucrose. Plants used for biochemical
analysis were grown in individual pots (diameter 20 cm, depth
13 cm) in the greenhouse. Escherichia coli strain XL1-blue
(Stratagene, La Jolla) was cultivated using standard techniques
(Sambrook et al., 1989). Agrobacterium tumefaciens strain C58C1
containing pGV2260 (Deblaere et al., 1985) was cultivated in YEB
medium (Verveliet et al., 1975).

Enzymes and reagents

Enzymes and biochemicals were purchased from Boehringer (Mann-
heim, FRG) or Sigma (Deisenhofen, FRG).

Plasmid construction and potato transformation

A 1200 bp Asp718/BamHI fragment of the phosphorylating GAPC
encoding cDNA (Acc. No. AF527779) was cloned in the antisense
orientation under the transcriptional control of the CaMV 35S
promoter. Direct transformation of Agrobacterium tumefaciens strain
C58C1:pGV2260 was performed as described by Hoefgen and
Willmitzer (1988). Potato transformation using Agrobacterium-
mediated gene transfer was performed as described by Rocha-Sosa
et al. (1989).

Extraction of mRNA and northern blot analysis

Total RNA was isolated from 1 g leaf or tuber tissue as described
by Logemann et al. (1987). Standard conditions were used for the

transfer of RNA to membranes and for the subsequent hybridization
(Sambrook et al., 1989). Loading was standardized relative to total
RNA levels.

Preparation and analysis of samples for enzyme activities

To measure enzyme activities, 100-200 mg potato tuber slices were
homogenized in 0.5 ml 100 mM 4-(2-hydroxyethyl)-1-piperazine
ethanesulphonic acid (HEPES)-KOH, pH 7.5, 2 mM MgCl,, 1 mM
EDTA, 1 mM EGTA, 5 mM mercaptoethanol, 15% glycerine, and
0.1 mM Pefabloc phosphatase inhibitor. After centrifugation for
10 min, 13 000 rpm at 4 °C, the supernatant was frozen immediately
for further analysis. Invertase, sucrose synthase, and phospho-
fructokinase activities were determined as described by Hajirezaei
et al. (1994), glyceraldehyde 3-phosphate dehydrogenase and
pyruvate kinase activities were determined as detailed in Biemelt
et al. (1999), phosphoglucomutase activity as defined by Tauberger
et al. (2000), amylase activities were determined using the megazyme
kit (Megazyme, Ireland; as detailed in Hajirezaei et al., 2003),
whilst starch phosphorylase was assayed using the modifications
to the assay of Steup (1990), that were previously described in
Hajirezaei et al. (2003).

Metabolite determination

Metabolites were extracted essentially as described in Jelitto er al.
(1992). 50-300 mg of tissue material was immediately frozen in
liquid nitrogen. After homogenizing, the frozen material was ground
to a fine powder, 1.5 ml of 16% (w/v) trichloroacetic acid (TCA) in
diethylether (4 °C) was added and the tissue further homogenized.
After incubating the extract on dry ice for 15 min, 0.8 ml of 16% TCA
(w/v) in water containing 5 mM EGTA (4 °C) was added to the
homogenate, which was then left for an additional 3 h at 4 °C. Fol-
lowing centrifugation for 5 min at 15 000 rpm, the water phase was
washed 3—4-fold with 600 pl water-saturated ether each time and
thereafter neutralized with 5 M KOH/1 M triethanolamine. The levels
of metabolites and ATP/ADP were determined photometrically as
in Stitt er al. (1989) using a dual wavelength spectral photometer
(Sigma-ZWS 11, Biochem.). The recovery of small, representative
amounts of each metabolite through the extraction has already been
documented (Hajirezaei et al., 1994).

Determination of soluble sugars and starch

Soluble sugars and starch were quantified in tuber samples extracted
with 80% ethanol, 20 mM HEPES-KOH, pH 7.5 as described in
Hajirezaei et al. (2000).

Gas chromatography—mass spectrometry (GC-MS) analysis

The levels of other metabolites were determined in derivatized
methanol extracts by GC-MS using the protocol defined in Roessner
et al. (2001a) with the exception that the machine parameters and
time reference standards were set as described in Roessner-Tunali
et al. (2003). The values of each metabolite were normalized to
those determined in the wild type as detailed in Roessner et al.
(2001b). Recoveries of these metabolites through extraction has
been documented (Roessner et al., 2000).

Measurement of respiration rate in whole potato tubers

Gas exchange measurements were carried out using infrared gas
analysis in an open system (Compact minicuvette system CMS-400,
Walz GmbH, Effeltrich, Germany). Whole tubers were enclosed in
a standard chamber MK-022/A and the release of CO, was monitored
continuously. Chamber temperature and dew point temperature of the
air entering the chamber were adjusted to 20 °C and 13 °C, respectively.
Measurements were done at a gas flow rate of 1500 cm > s~ ' and an
ambient CO, concentration of about 100 pmol mol L. CO, evolution
rate referred to tuber fresh weight is given as nmol CO, g~ ' FW s~
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Labelling experiments with tuber slices

Tuber discs (diameter 10 mm, thickness 1 mm) were cut directly from
a core removed using a cork borer from the centre of growing tubers
(65-d-old plants, c. 12 g FW) attached to the fully photosynthesiz-
ing mother plant. The discs were washed quickly with 10 mM 2-(NV-
morpholino) ethane sulphonic acid (MES) (pH 6.5; KOH) three
times, and preincubated for 20 min in a buffer containing 20 mM
sucrose using 50 ml glass vessels at room temperature. U-["*C]glu-
cose (final specific activity 1.11 MBq mmolfl) and U—[14C]sucrose
(final specific activity 1.4 MBq mmol ') (NEN, DuPont, Boston,
USA) were added and incubation continued for another 3 h. During
the whole incubation and preincubation time, discs were aerated by
a continuous shaking at 150 rpm. After 3 h, discs were immediately
washed three times with buffer to remove external radioactivity, and
then frozen in liquid nitrogen to analyse label distribution.

Fractionation of "*C-labelled tissue extracts

Discs were extracted with 80% (v/v) ethanol at 80 °C (1 ml per two
discs), re-extracted in two subsequent steps with 50% (v/v) ethanol
(1 ml per two discs for each step), the combined supernatants dried
in a speed vac (SC110, Savant, Germany), taken up in 1 ml H,O
(‘soluble fraction’), and separated into neutral, anionic, and basic
fractions by ion exchange chromatography; the neutral fraction
(3.5 ml) was freeze-dried, and taken up in 0.1 ml water. The in-
soluble material left after ethanol extraction was washed twice with
water, homogenized, taken up in 1 ml water, and counted for starch.

Results

Generation and selection of transgenic plants

In order to reduce expression of phosphorylating GAPC,
a 1200 bp fragment of the potato coding sequence for this
gene (Acc. no. AF 527779) was cloned between the CaMV
35S promoter and the OCS terminator of plasmid pBinAR
(Hoefgen and Willmitzer, 1990). Potato leaves were trans-
formed using Agrobacterium-mediated gene transfer (Rocha-
Sosa et al., 1989) and approximately 75 independent
kanamycin-resistant transgenic plants were regenerated.
From these primary transformants three were selected
(97, 56, and 7), that displayed a strong reduction in phos-
phorylating GAPC, activity (data not shown), and amplified
in tissue culture. A second screen, a northern blot analysis,
was performed on various tissues harvested from potato
plants which were grown for 12 weeks in the greenhouse
under ambient growth conditions (see Materials and
methods). As depicted in Fig. 1, phosphorylating GAPC
gene expression was strongly inhibited in sink leaves,
stolons, and growing tubers (tuber size c. 10 g) as well as
being markedly decreased in source leaves and stem tissue.
The reduction of gene expression strongly correlated
with the maximum catalytic activity of phosphorylating
GAPC determined in the same samples. The phosphorylat-
ing GAPC activity was reduced strongly in sink leaves (up
to 85%), in stolons (up to 93%), in potato tubers (up to 92%),
and in the roots (up to 80%) with respect to the activity
observed in the wild-type control (Fig. 2). By contrast, there
was a lower decrease of GAPDH activity in source leaves
(around 20% in line 56 and 65% in line 7). Similarly, in
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Fig. 1. Northern blot analysis of the expression of phosphorylating
GAPC. RNA was extracted from various tissues of wild-type and
transgenic plants. C, wild type control; 7, 56, and 97, independent
transgenic potato lines.

stem tissue, the phosphorylating GAPC activity was di-
minished slightly in the lines 97 and 56 (by around 14%)
and dramatically in the case of line 7 (by around 60%).

Impact of reduced phosphorylating GAPC activity on
growth, phenotype and tuber yield

No significant changes in development or aerial plant
growth were observed in the transgenics. In order to esti-
mate the tuber yield 20 potato plants of each individual line
were grown for 65 d in the greenhouse at ambient condi-
tions. Plants were harvested and analysed for tuber fresh
weight and tuber number. As shown in Table 1, neither
total tuber fresh weight nor tuber number was affected
by the reduction in phosphorylating GAPC activity.

Metabolite analysis in the leaves

To investigate whether the reduction in phosphorylating
GAPC activity has an influence on leaf metabolism, leaf
material from 10-week-old plants were harvested and the

2T0Z ‘82 Yore | uo ABojosAud ue|d 810N IdIA e /Bio'sfeulnopiojxogx(//:dny wouy pspeojumoq


http://jxb.oxfordjournals.org/

2366 Hajirezaei et al.

sink leaves stolons
- 2000
1200 A
- 1500
800 A
- 1000
—. 400 1 *
~ * - 500
= *
CULCT | e
2 0 il
'% source leaves growing tubers
2 60
s - 900
(o]
E l
x
© 4
g ¥ - 600
L
2
2 *
8 20 200
T *
]
(O] I"‘I | I
Q2 04 0
9 stem roots
8 2000 -
%) L 1200
1500 - T 1
- 800
1000 A .
*
- 400
500 A * *
0- T T T F_I T |-T_|
cC 7 56 97 C 7 56 97

Fig. 2. Measurement of phosphorylating GAPC activity. GAPDH
activity was measured in extracts from various tissues of wild-type and
transgenic plants. Plant material was harvested and homogenized in
buffer as described in the Materials and methods. The untransformed
control is indicated as the filled bar and transgenic lines as blank bars. 97,
56, and 7 represent independent transgenic lines. Results are given in
nmol mg~"' protein min~' and represent the mean +SE of four in-
dependent replicates. Asterisk denotes values that were determined to
be highly significant by the # test (P <0.02).

content of some metabolites directly involved in sugar
metabolism was measured. The UDPGlucose content was
largely unaltered in the genotypes with the exception
of line 97 wherein it was significantly decreased (52*4,
57+1.4, 49+6, 37+2 nmol g ' FW in the control and
transgenic lines 7, 56, and 97, respectively). The 3-
phosphoglycerate content was significantly reduced in all
three lines (440*8, 308*15, 228 =22, 30839 nmol g_l
FW in the control and transgenic lines 7, 56, and 97,
respectively). By contrast, no significant differences in the
contents of ATP and ADP between control and transgenic
lines could be detected (data not shown).

Table 1. Influence of antisense expression of phosphorylating
GAPC on potato tuber development
Tubers were harvested from plants which had been growing in the

greenhouse for 65 d. Results are mean = SE of 20 independent replicates.
No significant differences could be observed in the measured parameters.

Parameter Genotype
Control GAP-7 GAP-56  GAP-97
Total fresh weight (g)  133%£3.7 123+4.7 130+3.9 129*+45

Number of tubers 5-13 5-15 5-10 5-11
Mean of tuber number  7.5%0.5 8.5+0.7 62*x04 7.9%0.6

Influence of decreased phosphorylating GAPC activity
on tuber soluble sugar and starch content

As a first experiment to investigate tuber metabolism, the
content of soluble and insoluble polysaccharides in grow-
ing potato tubers (tuber size c. 15-20 g) harvested from
control and transgenic plants was measured. As illustrated
in Fig. 3 a decrease of glucose and fructose contents
between 29—44% and 29-50% was observed, respectively,
in transgenic tubers. Sucrose content was higher in trans-
genic tubers, being between 1.25-fold and 1.4-fold in-
creased while the content of starch in the same tubers was
not significantly different from that observed in the wild-
type control (Fig. 3).

Changes in metabolite contents in tubers with
reduced phosphorylating GAPC activity

To evaluate whether reducing the tuber phosphorylating
GAPC activity resulted in changes in the levels of inter-
mediates of the glycolytic or sucrose to starch pathways,
a broad analysis of the levels of these compounds was
performed. As can be seen in Fig. 4, the content of UDPGlc
increased, up to 1.4-fold, in tubers from all three transgenic
lines whereas the content of hexose phosphates remained
largely unchanged (with the exception of a 1.3-fold
increase observed in line 56). The level of 3-PGA, the
direct product of the reaction catalysed by phosphorylating
GAPC, decreased significantly in transgenic lines down
to 40% of the wild-type values. The level of PEP was only
decreased in line 56, while no significant differences were
obtained for pyruvate (Fig. 4). The ratio of ATP and ADP
remained unaffected in transgenic tubers compared with
control tubers (Fig. 4). In addition, an analysis of a wide
range of other metabolites of primary metabolism in con-
trol and transgenic tubers by means of an established gas
chromatography mass-spectrometry (GC-MS) method was
carried out (Roessner et al., 2001a, b). No major differ-
ences in the levels of primary metabolites of sugar, amino
and organic acid metabolism were observed (Table 2).
That said, there were tendential increases in the levels of
asparagine (significant in line 97) and shikimate (signifi-
cant in line 56) and decreases in the levels of leucine
(significant in line 97), methionine, glycerate (significant
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Fig. 3. Impact of reduced expression of phosphorylating GAPC on tuber
carbohydrate content. Plant material was harvested from tubers of
growing plants and homogenized in buffer as described in the Materials
and methods The untransformed control is indicated as the filled bar
and transgenic lines as the blank bars. 97, 56, and 7 represent indepen-
dent transgenic lines. Results are given in umol g~' FW (in the case of
starch as hexose equivalents) and represent the mean *=SE of four in-
dependent replicates. Asterisk denotes values that were determined to be
highly significant by the 7 test (P <0.02).

in line 7), and spermidine (significant in line 56). In addi-
tion, there were significantly elevated levels of arabinose
and tyramine (line 7), and quinate (line 97) and signifi-
cantly decreased levels of saccharate (line 7), although
the biological relevance of these isolated changes remains
unclear from the present study.

Respiration rate in intact tubers with reduced
phosphorylating GAPC activity

Given the reduction in the levels of some glycolytic inter-
mediates in the transgenic tubers, it would seem reasonable
to assume that these plants may be compromised in their
respiration. In order to evaluate this hypothesis the
respiration rate in intact mature tubers and in transgenic
tubers stored for 6 weeks and 20 weeks at room temper-
ature was measured. Since the tubers investigated had vari-
ous sizes and, most probably therefore, different metabolic
activity, the variation in respiration rates recorded was

enormous, between 0.1 and 0.4 nmol CO, gf1 FW s~ ' in
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Fig. 4. Influence of reduced expression of phosphorylating GAPC on
tuber metabolite levels. Plant material was harvested from tubers of
growing plants and homogenized in buffer as described in the Materials
and methods. The untransformed control is indicated as the filled bar
and transgenic lines as blank bars. 97, 56 and 7 represent independent
transgenic lines. Results are given in nmol g~' FW and represent the
mean *SE of four independent replicates. Asterisk denotes values that
were determined to be significantly different by the ¢ test (P <0.05).
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Table 2. Metabolite levels in developing tubers of wild-type and transgenic potato plants

Metabolites were determined in samples harvested from 10-week-old plants. Data are normalized to the mean response calculated for the wild type
(individual wild-type values were normalized in the same way). Values presented are mean = SE of six replicates. Values in bold denote significant
differences that were determined by the 7 test (P <0.05).

Wild type GAPDH-7 GAPDH-56 GAPDH-97
Amino acids
Alanine 1.00%+0.11 0.78%+0.15 1.09+0.12 0.83+0.14
Arginine 1.00+0.17 0.75*0.21 1.03+0.19 0.97+0.23
Asparagine 1.00+0.27 0.94x0.23 1.71£0.22 2.11:0.26
Aspartate 1.00£0.04 1.04£0.05 1.11£0.08 1.21£0.05
[B-alanine 1.00+0.13 0.99+0.07 1.51*0.16 1.23+0.16
Cysteine 1.00%0.20 1.44=0.11 1.23+0.19 1.060.20
y-aminobutyrate 1.00£0.13 1.06+£0.04 1.31£0.13 1.15%£0.12
Glutamate 1.00x0.14 1.16%0.13 1.03%+0.09 1.15%0.08
Glutamine 1.00+0.21 1.22+0.23 1.43+0.12 1.31+0.17
Glycine 1.00£0.10 0.83*0.10 1.02+0.11 0.87+0.09
Isoleucine 1.00+0.11 0.88£0.22 0.96+0.23 0.60+0.22
Leucine 1.00£0.26 0.36:0.22 0.34+0.19 0.35*£0.26
Lysine 1.00£0.11 0.94+0.10 1.09+0.18 0.82+0.10
Methionine 1.00+0.14 0.640.14 0.89+0.15 0.78%+0.17
Ornithine 1.00+0.14 0.91%+0.16 1.38+0.19 1.04%0.20
Phenylalanine 1.00+0.14 1.00%0.15 1.46x0.15 1.08+0.21
Proline 1.00+0.22 0.40+0.24 0.82+0.23 1.20%+0.24
Pyroglutamate 1.00£0.04 0.810.06 0.98+0.13 1.12+0.06
Serine 1.00x0.09 0.82*0.10 1.06+0.13 0.85*0.12
Threonine 1.00+0.11 0.93x0.12 1.02+0.14 0.89*0.14
Tryptophan 1.00£0.21 1.18+0.31 1.77£0.26 0.95+0.29
Tyrosine 1.00x0.15 1.11x0.15 1.35+0.20 0.68+0.25
Valine 1.00+0.03 0.88-0.04 0.92+0.05 0.98+0.04
Organic acids
Aconitate 1.00+0.21 0.72*0.15 0.69+0.19 0.90%+0.12
Ascorbate 1.00£0.09 0.78£0.08 0.80%0.14 0.98+0.13
Benzoate 1.00£0.14 0.80*0.13 0.82+0.08 0.89+0.10
Citrate 1.00+0.06 0.97%+0.05 0.98+0.06 0.97%0.05
Dehydroascorbate 1.00%+0.11 1.04%0.10 0.86*0.10 0.91*+0.11
Fumarate 1.00+0.13 1.02+0.06 1.45+0.24 1.08+0.10
Gluconate 1.00£0.12 0.88*0.18 1.18+0.12 1.07+0.07
Glycerate 1.00£0.10 0.64+0.04 0.98+0.18 0.81x0.10
Isocitrate 1.00+0.13 0.79+0.08 1.07+0.18 1.12+0.07
Malate 1.00+0.17 1.45+0.21 0.99+0.21 0.78+0.04
Quinate 1.00£0.10 0.90+£0.22 1.15%0.06 1.47+0.10
Saccharate 1.00+0.08 0.800.04 1.40+0.24 1.45%+0.19
Shikimate 1.00£0.12 1.25+0.24 1.47+0.09 1.39+0.12
Succinate 1.00+£0.22 0.85+0.24 1.02+0.17 0.73x0.16
Threonate 1.00+0.06 0.91+0.11 0.92+0.11 0.87+0.08
Sugars and sugar alcohols
Arabinose 1.00£0.33 2.14+0.18 0.96+0.27 1.02x0.21
Fructose 1.00+0.35 0.89+0.21 1.79+0.36 0.53%+0.18
Galactose 1.00£0.21 1.19+0.22 0.83+0.08 0.67x0.20
Glucose 1.00x0.16 0.70%£0.12 0.33+0.37 0.61x0.23
Inositol 1.00+0.12 0.91*0.16 0.86+0.14 0.89+0.17
Maltose 1.00£0.13 0.91x0.14 1.21£0.28 0.79+0.14
Mannitol 1.00%0.06 1.28+0.09 1.11+0.14 1.16x0.07
Mannose 1.00£0.16 1.73£0.18 1.07£0.22 0.88+0.19
Raffinose 1.00£0.12 0.91x0.16 0.74%0.25 0.67x0.19
Ribose 1.00%+0.08 1.07+0.08 1.12%+0.15 1.04+0.11
Sorbitol 1.00£0.06 0.99+0.08 1.00£0.12 0.95+0.10
Trehalose 1.00+£0.23 0.73x0.14 0.76%0.13 0.78%0.09
Xylose 1.00+0.14 1.31x0.19 0.88+0.16 0.64+0.22
Other metabolites
Fructose-6P 1.00£0.21 1.23*0.11 0.86*0.17 0.74%0.06
Glucose-6P 1.00+0.13 1.22+0.06 1.15+0.16 0.82+0.05
Inositol-1P 1.00£0.09 1.02+0.08 0.94+0.11 1.01x0.07
Phosphoric acid 1.00%0.05 0.78%0.20 0.72+0.22 1.09+0.05
Putrescine 1.00£0.07 1.17+0.12 1.03£0.06 1.12+0.10
Spermidine 1.00£0.06 0.95+0.03 0.74+0.07 0.92+0.09

Tyramine 1.00%0.11 2.160.11 0.72%+0.14 0.89+0.21
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Fig. 5. Influence of reduced expression of phosphorylating GAPC on
tuber respiration rate. Whole growing tubers and whole tubers stored
for 6 weeks and 20 weeks at room temperature from control (filled
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mature tubers and 0.02 and 0.06 nmol CO, g~' FW s~ ' in
stored tubers (Fig. 5). Nevertheless, the rate of respiration
was unchanged in mature control and transgenic tubers,
whilst a slight increase (up to 1.3-fold) in respiration was
observed in stored transgenic tubers. However, this was
statistically only significant in tubers stored for 6 weeks as
confirmed by 7 test (<0.05; Fig. 5).

Redistribution of radiolabel following incubation of
discs from growing tubers of wild-type and
transgenic lines

Since the measurement of absolute starch content does not
accurately reflect starch turnover, metabolism within the
transgenic tubers following incubation in U-['*C]glucose
or U-["*C]sucrose was evaluated. Growing tubers com-
parable to those used for metabolite and enzyme activity
measurements were used. There was little consistency in
the rate of radiolabel uptake between the different sub-
strates when evaluated as a function of phosphorylating
GAPC activity. In the experiment with '*C-glucose as sub-
strate the uptake rate was unrelated to phosphorylating
GAPC activity with uptake rates of 1.41*+0.1, 2.17=
0.2, 1.18+0.1, and 1.34+0.1 umol g~' FW h™" in wild
type and lines 7, 56, and 97, respectively. The extent to
which the activity of phosphorylating GAPC influences
carbohydrate metabolism was assessed by following the
redistribution of '*C into starch, soluble sugar, and anionic
and cationic fractions. There was a clear reduction (down
to 85% and 65% of wild-type levels), in the percentage of
the total label incorporated recovered in soluble sugars
in all three transgenic lines. (Fig. 6). This decrease was
accompanied by a decrease of radiolabel recovered in
anionic (down to 55% of wild-type levels) and cationic
(down to 62% of wild-type levels) fractions. By contrast,
marked increases of '*C incorporation into insoluble
materials such as starch, cell walls, and proteins were
observed (values in the transformants being between 1.7-
fold and 2.3-fold in excess of the wild type). Similar results
were obtained using '*C-sucrose as substrate concerning
neutral and insoluble compounds (data not shown). Given
that the steady-state levels of these metabolites change
contrapuntally in the transformants, the fact that the results
were not substrate-dependent strongly implies that these
data are not strongly affected by dilution effects and
therefore that they give a fairly accurate representation of
metabolism within the tuber.

bars) and transgenic lines (blank bars) were used for the determination of
respiration rate. 97, 56, and 7 represent independent transgenic lines.
Data represent mean values and standard errors (n=5) of carbon dioxide
evolution. Results are given as nmol g~' FW s~'. Performance of ¢ tests
revealed only significant differences between the transformants and
the wild type in tubers stored for 6 weeks.
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Fig. 6. Metabolism of 14C—glucose by wild-type and transgenic potato
tuber slices. Redistribution of radiolabel was calculated as a proportion
of the total metabolism for control (filled bars) and transgenic lines
(blank bars). The untransformed control is indicated as the filled bar
and transgenic lines as blank bars. 97, 56, and 7 represent independent
transgenic lines. Data represent mean values and standard errors (n=4).
Asterisk denotes values that were determined to be significantly different
by the ¢ test (P <0.05).

Analysis of enzymes of sugar metabolism

It was next investigated whether the reduced GAPDH
activity in the tubers was accompanied by changes in the
activities of other enzymes involved in sucrose breakdown,
glycolysis, and starch degradation. As illustrated in Fig. 7
the maximum catalytic activities of sucrose synthase, phos-
phofructokinase, pyruvate kinase, phosphoglucomutase,
starch synthase, and alpha-amylase were unaffected in
the transgenic tubers compared with control tubers. How-
ever, the maximum activity of B-amylase was significantly

higher in all three transgenic lines being between 1.2-fold
and 1.3-fold higher than that of control tubers.

Effect of reduced phosphorylating GAPC activity on
sugar metabolism at low temperature

Having established that phosphorylating GAPC plays only
a minor role during growing tuber development, attention
was next turned to addressing the question whether phos-
phorylating GAPC plays a crucial role during tuber storage
at low temperature. For this reason mature tubers of con-
trol and transgenic plants were placed at 4 °C. Slices were
harvested after 42 d and 85 d and analysed for carbohydrate
content. Prior to the sugar measurements the activity of
phosphorylating GAPC and the content of important diag-
nostic metabolites such as 3PGA were measured to confirm
the reduction in enzyme activity and glycolytic intermedi-
ates. As shown in Fig. 8, the activity of phosphorylating
GAPC was decreased up to 95% and 97% of the activity
found in the control in mature tubers and those stored for
42 d at 4 °C, respectively. In transgenic tubers stored for
85 d, a reduction of phosphorylating GAPC activity of up
to 95% was maintained (data not shown). The decreased
GAPDH activity was accompanied by a reduction of 3PGA
content between 38% and 66% in both mature tubers and
stored tubers (Fig. 8). The content of hexose phosphates did
not change significantly in mature tubers, but there was a
slight significant increase of up to 1.3-fold in the transgenic
lines 7 and 56 following cold treatment (Fig. 8). The
UDPGIc level was significantly higher in mature tubers
up to 1.2-fold, whereas there was only an increase of 1.2-
fold in transgenic line 56 (Fig. 8).

As expected, the content of soluble sugars, glucose and
fructose increased during storage at 4 °C in both control and
transgenic tubers. However, only a significant difference of
glucose and fructose was detected (which were up to 1.8-fold
increased), in line 97 after 42 d and in lines 56 and 97 (which
were increased to a similar extent), after 85 d (Fig. 9). The
sucrose content was higher (up to 1.4-fold) in mature trans-
genic tubers compared with the wild-type control, but this
significant difference was not conserved after storing the
tubers for 42 d and 85 d at 4 °C (Fig. 9). The content of starch
was unchanged in mature transgenic tubers and decreased
up to 40% of control levels in transgenic tubers stored for
42 d at 4 °C (Fig. 9). In transgenic tubers stored for 85 d,
the starch content was similar to that in control tubers or
lower about 25% in transgenic line 56 (Fig. 9) suggesting that
the kinetics of cold-nduced sweetening may vary, possibly
due to the induction of beta-amylase, the manipulation
of phosphorylating GAPC activity has little effect on the
absolute mobilization of starch.

Discussion

The results of this paper suggest that the phosphorylating
GAPC exhibits a relatively minor influence on both leaf
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Fig. 7. Enzyme activities in potato tubers exhibiting decreased expres-
sion of phosphorylating GAPC. Plant material was harvested from tubers
of growing plants and homogenized in buffer as described in the
Materials and methods. SuSy, sucrose synthase; PK, pyruvate kinase;
PFK, phosphofructokinase; PGM, phosphoglycerate mutase, and STP,
starch phosphorylase. The untransformed control is indicated as the filled
bar and transgenic lines as blank bars. 97, 56, and 7 represent independent
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and tuber metabolism with the observed changes being
confined to metabolites intimately associated with the
reaction. Moreover, despite a strong constitutive inhibition
of phosphorylating GAPC, transgenic potato plants were
not altered in height, flowering time, leaf number or leaf
size compared with control plants, demonstrating that
potato plants are able to cope with a reduced GAPDH
activity of more than 90% without any growth retardation.
Similar results were obtained with potato plants which were
inhibited to a similar extent in pyrophosphate-dependent
phosphofructokinase, cytosolic fructose-1,6-bisphospha-
tase or either of the two potato isoforms of hexokinase
(Hajirezaei et al., 1994; Zrenner et al., 1996; Veramendi
et al., 1999, 2002). By contrast, inhibition of other enzymes
associated with glycolysis such as the cytosolic isoforms
of fructokinase (Davis et al., 2005), phosphoglucomutase
(Fernie et al., 2002b), and cytosolic phosphoglycerate
mutase (Westram et al., 2002) in potato resulted in
discernible and dramatic alterations in phenotype, even in
instances wherein the documented level of repression was
considerably lower than that observed here.

As stated above, the expression of the antisense phos-
phorylating GAPC construct resulted in dramatically re-
duced activity of this enzyme, the inhibition being
particularly effective in sink leaves, stolons, roots, and
tubers but less effective in source leaves and stems. A
cursory analysis of leaf metabolism revealed that this was
somewhat altered with clear and notable changes in 3-
phosphoglycerate content. However, given that the effects
of altering glycolysis in potato leaves has been relatively
well documented (Knowles et al., 1998; Grodzinski et al.,
1999; Veramendi et al., 1999; Geigenberger et al., 2004a),
and the fact that the plastidial isoforms of GAPDH are
probably more important during photosynthetic metabo-
lism (Petersen et al., 2003; Sparla et al., 2005), the major
aim of this study was to characterize the role of phosphory-
lating GAPC in tuber metabolism and function. Measure-
ment of the levels of tuber phosphorylated intermediates
of the transformants revealed an increase in UDPglucose
and decreases in the levels of 3-phosphoglycerate and
phosphoenolpyruvate that would be anticipated following
reduction of the in vivo capacity of this reaction step.
Surprisingly, there was not a corresponding increase in
hexose phosphate levels which are generally maintained
at equilibrium with UDPglucose (Tauberger et al., 2000).
The exact reason for this is unclear in the current study.
However, it seems likely that one of two mechanisms lie
behind this. It is conceivable that the transgenics addition-
ally exhibit an inhibition in the UDPglucose pyrophos-
phorylase reaction via an, as yet unknown, regulatory

transgenic lines. Results are given in nmol mg™' protein min~' and
represent the mean *+SE of four independent replicates. Asterisk denotes
values that were determined to be significantly different by the ¢ test
(P <0.05).
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mechanism. Alternatively, it is possible that UDPglucose
pyrophosphorylase and the hexose phosphate pools are in
equilibrium within the cytosol, but that fewer hexose
phosphates are partitioning to the plastid in the trans-
formants. In keeping with this hypothesis the levels of
3PGA, a potent activator of AGPase, are dramatically
reduced. Whilst the latter hypothesis is perhaps favourable,
further experimentation is required in order fully to
comprehend these observations. In addition, a decrease of
label incorporation into anionic and cationic compounds
in transgenic lines, following incubation of tuber discs in
!4C-labelled substrates also indicate that the transformants
displayed altered tuber metabolism. Whereas the increased
'4C label incorporation into both sucrose and cell wall
suggest that an induction of glyconeogenic flux may result
in an enhanced cell-wall synthesis. In keeping with this
hypothesis, transgenic tobacco calli expressing a modified
mammalian 6-phosphofructo 2-kinase/fructose 2,6-bisphos-
phatase gene and displaying elevated triose- to hexose-
phosphate cycling (Fernie et al., 2001) were shown to
display enhanced cell-wall biosynthesis under conditions of
phosphate stress (Fernie et al., 2002a). However, measure-
ment of steady-state cellulose content in the present study
revealed no difference between the control and transgenic
lines (data not shown). Equally surprisingly, the depletion
of specific glycolytic intermediates had no impact on the
respiration rate in intact tubers of growing plants (Fig. 5).
Two potential explanations can be proposed for these
results. First, it is possible that even a reduction of phos-
phorylating GAPC of up to 95% can be compensated by
another isoform of GAPDH. Secondly, it is conceivable that
the residual GAPDH activity is sufficient to maintain respi-
ratory activity. The occurrence of a non-phosphorylating
GAPDH, which catalyses the conversion of glyceralde-
hyde 3-phosphate to 3-phosphoglycerate in a single re-
action (Kelly and Gibbs, 1973; Mateos and Serrano, 1992;
Habenicht et al., 1994), provides correlative support for the
first hypothesis. In addition, Bustos and Iglesias (2003)
demonstrated that the non-phosphorylating GAPDH in het-
erotrophic cells of wheat is a target for multi-level regula-
tion. Due to low level expression it was not possible to
demonstrate that the non-phosphorylating GAPDH (GAPN)
was up-regulated at the transcriptional level (data not shown).
When taken together with the fact that the exact role of
this enzyme in heterotrophic tissues remains unknown, the
second possibility cannot be formally excluded — especially

Fig. 8. Influence of reduced expression of phosphorylating GAPC on
tuber primary metabolites during cold storage. Plant material was
harvested from tubers of growing plants and homogenized in buffer as
described in the Materials and methods. The untransformed control is
indicated as the filled bar and transgenic lines as blank bars. 97, 56 and 7
represent independent transgenic lines. Results are given in nmol g ' FW
and represent the mean *=SE of 12 and 6 replicates in the wild-type and
transgenic lines, respectively. Asterisk denotes values that were de-
termined to differ significantly from control values by the ¢ test (P <0.05).

2T0Z ‘82 Yore | uo ABojosAud ue|d 810N IdIA e /Bio'sfeulnopiojxogx(//:dny wouy pspeojumoq


http://jxb.oxfordjournals.org/

Growing tubers 42 days at 4°C 85 days at 4°C
Glucose
100 - . _I_
*
80 T T
*
T I
60 1
40 A
20 A
0 __- Y s O s |
Fructose
80 T I
* * ._L
*
60 mlss A
40 -
20 A
<0.1
0
Sucrose
20 - L T
L | = s
15 4 1
10 A
* * e
5 -
0 -
900 4 Starch
L
1
600 - ] * =
* *
300 4
0- T T T T T T T T T
C 7 5 9 C 7 56 97 cC 7 56 97

Fig. 9. Influence of reduced expression of phosphorylating GAPC on
tuber carbohydrate levels during cold storage. Plant material was
harvested from tubers of growing plants and homogenized in buffer as
described in the Materials and methods. The untransformed control is
indicated as the filled bar and transgenic lines as blank bars. 97, 56, and
7 represent the independent transgenic lines. Results are given in pmol
¢~ ' FW and represent the mean +SE of 12 and 6 replicates in the wild-
type and transgenic lines, respectively. Asterisk denotes values that
were determined to be significantly different by the ¢ test (P <0.05).
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given that reduction of the pyrophosphate-dependent
phosphofructokinase to a similar extent also displayed little
change in the rate of respiration (Hajirezaei et al., 1994).
Thus, whilst it is conceivable that glycolytic metabolism
could be maintained by a non-phosphorylating GAPDH in
the transgenic tubers, these results, alongside the metabolic
profiles of the transformants, suggest that the reaction
step catalysed by GAPDH exerts very little control over
the rate of respiration. This finding is largely in keeping
with theoretical approaches which suggest that the control
of respiration is vested almost entirely in the reactions sub-
sequent to the formation of phosphenolpyruvate (Thomas
et al., 1997), but reveals little concerning the in vivo
function of the phosphorylating GAPC.

Given that the inhibition of phosphorylating GAPC had
little effect on either the levels of glycolytic intermediates
or the rate of respiration, the metabolism of '*C-labelled
glucose was evaluated in order to assess its general impact
on metabolism. Since 3PGA is an activator of the enzyme
ADPGIc pyrophosphorylase in potato tubers involved in
starch synthesis (Sowokinos and Preiss 1982; Tiessen et al.,
2002) and a decrease of 3PGA was monitored in transgenic
tubers with reduced phosphorylating GAPC activity, they
might be expected to have reduced starch content. How-
ever, recent studies have revealed that several enzymes that
catalyse reactions external or peripheral to the sucrose-
to-starch transition are characterized by negative control
coefficients for starch synthesis (Tjaden et al., 1998;
Regierer et al., 2002; Geigenberger et al., 2004b, 2005).
Interestingly, whilst in discs isolated from wild- type
tubers, about 18% of the label metabolized was incorpo-
rated in starch, an incorporation of between 30% and 40%
was observed in the transformants (Fig. 6). Although these
data are strongly indicative of an enhanced rate of starch
synthesis, the steady-state level of starch content remained
unchanged in the transformants (Fig. 3). This result is,
however, consistent with earlier literature reports since
previous studies in which an unregulated bacterial AGPase
was expressed in potato was demonstrated to elevate both
starch synthesis and degradation (Sweetlove et al., 1996a)
and a recent study revealed that starch turnover is also
apparent in wild-type tubers (Roessner-Tunali ef al., 2004).
Our survey of the maximum catalytic activities of starch-
degrading enzymes only revealed the induction of [-
amylase activity (Fig. 7). However, since B-amylase is
thought to be one of the most crucial starch-degrading
enzymes in potato tubers (Nielsen et al., 1997), transgenic
tubers with diminished GAPDH activity appear to trigger
starch breakdown rather than to increase the starch content.
Intriguingly, a similar picture also emerged on the over-
expression of the bacterial AGPase (Sweetlove et al.,
1996b), although the exact mechanism underlying this
induction remains unclear from studies to date.

When potato tubers are harvested and stored at low
temperatures they accumulate huge amounts of soluble
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sugars, primarily glucose, fructose, and sucrose (Sowokinos,
1990). This process, called cold sweetening, is based on
starch mobilization in amyloplasts shown by an activation
of amylolytic enzymes such as f-amylase (Cochrane ef al.,
1991; Nielsen et al., 1997). While cold stress reduces the
glycolytic capacity, gluconeogenesis is stimulated resulting
in a resynthesis of sucrose. It was previously demonstrated
that metabolism of '*C-glucose is appreciably diminished
in tubers stored at low temperatures leading to increased
levels of hexose-P and an elevated incorporation of label
in sucrose (ap Rees, 1988), most likely due to a specific
up-regulation of sucrose-P-synthase (Hill et al., 1996). This
sucrose is subsequently hydrolysed to its constituent
hexoses following the induction of vacuolar invertase.
Ectopic expression of a proteinous invertase inhibitor tar-
geted to the vacuole can overcome this process (Greiner
et al., 1999). However, repression of glycolysis is also
known to be involved in cold sweetening since the activities
of key enzymes such as phosphofructokinase, PFP and
pyruvate kinase are reduced during low temperature storage
(ap Rees, 1988; ap Rees and Morrell, 1990). To find out
whether the metabolic shift imposed by the inhibition of
phosphorylating GAPC would further stimulate the accu-
mulation of soluble sugars in potato tubers at low tem-
perature, transgenic tubers with reduced GAPDH activity
(up to 97% compared with wild-type controls) were stored
at 4 °C and sugar contents were monitored after 42 d
and 85 d (Fig. 9). However, there was little difference in
sugar accumulation between transgenic and control tubers,
suggesting that phosphorylating GAPC also does not
play an important role in the accumulation of soluble
sugars during cold storage.

In summary, on the basis of the results presented here, it
is concluded that an inhibition of phosphorylating GAPC
does not greatly affect sugar metabolism in leaves or
tubers and has little influence on plant morphology despite
clear changes being observed in the levels of several
glycolytic metabolites. This suggests that the lack of this
phosphorylating GAPC can be compensated by the ex-
istence of other isoforms such as the non-phosphorylating
GAPDH or even by the plastidial isoform of the enzyme.
The results suggest that phosphorylating GAPC exerts
little influence on respiratory or starch biosynthetic flux,
at least under the conditions tested here. Analysis of the
expression of genes encoding phosphorylating GAPC in
publicly accessible microarray depositories found at
www.genevestigator.ethz.ch (Zimmermann et al., 2004),
suggests that they are somewhat responsive to stress.
However, detailed analysis reveals that most glycolytic
enzymes are induced under similar conditions so this may
merely reflect the previously documented transcriptional
coregulation of this pathway (Urbanczyk-Wochniak
et al., 2003a, b). That said, it is quite possible that a
specific role for this isoform could be elucidated under
sub-optimal growth conditions.

Despite the fact that the changes described here were
generally of minor magnitude they allow several important
conclusions to be drawn concerning the regulation of tuber
metabolism. The lack of change in the steady-state level
of starch is intriguing, since, whilst this could perhaps
be anticipated from the contrapuntal changes in the levels
of hexose phosphates and 3-phosphoglycerate, increased
levels of sucrose (such as those observed here), have
recently been postulated to promote starch synthesis via
redox-related activation of the AGPase reaction (Tiessen
et al., 2002). Whilst this model is a highly attractive
explanation for the co-ordination of starch synthesis the
results here suggest that the role of starch degradative
enzymes in the regulation of starch accumulation has been
very much overlooked in most studies aimed at elevating
starch content by stimulating its synthesis (Stark e al.,
1991; Sonnewald et al., 1997; Trethewey et al., 2001).
The fact that both this and a previous study (Nielsen
et al., 1997), revealed a coincidence between up-regulation
of starch degradation and transcriptional activation of
B-amylase suggests that further research effort should be
expended on this process.
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